Supporting Information

A Solvent-Free One-pot Multicomponent Tandem Polymerization of 3,4-Dihydropyrimidin-2(1*H*)-ones (DHPMs) Catalyzed by Ionic-Liquid@Fe₃O₄ NPs: Development of Polyamide Gels

Manpreet Kaur, ^a Mayank, ^b Deepak Bains, ^b Gagandeep Singh, ^b Navneet Kaur^{*a} and Narinder

Singh*b

^aDepartment of Chemistry, Panjab University, Chandigarh, India, 160014, E-mail: <u>navneetkaur@pu.ac.in</u>; Tel: +91-0172-2534405

^bDepartment of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, 140001, India. E-mail: <u>nsingh@iitrpr.ac.in</u>; Tel: +91-1881242176

Contents

Procedure S1. Synthesis of IL1.

Procedure S2. Preparation of Iron Oxide Nanoparticles.

Table S1: Yield percentage, molecular weight and solubility of synthesized MCTPs P1-P8.

Figure S1: GPC traces of synthesized polyamides P1-P8.

Figure S2: Mass spectra of Biginelli Product (B1).

Figure S3: **A)** FT-IR spectra of B1 with N-H and C=O stretching vibrations at 3336.8 cm⁻¹ and 1694.6 cm⁻¹ whereas in P1, shifted at 3473 cm⁻¹ and 1602.6 cm⁻¹ respectively. **B)** Comparison of ¹H NMR spectra of B1 and P1 in CDCl₃/DMSO- d_6 .

Figure S4: FT-IR spectra of polyamide adducts P2-P8.

Figure S5: A) ¹H NMR Spectra in mixture of $CDCl_3$ and $DMSO-d_6$ of P1-P4 (Urea derivatives). B) ¹H NMR Spectra in mixture of $CDCl_3$ and $DMSO-d_6$ of P5-P8 (thiourea derivatives).

Figure S6: A) ¹³C NMR Spectra in mixture of CDCl₃ and DMSO- d_6 of P1-P4 (Urea derivatives). B) ¹³C NMR Spectra in mixture of CDCl₃ and DMSO- d_6 of P5-P8 (thiourea derivatives).

Figure S7: Photos of synthesized Polyamide gels (P1-P8).

Figure S8: (A) Mass spectrum of IL1 and (B) Mass spectrum of IL-2.

Figure S9: (A) FT-IR spectrum of IL1 and (B) FT-IR spectrum of IL-2.

Figure S10: (A-C) SEM, TEM and HR-TEM images of IL2@Fe₃O₄ NPs respectively. (D-F) SEM, TEM and HR-TEM images of IL1@ Fe₃O₄ NPs respectively.

Figure S11: (A-B) DLS of IL1-2@Fe₃O₄; (C-D) EDX of IL1-2@Fe₃O₄.

Figure S12: Solid state UV-Vis absorption spectra of Fe_3O_4 NPs, IL1-2 and IL1-2@Fe_3O_4; **C**) Solid state emission profile IL1 and IL1@Fe_3O_4NPs, IL2 and IL1@Fe_3O_4NPs.

Figure S13: A) TGA-Plot of Fe_3O_4 , IL1@Fe₃O₄ and IL2@Fe₃O₄. B) N2 adsorption isotherm of Fe_3O_4 , IL-1@Fe₃O₄ and IL-2@Fe₃O₄

Table S2: N₂ adsorption BET measurements of Fe₃O₄, IL-1@Fe₃O₄ and IL-2@Fe₃O₄

Table S3: Acidic strength calculation for Fe₃O₄, IL-1@Fe₃O₄ and IL-2@Fe₃O₄

Figure S14: A-B) SEM and DLS images of IL2@ Fe_3O_4 after the fifth recycling cycle, respectively; **C-D**) SEM and DLS images of IL2@ Fe_3O_4 after the tenth recycling cycle, respectively.

Table S4: Physical Properties and Efficiency of Recovered IL2@Fe₃O₄ NPs catalyst.

Procedure S1. Synthesis of IL1: IL1 was synthesized by using reported procedure.¹ Dissolved 1 eq of 1-methyl imidazole in acetonitrile solvent and then added 1eq of bromoacetic acid and refluxed the reaction mixture at 80°C for 6 hours. Pale yellow colored crystalline solid was separated after evaporation of the solvent on reduced pressure. Yield 74% and purity was characterized by IR (KBr thin film), v(cm⁻¹): 3378.66 (broad), 3092.63, 3040.17, 1719.50, 1666.89, 1565.97, 1366.71, 1174.45, 1044.71, 771.36, 648.85, 455.78. ESI-MS m/z = 141.07 [M + H]⁺.

Procedure S2. Preparation of Iron Oxide Nanoparticles: The iron oxide nanoparticles were prepared by using reported procedure.² Dissolved FeSO₄.7H₂O in 100 ml of double distilled water to form a 0.1 M solution and dropwise added 0.45 M solution of NaOH as precipitating agent with continuous stirring. The black precipitates separated out after 45 min stirring. Filtered the precipitates and washed with water/ethanol mixture for 3 to 4 times.

Entry	Poly(DHPMs)	Yield (%)	Mwª (g/mol)	PDI ^a	Solubility ^b
1.	Р1	75	41,712	1.67	~
2.	P2	70	37,315	1.20	~
3.	Р3	74	18,525	1.36	~
4.	Р4	80	83,384	1.78	~

Table S1: MCTPs of poly(DHPMs) (P1-P8).

5.	Р5	74	17,332	1.52	✓
6.	Р6	70	11,427	1.75	✓
7.	Р7	68	13,375	1.27	✓
8.	P8	75	35,860	1.65	✓

^aEvaluated by GPC at room temperature in THF solvent and calibrated by linear polystyrene. ^bSolubility tested in organic solvents, such as Metanol, THF, DMSO, DMF and Acetonitrile: \checkmark = Completely soluble.

Figure S1. GPC traces of synthesized polyamides P1-P8.

Figure S2. Mass spectra of Biginelli Product (B1).

Figure S3: A) FT-IR spectra of B1 with N-H and C=O stretching vibrations at 3336.8 cm⁻¹ and 1694.6 cm⁻¹ whereas in P1, shifted at 3473 cm⁻¹ and 1602.6 cm⁻¹ respectively. **B)** Comparison of ¹H NMR spectra of B1 and P1 in $CDCl_3/DMSO-d_6$.

Figure S4. FT-IR spectra of polyamide adducts P2-P8.

Figure S5.: A) ¹H NMR spectra in mixture of $CDCl_3$ and $DMSO-d_6$ of P1-P4 (Urea derivatives). **B**) ¹H NMR spectra in mixture of $CDCl_3$ and $DMSO-d_6$ of P5-P8 (thiourea derivatives).

Figure S6. A). ¹³C NMR spectra in mixture of CDCl₃ and DMSO- d_6 of P1-P4 (Urea derivatives). **B)** ¹³C-NMR spectra in mixture of CDCl₃ and DMSO- d_6 of P5-P8 (thiourea derivatives).

Figure S7: Photographs of Synthesized polyamide gels (P1-P8).

Figure S8. (A) Mass spectrum of IL1 and (B) Mass spectrum of IL-2.

Figure S9. (A) FT-IR spectrum of IL1 and (B) FT-IR spectrum of IL-2.

Figure S10: (A-C) SEM, TEM and HR-TEM images of IL2@Fe₃O₄ NPs respectively. (D-F) SEM, TEM and HR-TEM images of IL1@ Fe₃O₄ NPs respectively.

Figure S11. A-B) DLS of IL1-2@Fe₃O₄; C-D) EDX of IL1-2@Fe₃O₄.

Figure S12: A) Solid state UV-Vis absorption spectra of Fe_3O_4 NPs, IL1-2 and IL1-2@Fe₃O₄; **C)** Solid state emission profile IL1 and IL1@Fe₃O₄NPs, IL2 and IL1@Fe₃O₄NPs.

Figure S13. A) TGA-Plot of Fe_3O_4 , $IL1@Fe_3O_4$ and $IL2@Fe_3O_4$. B) N_2 adsorption isotherm of Fe_3O_4 , $IL-1@Fe_3O_4$ and $IL-2@Fe_3O_4$.

S. No.	Catalyst	Surface area	Pore volume	Average pore
		(mg)	(cm g)	(nm)
1.	Fe ₃ O ₄	18.00	0.181	32.55
2.	IL-1@ Fe ₃ O ₄	57.57	0.198	3.77
3.	IL-2@ Fe ₃ O ₄	90.63	0.209	9.54

Table S2: N₂ adsorption BET measurements of Fe₃O₄, IL-1@Fe₃O₄ and IL-2@Fe₃O₄

Table S3: Acidic strength calculation for Fe_3O_4 , IL-1@Fe₃O₄ and IL-2@Fe₃O₄

Sr.No	Catalyst	Volume of 0.5 N HCl ^a (ml)	Basic unit count ^b (BU) (mmol/g)	(RBA) ^c (mmol/g)	Relative basic units ^d (RBA/0.25)
1.	Fe ₃ O ₄	0.5	0.25	0.25	1
2.	IL1@ Fe ₃ O ₄	0.4	0.2	0.63	2.55
3.	IL2@ Fe ₃ O ₄	0.7	0.35	1.76	7.04

^aVolume of 0.5 N HCl required to neutralize 1 mg of catalyst (ml) calculated via back titration; ^bNumber of unit's equivalent to "OH" present in 1 mg of sample; ^cRelative SA based exposure of BU to reactants, calculated using the formula: BU × SA of catalyst/SA of Fe₃O₄ (SAs from Table 3); ^cCalculated using the formula: RBU×RBU/RBU for Fe₃O₄.

Figure S14: A-B) SEM and DLS images of IL2@ Fe_3O_4 after the fifth recycling cycle, respectively;

C-D) SEM and DLS images of IL2@ Fe_3O_4 after the tenth recycling cycle, respectively.

Table S4: Physical Properties and Efficiency of Recovered IL2@Fe ₃ O ₄ NPs cataly

Entry	Catalyst	Size (nm) ^a	(%) Yield of P1
1.	IL2@Fe ₃ O ₄ ^b	67	91
2.	IL2@Fe ₃ O ₄ c	49	84

^aMeasured by DLS. IL2@Fe₃O₄recoveredafter ^bfifth and ^ctenth catalytic reaction cycle.

REFERENCES

- Mayank, A. Singh, P. Raj, R. Kaur, A. Singh, N. Kaur and N. Singh, New J. Chem., 2017, 41, 3872-3881.
- 2. D. D. Suppiah and S. B. A. Hamid, J. Magn. Magn. Mater., 2016, 414, 204-208.