Supporting Information

Sandwich nanocomposite composed of commercially available SnO and reduced graphene oxide as advanced anode materials for sodium-ion full batteries

Xu Yang^a, Hao-Jie Liang^b, Xin-Xin Zhao^a, Hai-Yue Yu^a, Mei-Yi Wang^a, Xue-Jiao Nie^a and Xing-Long Wu^{*a,b}

^a National & Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China

^b Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, P. R. China

* The corresponding authors E-mail: xinglong@nenu.edu.cn (X.-L. Wu)

The molecular formula of sample can be calculated based on the thermogravimetric analysis results (Figure S2) through the following formulations:

After the heating treatment to 800 °C, the rGO component in the sample is full lost while the SnO is oxidized into SnO_2 , therefore, the final product with content of 82.28% is ascribed to SnO_2 . Based on this, the content of rGO in the original sample can be obtained:

 $SnO\% = 82.28\% \times \frac{134.71}{150.71} = 74.08\%$ rGO% = 1 - 74.08% = 25.92%

Figure S2 The TG curve of BM-SnO.

Figure S3 Raman spectra of BM-SnO and SnO/rGO.

Figure S4 SEM images of (a) SnO and (b) BM-SnO.

Figure S5 CV curve with the pseudocapacitive fraction shown by the green region of SnO/rGO at a scan rate of (a) 0.1 mV s^{-1} , (b) 0.2 mV s^{-1} , (c) 0.3 mV s^{-1} , (d) 0.5 mV s^{-1} and (e) 0.7 mV s^{-1} .

Figure S6 (a) XRD pattern of NVPOF; (b) SEM image of NVPOF.

Figure S7 the electrochemical performance of NVPOF (a) rate performance and (b) charge/discharge curves at various rates.