Supporting Information

Bis-isatin based polymers with tunable energy levels for

organic field-effect transistor applications

Wei Yang,^a Mingxiang Sun,^b Yue Wang,^c Hui Yan,^c Guobing Zhang*^b and Qing Zhang*^a

^aShanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, China; orcid.org/0000-0001-5934-8384; E-mail: qz14@sjtu.edu.cn (Q. Zhang). ^bSpecial Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China; orcid.org/0000-0001-6053-2015; E-mail: gbzhang@hfut.edu.cn (G. Zhang) ^cSchool of Pharmacy, Liaocheng Unversity, Liaocheng, China; orcid.org/0000-0002-9843-0601.

1.	NMR and Mass Spectra of compounds	1
2.	Crystallographic results	6
3.	Thermal Analyses of Polymers	8
4.	OFET device performances of polymers	8

1. NMR and Mass Spectra of compounds

Figure S1. ¹H NMR spectrum of **BTEI** in CDCl₃

Figure S3. High-resolution MALDI-TOF spectrum of BTEI.

Figure S4. ¹H NMR spectrum of BTEI(CN) in CDCl₃

Figure S5. ¹³C NMR spectrum of BTEI(CN) in CDCl₃

Figure S9. ¹H NMR spectrum of P1 in CDCl₃

Figure S10. ¹H NMR spectrum of P2 in CDCl₃

2. Crystallographic results

Table S1.	Crystal	data an	d structure	refinement	for BTEI .
-----------	---------	---------	-------------	------------	-------------------

Empirical formula	$C_{40}H_{34}Br_2N_2O_2S_2$			
Formula weight	798.63			
Temperature	173(2) K			
Wavelength	1.54178 A			
Crystal system, space group	Triclinic, P-1			
	a = 7.845(3) A alpha = 73.92(3) deg			
Unit cell dimensions	b = 10.433(2) A beta = 89.21(3) deg			
	c = 15.690(7) A gamma = 70.37(2) deg			
Volume	1157.7(8) A^3			
Z, Calculated density	1, 1.146 Mg/m^3			
Absorption coefficient	3.292 mm^-1			
F(000)	406			
Crystal size	0.200 x 0.180 x 0.150 mm			
Theta range for data	4.701 to 68.342 deg			

collection	
Limiting indices	-9<=h<=9, -12<=k<=12, -18<=l<=18
Reflections collected / unique	15838 / 4228 [R(int) = 0.0342]
Completeness to theta	67.679 99.6 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4228 / 1 / 218
Goodness-of-fit on F ²	1.434
Final R indices [I>2sigma(I)]	R1 = 0.0991, wR2 = 0.3312
R indices (all data)	R1 = 0.1137, wR2 = 0.3571
Extinction coefficient	n/a
Largest diff. peak and hole	0.616 and -0.390 e.A^-3

Figure S11. Single crystal structures of **BTEI**

Table S2. Selected Torsion angles (°) for Compound BTEI

Bond type	Torsion angles (°)
S(1)-C(4)-C(5)-C(7)	0.2
N(1)-C(9)-C(10)-C(11)	0.9
O(1)-C(6)-C(7)-C(5)	-1.6

3. Thermal Analyses of Polymer

Figure S12. Thermogravimetric analysis (TGA) analysis of (a) P1 and (b) P2

Figure S13. Differential scanning calorimetry (DSC) analysis of (a) P1 and (b) P2

4. OFET device performance of polymers.

FFFF							
Compd	$T_{\text{annealing}}$	$\mu_{\rm h,max}(\mu_{\rm h,avg})$	$V_{\rm th}({ m V})$	$I_{\rm on}/I_{\rm off}$	$\mu_{e,max}(\mu_{e,avg})$	$V_{\text{te}}(\mathbf{V})$	$I_{\rm on}/I_{\rm off}$
	(°C)	$(cm^2V^{-1}s^{-1})^a$			$(cm^2V^{-1}s^{-1})^{b}$		
	N/A	0.029(0.027)	-3.2	104			
P1	180	0.230(0.210)	-2.7	106			
_	210	0.270(0.240)	-3.7	106			
	N/A	0.051(0.047)	10.1	10 ³			
P2	180	0.068(0.064)	9.3	103	0.023(0.020)	23.6	106
	210	0.094(0.089)	13.7	10 ³	0.024(0.020)	31.1	106

Table S3. OFET device performance of P1 and P2 polymers

^aDevice fabricated in ambient conditions. ^bDevices fabricated in glovebox.