Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

CO₂ hydrogenation into formate and methyl formate using Ru molecular catalysts supported on NNN pincer porous organic polymers

Hongjin Park^{‡a}, Kwangho Park^{‡b}, Kwang-Deog Jung^b, and Sungho Yoon^{*a}

P.O. Box 131, Cheongryang, Seoul (Republic of Korea)

Contents

- Table S1. Comparison of activity with catalysts reported in literature
- Table S2. Porosity parameters of materials by BET analysis
- Table S3. Remaining of Ru amount of fresh and used catalyst
- Table S4. Leaching Ru content of every cycle
- Figure S1. Electron dispersive X-ray spectroscopy (EDX) of supports (3-bpp-POP and N-Me-bpp-POP)
- Figure S2. FT-IR spectrum of 3-bpp monomer and N-Me-bpp monomer
- Firgure S3. Electron dispersive X-ray spectroscopy (EDX) of catalysts (Ru/3-bpp-POP and N-Me-3-bpp-POP
- Firgure S4. X-ray photoelectron spectroscopy (XPS) of catalysts (Ru 3d_{3/2} and 3d_{1/2} peaks of Ru/3-bpp-POP
- Figure S5. X-ray photoelectron spectroscopy (XPS) of catalysts (Ru $3d_{3/2}$ and $3d_{1/2}$ peaks of Ru/N-Me-3-bpp-POP
- Figure S6. MASS spectra of 3-bpp and N-Me-3-bpp monomer

Figure S7. TGA of 3-bpp-POP and N-Me-bpp-POP

Figure S8. Performing GC analysis for detecting of CO

Department of Chemistry, Chung Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
Clean Energy Research Centre, Korea Institute of Science and Technology

Catalyst	Temperature (°C)	Time (h)	Pressure (bar)	TON of MF	TOF (h-1)	ref
Cu/ZnO/alumina	150	25	60	771.25	30.85	S1
1 % Ru-Cu/AnO/alumina	150	25	60	840.5	33.62	S1
1 % Ni-Cu/ZnO/alumina	150	25	60	931.75	37.27	S1
1 % Au-Cu/ZnO/alumina	150	25	60	335.5	13.42	S1
1 % Pd-Cu/ZnO/alumina	150	25	60	953.75	38.15	S1
Au-ZrO2-9.0	200	1	80	534	534	S2
Au/Al2O3	70	9.22	40	1088	118	S3
Au/Al2O3	100	1.24	40	118	95	S3
1 wt% Ru@pDPPE	160	1	80	1079	1079	S4
1 wt% Ru/N-Me-3-bpp-POP	160	2	80	1726	863	this

Table S1. Comparison of activity with catalysts reported in literature

Ref S1: Journal of the American Chemical Society 129. (2007), 6346-6662 DOI: https://doi.org/10.1021/ja0706302

Ref S2: Green Chemistry 17, (2015), 1467-1472 DOI: https://doi.org/10.1039/C4GC01818D

Ref S3: Journal of CO2 utilization 17, (2017), 273-283 DOI: <u>https://doi.org/10.1016/j.jcou.2016.11.016</u>

Ref S4: ChemSusChem 12, (2019), 3278-3285 DOI: https://doi.org/10.1002/cssc.201900808

	Table S2.	Porosity	parameters	of materials	by BET	analysis
--	-----------	----------	------------	--------------	--------	----------

	BET plot						
Material	Correlation coefficient	V m [cm ³ (STP) g ⁻¹]	as, bet [m ² g ⁻¹]	С	Total pore volume [cm ³ g ⁻¹]	Mean pore diameter [nm]	
3-bpp-POP	1	129.72	564.59	787.53	0.2926	2.0731	
Ru/3-bpp-POP	1	140.95	613.47	735.72	0.3152	2.0553	
N-Me-3-bpp-POP	1	127.87	556.54	265.54	0.2901	2.167	
Ru/N-Me-3-bpp-POP	1	137.44	598.19	213.59	0.3041	2.0335	

Table S3. Remaining of Ru amount of fresh and used catalyst

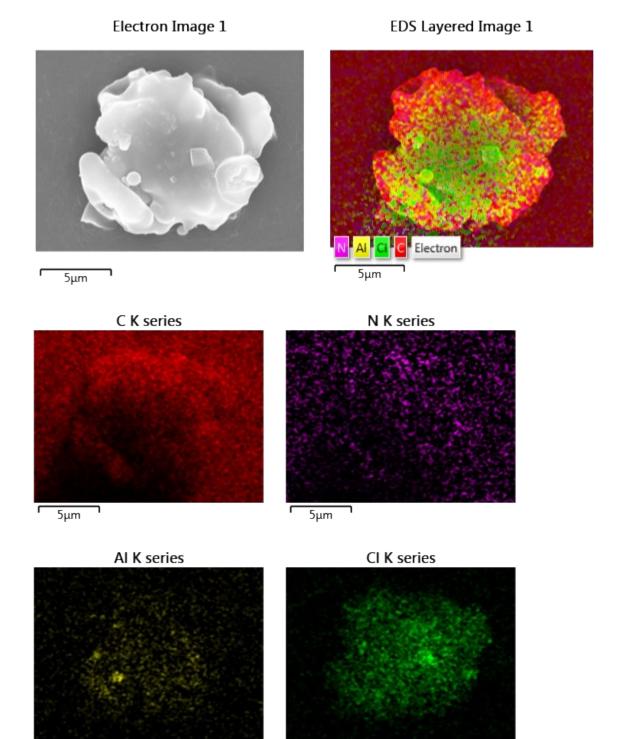
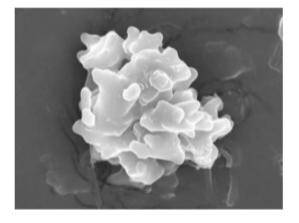

Sample	Ru / wt %
Fresh N-Me-3-bpp-POP	1.1
Spent N-Me-3-bpp-POP (after 5 th run)	0.62

Table S4. Leaching Ru content of every cycle^a

Filtrate	Filtrate vol. (mL)	Ru conc. (mg/L)	Leached Ru (wt %)
1 st run	33.3	2.53	0.421
2 nd run	44	0.26	0.057
3 rd run	32.8	0.15	0.025
4 th run	32.5	0.12	0.020
5 th run	32.3	0.05	0.008

^adetermined by ICP-OES,

Figure S1. Electron dispersive X-ray spectroscopy (EDX) of supports (3-bpp-POP and N-Me-bpp-POP)



5μm

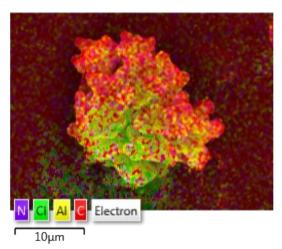
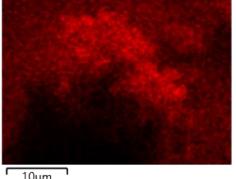
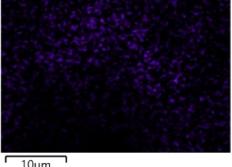
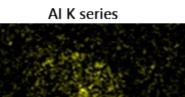

5μm

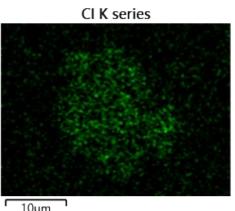
Figure S1, a, EDX of 3-bpp-POP

Electron Image 2

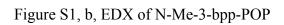



EDS Layered Image 2




N K series

10µm


10µm

10µm

10µm

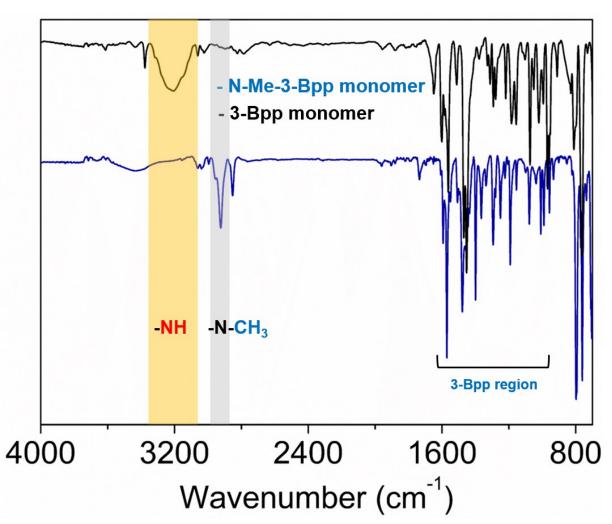
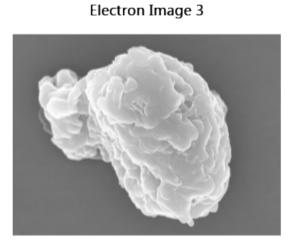
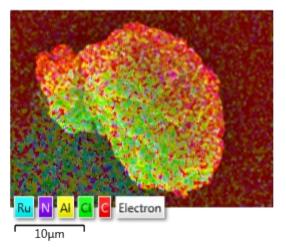




Figure S2. FT-IR spectrum of 3-bpp monomer and N-Me-bpp monomer

Figure S3. Electron dispersive X-ray spectroscopy (EDX) of catalysts (Ru/3-bpp-POP and N-Me-3-bpp-POP

EDS Layered Image 3

10µm

٦

٢

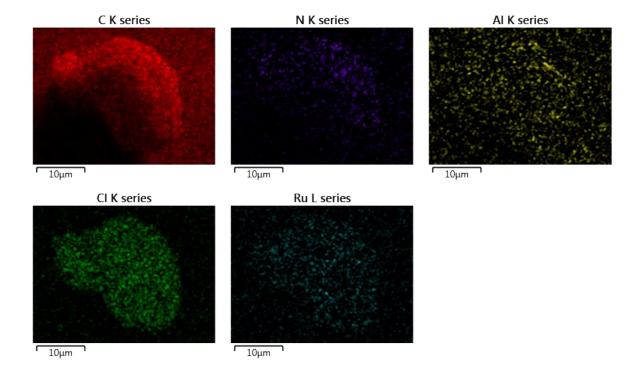
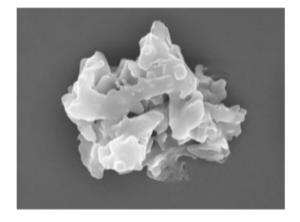
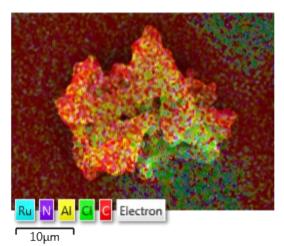
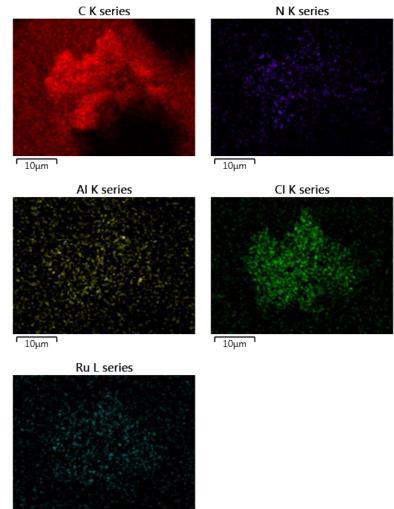
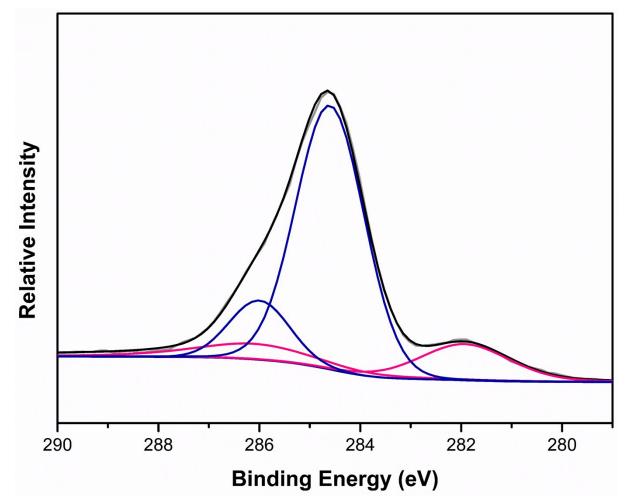




Figure S3, a, EDX of Ru/3-bpp-POP

Electron Image 4


EDS Layered Image 4



10µm

Figure S3, b, EDX of Ru/3-Me-bpp-POP

Figure S4. X-ray photoelectron spectroscopy (XPS) of catalysts (Ru $3d_{3/2}$ and $3d_{1/2}$ peaks of Ru/3-bpp-POP

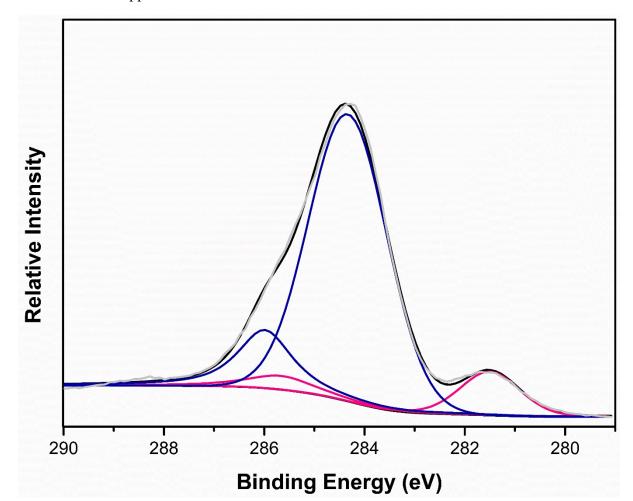
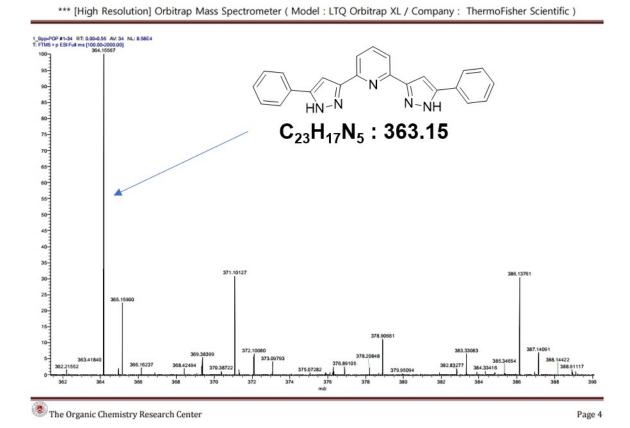
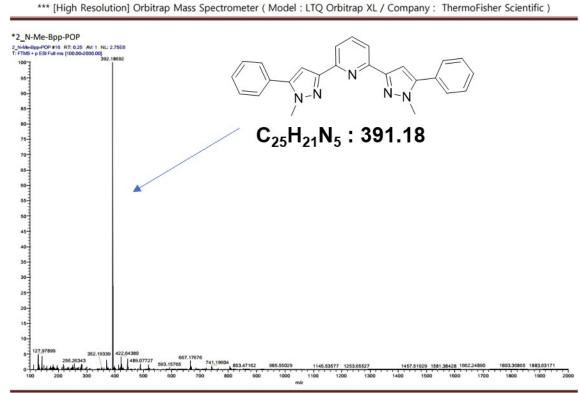




Figure S5. X-ray photoelectron spectroscopy (XPS) of catalysts (Ru $3d_{3/2}$ and $3d_{1/2}$ peaks of Ru/N-Me-3-bpp-POP

Figure S6. MASS spectra of 3-bpp and N-Me-3-bpp monomer

The Organic Chemistry Research Center

Figure S7. TGA of 3-bpp-POP and N-Me-bpp-POP

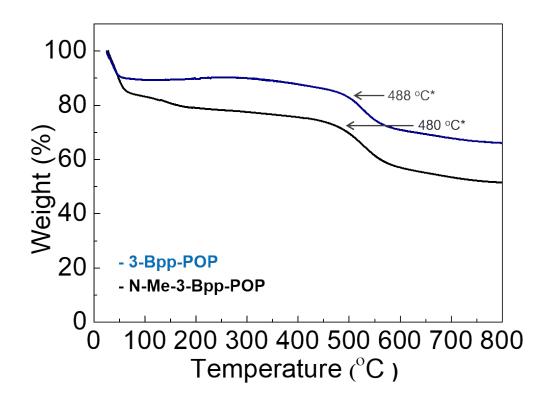
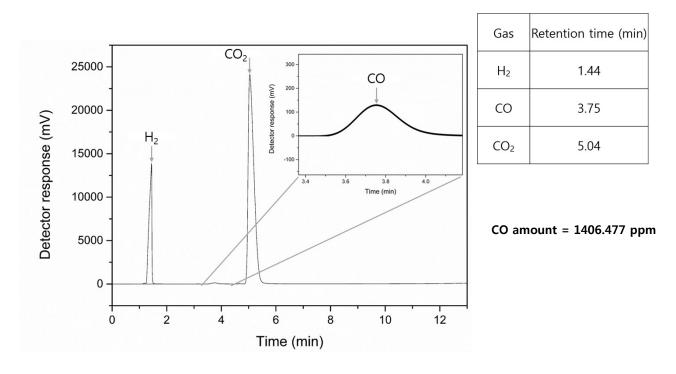



Figure S8. Performing GC analysis for detecting of CO

