SUPPORTING INFORMATION

[NH₂CHNH₂]₃Sb₂I₉: Lead-Free and Low-Toxicity Organic-Inorganic Hybrid Ferroelectric Based on Antimony(III) as a Potential Semiconducting Absorber

Przemysław Szklarz[†], Ryszard Jakubas[†], Anna Gągor^{††}, Grażyna Bator[†], Jakub Cichos[†] and Mirosław Karbowiak[†]

*Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
**W. Trzebiatowski Institute of Low Temperature and Structure Research PAS, P.O. Box 1410, 50-950 Wrocław, Poland.

The ferroelectric hysteresis loop measurements were carried out for several temperatures between 140 K and room temperature. This range covers all solid state phases found for FAIA during the DSC studies. The measurements were carried out using the Radiant Precision Premier II Ferroelectric Tester. In the experiments, alternating voltage with a triangular waveform of a frequency between 0.1 and 100 Hz was applied. The value of the applied voltage amplitude was 500 V (for samples with a thickness of $d \sim 1$ mm)."

Crystal data			
Chemical formula	$C_3H_{15}I_9N_6Sb_2$		
$M_{ m r}$	1520.81		
Crystal system, space group	Hexagonal, P63mc		
Temperature (K)	195		
<i>a</i> , <i>c</i> (Å)	8.699(1), 21.678 (1)		
$V(Å^3)$	1420.8(1)		
Ζ	2		
Radiation type	Μο Κα		
μ (mm ⁻¹)	11.68		
Crystal size (mm)	$0.21\times0.17\times0.08$		
Data collection			
Diffractometer	Xcalibur, Atlas		
Absorption correction	Multi-scan,		
T_{\min}, T_{\max}	0.362, 1.000		
No. of massured	10320 1007 807		
independent and	10329, 1097, 897		
observed $[I > 2\sigma(I)]$			
reflections			
R	0.038		
$(\sin \theta/\theta)$ (\mathring{A}^{-1})	0.610		
$(\sin \theta/\theta)_{\max}(R)$	0.010		
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.123, 1.65		
No. of reflections	1097		
No. of parameters	43		
No. of restraints	8		
H-atom treatment	H-atom parameters		
	constrained		
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.84, -0.95		
Absolute structure	Refined as an inversion twin.		

Table S1. Crystal data, data collection and refinement of FAIA in phase I

Sb1-I1 ⁱ	2.881 (6)	Sb2—13 ⁱⁱ	2.859 (5)		
Sb1—I1 ⁱⁱ	2.881 (6)	Sb2—I3 ⁱ	2.859 (5)		
Sb1—I1	2.881 (6)	Sb2—I3	2.859 (5)		
Sb1—I2 ⁱ	3.213 (5)	Sb2—12	3.224 (5)		
Sb1—I2 ⁱⁱ	3.213 (5)	Sb2—12 ⁱⁱ	3.224 (5)		
Sb1—I2	3.213 (5)	Sb2—I2 ⁱ	3.224 (5)		
I—Sb1—I _{cis}	83.9 (2) - 92.6 (2)	I—Sb2—I _{cis}	83.5 (2)- 94.4 (2)		
I—Sb1—I _{trans}	173.9(2)	I—Sb2—I _{trans}	172.4 (2)		

Table S2. Selected geometric parameters in phase I (Å, ♀)

Symmetry code(s): (i) -*y*+1, *x*-*y*+1, *z*; (ii) -*x*+*y*, -*x*+1, *z*.

 Table S3.
 Selected hydrogen-bond parameters

D—H···A	<i>D</i> —Н (Å)	H…A (Å)	D…A (Å)	<i>D</i> —Н…А (°)
N2—H2A…I3 ⁱ	0.86	2.88	3.69 (9)	157.2
N3—H3B…I1 ⁱⁱ	0.86	3.04	3.83 (7)	152.3
N7—H7B…l1	0.86	2.48	3.255 (7)	150.8
N7—H7A…I3 ⁱⁱⁱ	0.86	2.68	3.41 (3)	144.0
N5—H5B…I2 ^{iv}	0.86	2.90	3.60 (5)	139.5

Symmetry code(s): (i) -*x*+*y*, -*x*, *z*; (ii) *x*-1, *y*-1, *z*; (iii) -*x*+1, -*y*+1, *z*-1/2; (iv) -*y*+1, *x*-*y*, *z*.

Fig S1. The TGA and DTA signals for FAIA.

Fig S2. The thermal evolution of the *c*-lattice parameter for FAIA.

Fig. S3. Reconstructions of the reciprocal lattice (hk0 layer) in phase III, T=168K, showing pseudohexagonal lattice with weak satellites (on the left) and Phase IV, T=100K with distinct splitting of diffracted intensities (on the right).

Fig. S4. The temperature dependence of the imaginary part of the complex electric permittivity of **FAIA**.

The conductivity from the alternating current measurements is a complex quantity given by the formula: T = (T = T) + c = c(T = T) + c = c(T = T)

$$\sigma_{ac}(T,\omega) = \sigma_{dc}(T) + \varepsilon_0 \omega \varepsilon''(T,\omega) + i \varepsilon_0 \omega \varepsilon'(T,\omega), \qquad (1)$$

where σ_{dc} corresponds to the direct current conductivity, which is a material property and should be frequency-independent, the second part is the real part of the conductivity and the latter comes from the imaginary contribution of σ_{ac}^{*} .

Fig. S5. The dependence of the *ac* conductivity [S m⁻¹] (*log* scale) versus reciprocal temperature, 1000/T, from alternating current measurements for **FAIA**.

Fig. S6. Absorption spectrum for FAIA.

Fig. S7. Tauc plot of FAIA for r=2 (a) and r=3 (b).

Temperature

Fig. S8. The evolution of the ferroelastic domain pattern for FAIA during the cooling cycle