Supporting Information

Assembly of chiral 3d-4f wheel-like cluster complexes with achiral ligands: single-molecule magnet behaviour and magnetocaloric effect

Cai-Ming Liu,*,† De-Qing Zhang,† Xiang Hao,† and Dao-Ben Zhu†

[†]Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Science, Chinese Academy of Sciences, Beijing 100190, China. E-mail: cmliu@iccas.ac.cn

Table of Contents

Fig. S1. Raman spectrum of complex 4.	S3
Fig. S2. Raman spectrum of complex 5.	S3
Table S1. Continuous Shape Measures calculation for Dy1 atom in 1-S.	S4
Fig. S3. Short contacts between the perchlorate anion and the	S4
$[Zn_3Dy_3(O_2)L_3(PyCO_2)_3]$ cation in 1-S .	
Fig. S4. Crystal structure of 1-R, H atoms, hydroxide anions and lattice	S5
hydrate molecules are not shown for clarity.	
Fig. S5. Crystal structure of 2-R, H atoms, hydroxide anions and lattice	S 5
hydrate molecules are not shown for clarity.	
Fig. S6. Crystal structure of 3-R, H atoms, hydroxide anions and lattice	S6
hydrate molecules are not shown for clarity.	
Table S2. Continuous Shape Measures calculation for Dy1 atom in 4-S.	S6
Fig. S7. Crystal structure of 5-S, H atoms, hydroxide anions and lattice	S7
hydrate molecules are not shown for clarity.	
Fig. S8 . Plot of $1/\chi$ versus <i>T</i> for 3 ($H_{dc} = 1000$ Oe).	S7
Fig. S9. AC susceptibilities measured at 2.5 Oe ac magnetic field with	S8
variable dc fields at 997 Hz and 10.5 K for 1.	
Fig. S10 . Plot of $\ln(\tau)$ versus $1/T$ for 1 ($H_{dc} = 1000$ Oe). The solid lines	S8
represent the best fitting with the Arrhenius law (blue) and Orbach plus	
Raman (cyan).	
Fig. S11 . Cole-Cole plots at 4-10 K for 1 (H_{dc} = 1000 Oe and H_{ac} = 2.5	S9
Oe), the solid lines represent the best fitting.	
Fig. S12 . AC susceptibilities for 2 ($H_{dc} = 0$ Oe and $H_{ac} = 2.5$ Oe).	S9
Fig. S13. AC susceptibilities measured at 2.5 Oe ac magnetic field with	S10
variable dc fields at 997 Hz and 3 K for 2.	
Fig. S14. Plot of $\ln(\tau)$ versus $1/T$ for 2 ($H_{dc} = 1400$ Oe), the solid line	S10
represents the best fitting with the Arrhenius law.	
Table S3. Linear combination of two modified Debye model fitting	S11
parameters from 1.9 K to 3.1 K of 2 under 1400 Oe dc field.	
Fig. S15 . Plots of χ'' versus <i>T</i> for 4 ($H_{dc} = 0$ Oe, $H_{dc} = 0$ Oe).	S11
Fig. S16. AC susceptibilities measured at 2.5 Oe ac magnetic field with	S12
variable dc fields at 997 Hz and 7 K for 4.	
Fig. S17 . Plot of $\ln(\tau)$ versus $1/T$ for 4 ($H_{dc} = 1400$ Oe). The solid lines	S12
represent the best fitting with the Arrhenius law (blue) and Orbach plus	
Raman (cyan).	
Fig. S18. Plot of $\ln(\tau)$ versus $1/T$ for 5 ($H_{dc} = 0$ Oe). The solid lines represent	S13
the best fitting with the Arrhenius law (blue) and Orbach plus Raman and	
quantum tunneling effect (cyan).	~

 Fig. S19.
 Hysteresis loop for 5 at 1.9 K.
 S13

Fig. S1. Raman spectrum of complex 4.

Fig. S2. Raman spectrum of complex 5.

Table S1. Continuous Shape Measures calculation for Dy1 atom in 1-S.Dy1 structures

EP-9	1 D9h	Enneagon
OPY-9	2 C8v	Octagonal pyramid
HBPY-9	3 D7h	Heptagonal bipyramid
JTC-9	4 C3v	Johnson triangular cupola J3
JCCU-9	5 C4v	Capped cube J8
CCU-9	6 C4v	Spherical-relaxed capped cube
JCSAPR-9	7 C4v	Capped square antiprism J10
CSAPR-9	8 C4v	Spherical capped square antiprism
JTCTPR-9	9 D3h	Tricapped trigonal prism J51
TCTPR-9	10 D3h	Spherical tricapped trigonal prism
JTDIC-9	11 C3v	Tridiminished icosahedron J63
HH-9	12 C2v	Hula-hoop
MFF-9	13 Cs	Muffin

Structure [ML9]	EP-9	OPY-9	HBPY-9	JTC-9	JCCU-9	CCU-9	JCSAPR-9	CSAPR-9	JTCTPR-9	TCTPR-9	JTDIC-9	HH-9	MFF-9
ABOXIY	33.661	22.181	17.376	16.003	10.464	8.748	5.007	4.357	6.627	5.073	13.344	7.153	3.475

Fig. S3. Short contacts between the perchlorate anion and the $[Zn_3Dy_3(O_2)L_3(PyCO_2)_3]$ cation in **1**-*S*.

Fig. S4. Crystal structure of **1-***R*, H atoms, hydroxide anions and lattice hydrate molecules are not shown for clarity.

Fig. S5. Crystal structure of 2-*R*, H atoms, hydroxide anions and lattice hydrate molecules are not shown for clarity.

Fig. S6. Crystal structure of **3**-*R*, H atoms, hydroxide anions and lattice hydrate molecules are not shown for clarity.

 Table S2. Continuous Shape Measures calculation for Dy1 atom in 4-S.

Dy1 structures

EP-9	1 D9h	Enneagon
OPY-9	2 C8v	Octagonal pyramid
HBPY-9	3 D7h	Heptagonal bipyramid
JTC-9	4 C3v	Johnson triangular cupola J3
JCCU-9	5 C4v	Capped cube J8
CCU-9	6 C4v	Spherical-relaxed capped cube
JCSAPR-9	7 C4v	Capped square antiprism J10
CSAPR-9	8 C4v	Spherical capped square antiprism
JTCTPR-9	9 D3h	Tricapped trigonal prism J51
TCTPR-9	10 D3h	Spherical tricapped trigonal prism
JTDIC-9	11 C3v	Tridiminished icosahedron J63
HH-9	12 C2v	Hula-hoop
MFF-9	13 Cs	Muffin

Structure [ML9]	EP-9	OPY-9	HBPY-9	JTC-9	JCCU-9	CCU-9	JCSAPR-9	CSAPR-9	JTCTPR-9	TCTPR-9	JTDIC-9	HH-9	MFF-9
ABOXIY	33.232	22.068	17.306	15.642	10.001	8.784	4.976	4.295	6.460	5.015	13.071	6.894	3.400

Fig. S7. Crystal structure of 5-S, H atoms, hydroxide anions and lattice hydrate molecules are not shown for clarity.

Fig. S8. Plot of $1/\chi$ *versus T* for **3** ($H_{dc} = 1000$ Oe).

Fig. S9. AC susceptibilities measured at 2.5 Oe ac magnetic field with variable dc fields at 997 Hz and 10.5 K for **1**.

Fig. S10. Plot of $\ln(\tau)$ versus 1/T for **1** ($H_{dc} = 1000$ Oe). The solid lines represent the best fitting with the Arrhenius law (blue) and Orbach *plus* Raman (cyan).

Fig. S11. Cole-Cole plots at 4-10 K for 1 ($H_{dc} = 1000$ Oe and $H_{ac} = 2.5$ Oe), the solid lines represent the best fitting.

Fig. S12. AC susceptibilities for **2** ($H_{dc} = 0$ Oe and $H_{ac} = 2.5$ Oe).

Fig. S13. AC susceptibilities measured at 2.5 Oe ac magnetic field with variable dc fields at 997 Hz and 3 K for **2**.

Fig. S14. Plot of $\ln(\tau)$ versus 1/T for 2 ($H_{dc} = 1400$ Oe), the solid line represents the best fitting with the Arrhenius law.

Table S3. Linear combination of two modified Debye model fitting parameters from

<i>T</i> (K)	$\chi_2(\text{cm}^3.\text{mol}^{-1})$	$\chi_1(\text{cm}^3.\text{mol}^{-1})$	$\chi_0(\text{cm}^3.\text{mol}^{-1})$	$\tau_1(s)$	α_1	$\tau_2(s)$	α_2
1.9	14.8869	7.65154	2.84358	0.08422	0.09757	0.00021	0.09033
2.2	13.5975	6.18693	2.58835	0.0821	0.17129	0.0002	0.06666
2.5	12.4808	5.04745	2.36233	0.0963	0.24692	0.00017	0.05196
2.8	11.4484	4.10277	2.16193	0.1044	0.28194	0.00015	0.04551
3.1	10.4721	3.36066	1.98698	0.10874	0.37049	0.00013	0.03844

1.9 K to 3.1 K of 2 under 1400 Oe dc field.

Fig. S15. Plots of χ'' versus *T* for **4** ($H_{dc} = 0$ Oe, $H_{dc} = 0$ Oe).

Fig. S16. AC susceptibilities measured at 2.5 Oe ac magnetic field with variable dc fields at 997 Hz and 7 K for **4**.

Fig. S17. Plot of $\ln(\tau)$ versus 1/T for **4** ($H_{dc} = 1400$ Oe). The solid lines represent the best fitting with the Arrhenius law (blue) and Orbach plus Raman (cyan).

Fig. S18. Plot of $\ln(\tau)$ versus 1/T for **5** ($H_{dc} = 0$ Oe). The solid lines represent the best fitting with the Arrhenius law (blue) and Orbach plus Raman and quantum tunneling effect (cyan).

Fig. S19. Hysteresis loop for 5 at 1.9 K.