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S1. EXPANSION OF THE POTENTIAL

In the main text (Eq. 3) we consider a pairwise potential between neighbouring metal cites that depends on the
spin spin-states of the metal ions, σi and σj . This potential is given by

Vij(r, σi, σj) =gij(r) + hij(r)
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where ηij = ηn = 1,
√

2, 2,
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5, 2
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2, . . . is the ratio of distances between the nth and 1st nearest-neighbour distance
on the undistorted square lattice.

We interpolate Vij(r, σi, σj) by introducing a new function Vij(r) defined such that Vij(rH) = Vij(rH , 1, 1), Vij(rL) =

Vij(rL,−1,−1), and Vij(R) = Vij(R, 1,−1) = Vij(R,−1, 1), which yields
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and
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Noting that
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FIG. S1. The HS fraction, nHS , calculated on (a) cooling and (b) heating for the nearest neighbour square lattice model with
k1 > 0. Lines and dots have the same meanings as in Fig. S2a, where we show the full phase diagram.

we find, with no further approximation, that
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To reach Eqs. 4 and 5 of main text we set fij(r) = gij(r) + hij(r)(r −Rηij).

S2. ADDITIONAL RESULTS

In Figs. S14a, S15a, 5a, and 6a we show phase diagrams with lines indicating the limits of metastability on heating
and cooling at fixed ∆H. The calculations which these lines are based on are shown in (Fig. S1, S3, S5 and S7).

In Figs. S14b-f, S15b-d, 5b-h, 6b-h, 7b-j, 8a-j, and 10b-f of the main text we report the fraction of high spins as
temperature varies The corresponding heat capacities, which provide a more sensitive signature of phase transitions
and crossovers in SCO materials, are shown in Fig. S2b-f, S4b-d, S6b-h, S8b-h, S9b-j, S10a-j, and S12b-f respectively.

Lastly, in the main text we show the phase diagram for the next nearest neighbour 1n14 family lattice model with
k1 < 1, k2 = 1.2|k1| (Fig. 8, see also Fig. S8). In Fig. S13 we show phase diagram for the nearest neighbour model
with k1 < 1, k2 = 0.6|k1| demonstrating the importance of the relative contributions of the magnitudes of k1 and k2
on the thermodynamics.

S2.1. NEAREST-NEIGHBOUR INTERACTIONS

In this section, we consider only the nearest-neighbour elastic interaction, k1. That is, we set k2 = k3 = k4 = k5 = 0.
The stability of the lattice requires k1 > 0.[3] The phase diagram of this model is shown in Fig. S14a. As individual
materials have constant ∆H, rather than constant ∆G, we mark lines of constant ∆H on the phase diagram and
report the thermodynamic properties at selected values of ∆H (Figs. S14b-f).
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FIG. S2. (a) The phase diagram for nearest-neighbour interactions, k1 > 0, reprinted from Fig. 4a for convenience. The colours
indicate the equilibrium values for the fraction of high-spin metal centres, nHS , calculated via parallel tempering. We find a
(black) line of first order transitions that bifurcates at a triple point and ends in two critical points (black dots). There is no
spontaneously broken symmetry or long-range order in the region between the two first order lines where nHS ' 1/2. The
blue (red) dashed line marks the limit of metastability for on the HS (resp. LS) phases on cooling (resp. heating), see Fig. S1.
Individual materials have fixed ∆H (not fixed ∆G); the white lines are lines of constant ∆H and their labels correspond to
panels (b-f) where the heat capacity, cV , is plotted along these lines (see Fig. 4 for the corresponding high spin fractions). In
these plots the blue, red and black lines represent the cooling, heating and equilibrium values respectively.

FIG. S3. The HS fraction, nHS , calculated on (a) cooling and (b) heating for the next nearest neighbour square lattice model
with k2 = 0.1k1 > 0. Lines and dots have the same meanings as in Fig. S2a. See Fig. S4a for the full phase diagram.

FIG. S4. (a) Phase diagram for the next nearest neighbour square lattice model with k2 = 0.1k1 > 0 reprinted from Fig. S15a
for convenience. Lines and dots have the same meanings as in Fig. S2a. (b-d) The heat capacity, cV , (see Fig. S15 for the
corresponding HS fractions). Blue, red and black lines show data for the cooling, heating and thermal equilibrium predictions,
respectively.
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FIG. S5. The HS fraction, nHS , calculated on (a) cooling and (b) heating for the next nearest neighbour square lattice model
with k1 > 0 and k2 = −0.2k1, appropriate for the 1n24 and 1n02 families. Lines and dots have the same meanings as in Fig.
S2a. See Fig. S6a for the full phase diagram.

FIG. S6. (a) Phase diagram for the next nearest neighbour square lattice model with k1 > 0 and k2 = −0.2k1, appropriate
for the 1n24 and 1n02 families, reprinted from Fig. 5a for convenience. Lines and dots have the same meanings as in Fig.
S2a. (b-h) The heat capacity, cV , (see Fig. 5 for the corresponding HS fractions). Blue, red and black lines show data for the
cooling, heating and thermal equilibrium predictions, respectively.

When the single molecule contribution to the free energy is much greater than the contribution of the cooperative
elastic interactions, ∆H � k1δ

2, we observe a gradual crossover (Figs. S14f and S2f). This thermodynamic behaviour
is commonly reported in experiments on weakly cooperative materials.[4]

In the opposite regime, ∆H � k1δ
2, we see a sharp one-step transition with hysteresis (Figs. S14b and S2b).

This indicates a first order phase transition, as is commonly observed in bistable SCO materials.[4] Note that in our
calculations the first order spin-state transition is not accompanied by a crystallographic phase transition, which is
excluded by the symmetric breathing mode approximation.

In the intermediate regime, ∆H/(|k1|δ2) ∼ 15− 30, we see two-steps. Depending on the magnitude of ∆H/(|k1|δ2)

FIG. S7. The HS fraction, nHS , calculated on (a) cooling and (b) heating for the next nearest neighbour square lattice model
with k1 < 0 and k2 = 1.2|k1|, appropriate for the 1n14 family. Lines and dots have the same meanings as in Fig. S2a. See Fig.
S8a for the full phase diagram.
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FIG. S8. (a) Phase diagram for the next nearest neighbour square lattice model with k1 < 0 and k2 = 1.2|k1|, appropriate for
the 1n14 family, reprinted from Fig. 6a for convenience. Lines and dots have the same meanings as in Fig. S2a. (b-h) The
heat capacity, cV , (see Fig. 6 for the corresponding HS fractions). Blue, red and black lines show data for the cooling, heating
and thermal equilibrium predictions, respectively.

FIG. S9. (a) Phase diagram for the third nearest neighbour square lattice model with k1 > 0, k2 = −0.9k1 and k3 = 0.5k1,
appropriate for the 1n24 and 1n02 families, reprinted from Fig. 7a for convenience. Lines and dots have the same meanings
as in Fig. S2a. (b-j) The heat capacity, cV , (see Fig. 7 for the corresponding HS fractions). For simplicity only the parallel
tempering results are shown.

these steps can occur as two first-order transitions with hysteresis (Figs. S14c and S2c), one first order transition and
one crossover (Figs. S14d and S2d), or two crossovers (Figs. S14e and S2e). In between these regimes are critical
points where the transitions become continuous.

The two-step behaviour is a result of the competition between the long-range strain and the elastic interactions.
The elastic interactions favour an antiferroelastic phase with Néel ordering (Fig. 1a), whereas the long-range strain
prefers all metal centres to be in the same spin-state. At T = 0 when ∆H = ∆G > 0 the LS phase is realized and for
∆H = ∆G < 0 the HS phase is energetically favourable. However, for T = 0 and ∆H = 0 the Néel ordered state is
degenerate with the HS and LS states (Figs. S14a and S1a). At sufficiently high temperatures thermal fluctuations
stabilize short-range Néel correlations for ∆G ≈ 0, Figs. S14a and S2a. This cannot stabilise a true, long-range
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FIG. S10. Temperature dependence of the heat capacity in the third nearest neighbour model with the same parameters for
which nHS is plotted in Fig. 8. The parameters are reasonable for (a) 1n14 family, (b-e) 1n24 and 1n02 families and (a-j)
supramolecular lattices. For simplicity we only show the parallel tempering results.

FIG. S11. (a) Phase diagram for the fifth nearest neighbour square lattice model with k1 < 0, k2 = 1.2|k1|, k3 = −0.5|k1|,
k4 = 0, and k5 = 0.2|k1|, appropriate for the 1n14 family, reprinted from Fig. S18a for convenience. Lines and dots have the
same meanings as in Fig. S2a. (b-j) The heat capacity, cV , (see Fig. S18 for the corresponding HS fractions). For simplicity
only the parallel tempering results are shown.
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FIG. S12. (a) Typical slice of the finite temperature phase diagram all interactions up to fifth nearest neighbours. Lines and
dots have the same meanings as in Fig. S2a. (b-f) The heat capacity, cV (See Fig. 10 for the corresponding fraction of high
spins). For simplicity only the parallel tempering predictions are shown.

ordered, Néel phase, but does result in a observed two-step transition, Figs. S14d and S2d. The same qualitative
features of this phase diagram have been also been captured by Chenyshov et al. [5] using a Landau theory.

However, with only nearest neighbour interactions present, the Néel phase is the only antiferroelastic phase present.
Furthermore, the Néel phase is observed only in an extremely narrow temperature range. Experimentally, many
different antiferroelastic phases have been found and these phases can stable over relatively broad temperature ranges.
This is consistent with the idea that longer range elastic interactions are vitally important for multistep transitions.

S2.2. STRICTLY POSITIVE NEXT NEAREST NEIGHBOUR INTERACTIONS (ANY FAMILY)

k1 > 0 and k2 > 0 is possible for any of the lattices shown in Fig. 2 provided that the minima of both interactions
are roughly commensurate with a square lattice. At T = 0 the LS and HS states are separated by a first order phase
transition at ∆G = 0, Figs. 4a and S15a. For T > 0 this phase transition remains at ∆G = 0 until it reaches a critical
point, where the transition is continuous. Thus, the frustration has entirely suppressed the Néel order found at finite
temperatures for k2 = 0 (compare Figs. S14 and S15).

Considering lines of constant ∆H, which represent individual materials, we see three distinct thermodynamic
behaviours: When the elastic interactions are strong compared to the single molecule physics, ∆H � |k1|δ2, the
transitions are sharp and first-order, the width of the hysteresis is greater the smaller ∆H/|k1|δ2 is (Figs. S15b,c
and S4b,c). If the elastic interactions are weak, ∆H � |k1|δ2, we find a crossover (Figs. S15d and S4d). These two
regimes are separated by a continuous (or second order) phase transition at the critical point.

Consistent with this prediction, single step transitions are common and observed in all of the families of materials
discussed here.
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FIG. S13. (a) Phase diagrams for the next nearest neighbour model with k1 < 0, k2 > 0 (here we take k2 = 0.6|k1|, other
parameters give similar results). Lines and dots have the same meanings as in Fig. S2a. The HS fractions calculated on (b)
heating and (c) cooling with fixed ∆H are used calculate the limits of stability. Note that in contrast to the results for k1 > 0
and k2 > 0 the relative magnitudes of k1 and k2 has importance consequences for the observed behaviours (see, e.g., Figs. 6
and S8). (d-j) The fraction of high spins, nHS and (k-q) the corresponding heat capacities. Blue, red and black lines show data
for the cooling, heating and thermal equilibrium predictions, respectively.

[5] D. Chernyshov, H.-B. Bürgi, M. Hostettler, and K. W. Törnroos, Landau theory for spin transition and ordering phenomena
in Fe(II) compounds, Phys. Rev. B, 2004, 70, 094116-094124.
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FIG. S14. (a) The phase diagram for nearest-neighbour interactions, k1 > 0. Colours in the phase diagram indicate the fraction
of high-spin M sites, nHS ∼ χT where χ is the susceptibility, calculated via parallel tempering. The (black) line of first order
transitions bifurcates at a triple point and ends in two critical points (black dots). There is no spontaneously broken symmetry
or long-range order in the region between the two first order lines where nHS ' 1/2. The blue (red) dashed line marks the
limit of metastability for the HS (resp. LS) phases on cooling (resp. heating), cf. Fig. S1, and show the width of the hysteresis.
Individual materials have fixed ∆H, white lines correspond to panels (b-f), where the fraction of high spins is plotted (see Fig.
S2 for the corresponding heat capacities). In these plots the blue, red and black lines represent the cooling, heating and parallel
tempering values respectively.

FIG. S15. (a) Typical phase diagram for the next nearest neighbour square lattice model with k1 and k2 > 0 (here k2 = 0.1k1;
see also Fig. S3). (b-d) The fraction of high spins, nHS (see Fig. S4 for the corresponding heat capacities). Symbols have the
same meanings as in Fig. S14.
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FIG. S16. Slices of the zero-temperature phase diagram with up to third nearest-neighbour elastic interactions k1, k2 and k3 for
(a,e) constant ∆H and (b-d,f-h) constant J∞. Grey lines in (a,e) indicate lines of constant J∞. In addition to the phases that
are energetically preferred by individual elastic interactions (HS, LS, Néel, stripe, C, E and G), frustration introduces additional
phases into the zero-temperature phase diagram (D, R and S). E, G indicates that the E and G phases are degenerate.

FIG. S17. Selected slices of the zero temperature phase diagram with up to fifth nearest-neighbour interactions showing thirty-
six distinct phases. In general increasing the number of nearest-neighbour interactions increases the complexity of the phase
diagram.
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FIG. S18. (a) Typical phase diagram for the 1n14 family with k1 < 0, k2 > 0, k3 < 0, k4 = 0 and k5 > 0 (here k2 = 1.2|k1|,
k3 = −0.5|k1| and k5 = 0.2|k1|). The R phase consists of alternating stripes of width 2 and width 1 (Fig. 1). Lines and
dots have the same meanings as in Fig. S2a. (b-i) The fraction of high spins, nHS (see Fig. S11 for the corresponding heat
capacities). Only the parallel tempering Monte Carlo predictions are reported.


