Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

## Supplementary information for

## Integration of Cd:ZnS QDs into ZIF-8 for enhanced selectivity toward Cu<sup>2+</sup> detection

Weikang Yang,<sup>a</sup> Yonghang Yang,<sup>a</sup> Huihui Li,<sup>\*a</sup> Duoyu Lin,<sup>a</sup> Weiting Yang,<sup>a</sup> Dongyu Guo,<sup>\*b</sup> Qinhe Pan<sup>\*a</sup>

<sup>a</sup>Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, College of Science,

Hainan University, Haikou 570228, China

<sup>b</sup>Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen 361000, China

\*Corresponding authors. E-mail: lihuihui@hainanu.edu.cn (Huihui Li), xiamenhaijin@163.com (Dongyu Guo),

panqinhe@163.com (Qinhe Pan)

| Section | Content                                                                                                                                            | Page       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1       | Table S1 Contents of Cd element in Cd:ZnS QDs and Cd:ZnS QDs@ZIF-8.                                                                                | S3         |
| 2       | Fig. S1 PXRD pattern of Cd:ZnS QDs.                                                                                                                | <b>S</b> 3 |
| 3       | Fig. S2 Excitation and emission spectra of Cd:ZnS QDs.                                                                                             | <b>S</b> 3 |
| 4       | Fig. S3 EDX mapping of Cd:ZnS QDs@ZIF-8 during TEM measurement.                                                                                    | S4         |
| 5       | Fig. S4 Nitrogen adsorption isotherms of ZIF-8 and Cd:ZnS QDs@ZIF-8 at 77 K.                                                                       | S4         |
| 6       | Fig. S5 Fluorescence spectra of Cd:ZnS QDs before and after the addition of Cu <sup>2+</sup> .                                                     | <b>S</b> 5 |
| 7       | <b>Fig. S6</b> Fluorescence intensities of Cd:ZnS QDs@ZIF-8 after the addition of Cu <sup>2+</sup> in the presence of different cations or anions. | S5         |
| 8       | <b>Fig. S7</b> Effects of pH and time on the fluorescence intensities of Cd:ZnS $QDs@ZIF-8$ in the absence and presence of $Cu^{2+}$ .             | S6         |
| 9       | <b>Fig. S8</b> PXRD patterns of Cd:ZnS QDs@ZIF-8 before and after immersed in aqueous solutions with different pH values for 1 h.                  | S6         |
| 10      | <b>Fig. S9</b> SEM images of Cd:ZnS QDs@ZIF-8 before and after immersed in aqueous solutions with different pH values for 1 h.                     | S7         |

MaterialContent of Cd elementCd:ZnS QDs32.6wt%Cd:ZnS QDs@ZIF-83.4wt%

Table S1 Contents of Cd element in Cd:ZnS QDs and Cd:ZnS QDs@ZIF-8.



Fig. S1 PXRD pattern of Cd:ZnS QDs, bottom/top bar: cubic ZnS/CdS.



Fig. S2 Excitation and emission spectra of Cd:ZnS QDs.



Fig. S3 EDX mapping of Cd:ZnS QDs@ZIF-8 during TEM measurement.



Fig. S4 Nitrogen adsorption isotherms of ZIF-8 and Cd:ZnS QDs@ZIF-8 at 77 K.



Fig. S5 Fluorescence spectra of Cd:ZnS QDs (0.3 mM) before and after the addition of  $Cu^{2+}$  (5  $\mu$ M).



Fig. S6 Fluorescence intensities of Cd:ZnS QDs@ZIF-8 (250  $\mu$ g mL<sup>-1</sup>) after the addition of Cu<sup>2+</sup> (5  $\mu$ M) in the presence of different cations (5  $\mu$ M) (A) or anions (5  $\mu$ M) (B); (A) 1-none, 2-Cu<sup>2+</sup>, 3-Cu<sup>2+</sup> + Na<sup>+</sup>, 4-Cu<sup>2+</sup> + K<sup>+</sup>, 5-Cu<sup>2+</sup> + Mg<sup>2+</sup>, 6-Cu<sup>2+</sup> + Ca<sup>2+</sup>, 7-Cu<sup>2+</sup> + Mn<sup>2+</sup>, 8-Cu<sup>2+</sup> + Co<sup>2+</sup>, 9-Cu<sup>2+</sup> + Ni<sup>2+</sup>, 10-Cu<sup>2+</sup> + Zn<sup>2+</sup>, 11-Cu<sup>2+</sup> + Cd<sup>2+</sup>, 12-Cu<sup>2+</sup> + Al<sup>3+</sup>, 13-Cu<sup>2+</sup> + Cr<sup>3+</sup>, 14-Cu<sup>2+</sup> + Fe<sup>3+</sup>; (B) 1-none, 2-Cu<sup>2+</sup>, 3-Cu<sup>2+</sup> + F<sup>-</sup>, 4-Cu<sup>2+</sup> + Cl<sup>-</sup>, 5-Cu<sup>2+</sup> + Br<sup>-</sup>, 6-Cu<sup>2+</sup> + I<sup>-</sup>, 7-Cu<sup>2+</sup> + CO<sub>3</sub><sup>2-</sup>, 8-Cu<sup>2+</sup> + NO<sub>3</sub><sup>-</sup>, 9-Cu<sup>2+</sup> + SO<sub>4</sub><sup>2-</sup>, 10-Cu<sup>2+</sup> + PO<sub>4</sub><sup>3-</sup>.



Fig. S7 Effects of pH (A) and time (B) on the fluorescence intensities of Cd:ZnS QDs@ZIF-8 (250  $\mu$ g mL<sup>-1</sup>) in the absence and presence of Cu<sup>2+</sup> (5  $\mu$ M).



**Fig. S8** PXRD patterns of Cd:ZnS QDs@ZIF-8 before and after immersed in aqueous solutions with different pH values (4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0) for 1 h.



**Fig. S9** SEM images of Cd:ZnS QDs@ZIF-8 before (A) and after immersed in aqueous solutions with pH values of 4.0 (B), 5.0 (C), 6.0 (D), 7.0 (E), 8.0 (F), 9.0 (G) and 10.0 (H) for 1 h.