Schiff Base Ligand for Photoinduced Atom Transfer Radical Polymerization

Xiaoling Xu,^{†‡} Mei Hong,^{†‡} Chunyang Bao,^{†‡} Yan Wang,^{†‡} Jing Chen,^{†‡} Die Li,^{†‡} Tianheng

Wang,^{†‡} Qiang Zhang^{†‡*}

[†] Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.

[‡] Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China. Email: zhangqiang@njust.edu.cn

Experimental Section

Materials

Tris[*N*-(2-pyridylmethyl)-2-iminoethyl]amine (Py₃Tren) and *N*-ethyl-2-pyridylmethanimine (PyEthyl) were synthesized according to literature procedures and stored at 2-8 °C.^{1, 2} Copper(II) trifluoromethanesulfonate (Cu^{II}(OTf)₂, 98%, Energy Chemical), dimethyl sulfoxide (DMSO, 99%, Aladdin), ethyl α -bromoisobutyrate (EBiB, 98%, TCI), methyl methacrylate (MMA, >99.5%, Aladdin) were used as received. All other reagents and solvents were obtained from Aladdin (China) and used without further purification unless otherwise stated.

Instruments and analysis

¹H NMR spectra were recorded at 25 °C with a Bruker AV 500 M spectrometer using deuterated solvents obtained from Aladdin. The number-average molecular weight (M_n) and the molecular weight distribution (M_w/M_n) were determined by Waters 1515 size exclusion chromatography (SEC) in N,N-dimethylbenzamide (DMF) at 40 °C with a flow rate of 1.00 mL min⁻¹. The SEC was equipped with refractive index (RI) and UV detectors, a 20 µm guard column (4.6 mm × 30 mm, 100–10 K) followed by three Waters Styragel columns (HR1, HR3 & HR4) and an autosampler. Narrow linear polystyrene standards in the range of 540 to 7.4 × 10⁵ g mol⁻¹ were used to calibrate the system. All samples were passed through a 0.45 µm PTFE filter before analysis. A 120W super strong ultraviolet low pressure mercury lamp (CEL-LPH120-254, Beijing China Education Au-light co., Ltd.) and a 300 W Xe lamp (CEL-HXF 300, Beijing China Education Au-light co., Ltd.) with a 400 nm cutoff filter was

used as light source. The optical transmittance of the aqueous solution of thermoresponsive polymers at a wavelength of 500 nm was acquired on a SHIMADZU UV-2600 UV/Vis spectrophotometer. Electrospray ionization mass spectrometry (ESI-MS) measurements were performed in positive mode through using a Bruker Esquire 3000 Plus instrument.

General procedures for the photoinduced polymerization of MMA

MMA (2.3 mL, 22 mmol, 50 eq), EBiB (65 μ L, 0.44 mmol, 1 eq), CuBr₂ (7.1 mg, 31.7 μ mol, 0.072 eq), Py₃Tren (65.5 mg, 158.4 μ mol, 0.36 eq) and DMSO (2.3 mL) were added to a vial with a rubber seal and magnetic stir bar and degassed by purging with nitrogen for 30 mins. The reaction mixture was placed in a photoreactor, irradiating at different radiation sources (UV lamp or visible light), and monitored by taking samples periodically, analysing the polymer by both SEC and ¹H NMR spectroscopy.

General procedures for *in-situ* chain extension reactions

MMA (2.3 mL, 22 mmol, 50 eq), EBiB (65 μ L, 0.44 mmol, 1 eq), CuBr₂ (7.1 mg, 31.7 μ mol, 0.072 eq), Py₃Tren (65.5 mg, 158.4 μ mol, 0.36 eq) and DMSO (2.3 mL) were added to a vial with a rubber seal and magnetic stir bar and degassed by purging with nitrogen for 30 mins. The reaction mixture was placed in a photoreactor, irradiating at visible light. After 10 h a 1: 1 mixture of degassed MMA (50 eq) and DMSO was added to the reaction mixture via degassed syringe. Samples were taken periodically and conversions were measured using ¹H NMR and SEC analysis.

Figure S1. SEC elution curve of poly(MMA).

Figure S2. Temporal control of the Photo-ATRP of MMA under visible light irradiation. Molecular weight and dispersity as a function of monomer conversion. Reaction conditions: $[MMA]_0:[EBiB]_0:[CuBr_2]_0:[Py_3Tren]_0 = 50:1:0.072:0.36$ in 50 vol% DMSO with visible light radiation.

Figure S3. Temporal control of the Photo-ATRP of MMA under visible light irradiation. Molecular weight and dispersity as a function of monomer conversion. Reaction conditions: $[MMA]_0:[EBiB]_0:[CuBr_2]_0:[Py_3Tren]_0 = 50:1:0.072:0.288$ in 50 vol% DMSO with visible light radiation.

Figure S4. (A) Kinetics of polymerization (B) evolution of the M_n and M_w/M_n with conversion. Conditions: $[MMA]_0:[EBiB]_0:[Cu^{II}]_0:[Py_3Tren]_0 = 50:1:0.072:0.36$, in DMSO, irradiated by visible light. Two different Cu^{II} salts were used, CuBr₂ and Cu^{II}(OTf)₂.

Figure S5. Evolution of UV–Vis spectra as a function of time. Conditions: (A) [EBiB] = 22 mM, (B) [L] = 4.4 mM, (C) $[CuBr_2] = 2.2 \text{ mM}$, [L] = 2.2 mM, where L= Py₃Tren in DMSO. In all cases the samples were irradiated with 254 nm radiation, at 25 °C.

Figure S6. Evolution of UV–Vis spectra as a function of time. Conditions: [L] = 4.4 mM,

 $[CuBr_2/L] = 2.2 \text{ mM}$, where L= Py₃Tren in DMSO at 25 °C.

Figure S7. A partial enlarged view of the evolution of UV/Vis spectra as a function of time. Conditions: $[CuBr_2] = 2.2 \text{ mM}$, [L] = 11 mM, where $L = Py_3Tren \text{ in MMA/DMSO} = 1/1 \text{ (v/v)}$. In all cases the samples were irradiated with 254 nm radiation, at 25 °C.

Entry	$[M]_0:[I]_0:[CuBr_2]_0:[L]_0^a$	Time / h	$M_{ m n, th}$	$M_{ m n, SEC}$ b	$M_{ m w}$ / $M_{ m n}$ ^b	Conv. ^c
1	50:1:0.072:0.36	10	5100	13800	1.33	97
2	100 : 1 : 0.072 : 0.36	16	9600	22000	1.26	94
3	150 : 1 : 0.072 : 0.36	23	13700	27200	1.29	90

Table S1. Photo-ATRP of MMA to range of DP_n .

^a M = MMA, I = EBiB, L = Py₃Tren, DMSO (50%, v/v), irradiated by visible light; ^b by SEC; ^c by ¹H NMR spectroscopy.

Table S2. Comparison of theoretical and experimentally determined molecular mass for the

Structure	DP (n)	$(m/z)_{\text{theo}}^{a}$	$(m/z)_{\exp}^{b}$
$[MMAH + Na]^+$	2	325.16	325.00
$[MMAH + H]^+$	4	503.28	503.03
$[MMAH + Na]^+$	4	525.27	525.32
$[Py_3TrenH + Na]^+$	1	536.27	536.15
$[Py_3TrenH + H]^+$	2	614.34	614.29
$[Py_3TrenH + Na]^+$	2	636.33	636.26
$[Py_3TrenH + Na]^+$	3	736.38	736.34
$[Py_3TrenH + H]^+$	4	814.44	814.38
$[EH + Na]^+$	4	539.28	539.31
$[EH + Na]^+$	5	639.34	639.27
$[EH + H]^+$	6	717.40	717.35
$[EBr + H]^+$	4	595.20	595.13
$[EE + Na]^+$	4	653.35	653.43
$[EE + Na]^+$	7	953.51	953.44
$[BrH + H]^+$	5	581.19	581.21
$[BrH + H]^+$	8	881.35	881.11

significant structures found for various reagent compositions.

^aCalculated exact mass. ^bMeasured by ESI-MS.

_

REFERENCES

- 1. D. M. Haddleton, M. C. Crossman, B. H. Dana, D. J. Duncalf, A. M. Heming, D. Kukulj and A. J. Shooter, *Macromolecules*, 1999, **32**, 2110-2119.
- 2. X. Xu, C. Bao, M. Hong, D. Li and Q. Zhang, *Polym. Chem.*, 2020, **11**, 6356-6364.