Insight into the structure-property relation of UO₂ nanoparticles

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Evgeny Gerber^{a,b,c}, Anna Yu. Romanchuk^c, Stephan Weiss^b, Stephen Bauters^{a,b}, Bianca Schacherl^d, Tonya Vitova^d René Hübner^b, Salim Shams Aldin Azzam^b, Dirk Detollenaere^{e,f}, Dipanjan Banerjee^{f,g}, Sergei M. Butorin^h, Stepan N. Kalmykov^c and Kristina O. Kvashnina^{a,b,c*}

- ^{a.} The Rossendorf Beamline at ESRF The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France. ^{b.} Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314, Dresden.
- ^{c.} Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Russia.
- d. Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, P.O. 3640, D-76021 Karlsruhe, Germany
- e. Department of Chemistry, X-ray Imaging and Microspectroscopy Research Group, Ghent University, Ghent, Belgium
- f Dutch-Belgian Beamline (DUBBLE), European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
- ^{g.} Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Leuven, Belgium

h Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, Uppsala, Sweden

Supplementary information

Experimental

Fig. S1. UV-vis spectra of 0.1M uranium solution in 0.5M before and after reduction.

Journal Name

Fig. S2. Photo of the sample cell, including triple holders.

Sample	рН	Eh <i>,</i> mV	
0.01 M U(IV) pH 8	8.0	-272	
0.01 M U(IV) pH >11	11.6	-287	
0.1 M U(IV) pH 8	8.0	-84	
0.1 M U(IV) pH >11	10.9	-482	

Fig. S3. HRTEM images of NPs and corresponding SAED patterns (inset): a) 0.01M U(IV) pH >11, b) 0.1M U(IV) pH 8, c) 0.1M U(IV) pH >11.

Fig. S4. XRD patterns of the precipitates from U(IV) with different pH and concentrations, UO_2 and U_4O_9 references.

Sample	Size, nm (XRD)	Size, nm (HRTEM)
0.01 M U(IV) pH 8	2.5±0.6	2.7±0.8
0.01 M U(IV) pH >11	1.7 (one peak)	3.1±0.7
0.1 M U(IV) pH 8	2.5±0.5	3.8±0.9
0.1 M U(IV) pH >11	1.8±0.3	2.7±0.8
0.1 M U(IV) pH 8 aged	6.0±0.2	6±1
0.1 M U(IV) pH >11 aged	4.8±0.1	6±1

Table S2. Particle size estimation of the samples by XRD and HRTEM.

Fig. S5. U M₄ HERFD experimental data. The increase of the peak asymmetry is notable.

Calculations of HERFD spectra:

The calculations of the U(IV) M₄ HERFD spectra were performed using crystal field theory. To obtain the HERFD spectra, the coreto core (3d-4f) resonant inelastic x-ray scattering (RIXS) intensity maps were calculated on the emission versus incident photon energy scales and a cut at the constant emission energy, corresponding to the maximum of the RIXS intensity was made along the incident photon energy axis. The RIXS maps were calculated in a manner described in literature^{1,2} by taking into account the full multiplet structure due to intra-atomic and crystal field interactions. The Slater integrals $F^k(5f,5f)$, $F^k(3d,5f)$, $F^k(4f,5f)$ as well as $G^k(3d,5f)$ and $G^k(4f,5f)$ calculated for the U(IV) ion were scaled down to 80 % of their *ab-initio* Hartree-Fock values. The ground, intermediate and final states of the spectroscopic process were represented by the $3d^{10}5f^2$, $3d^95f^3$ and $4f^{13}5f^3$ configurations, respectively. To simulate different U(IV) environment in terms of varying U coordination number (CN), the calculations were done in tetrahedral (T_d), octahedral (O_h⁶), cubic (O_h⁸) and icosahedral (I_h) symmetry for CN equal to 4, 6, 8 and 12, respectively. The Wybourne's crystal field parameters in the calculations were set to Td: $B^4_0 = -0.30 \text{ eV}$, $B^6_0 = -0.70 \text{ eV}$; O_h^6 : B^4_0 = 0.93 eV, $B^6_0 = 0.35 \text{ eV}$; O_h^8 : $B^4_0 = -0.93 \text{ eV}$, $B^6_0 = 0.35 \text{ eV}$; I_h : $B^6_0 = 0.65$ (-0.65) eV. For I_h symmetry both positive and negative values of the B^6_0 parameter were used which produce different results. The abovementioned choice of values was based on already established values for UO₂³ and relative changes of parameter values for different symmetries discussed in literature.^{4,5}

Fig. S6. M₄ HERFD spectra calculated for the U(IV) ion in environments with different coordination number (CN).

Fig. S7. U L3-EXAFS results. a) U L3-EXAFS spectra $\chi(R)$ fit results, Fourier transform (FT) magnitude of experimental EXAFS data (black) and shell fit (red) with U-O, U-U shells.

Table S3. Metric p	arameters extracted by least-squares fit anal	ysis of U L ₃ EXAFS spectra with U-O, U-U shells,	, (k range of 2.	0-11.5 Å ⁻¹).

Commis	First coordination shell		Second coordination shell		AF 1-1/1	R-factor,		
Sample	CN	R [Å]	σ² [Ų]	CN	R [Å]	σ² [Ų]	ΔE ₀ [ev]	%
0.01M U(IV)	4.9(0.6)	2 22/0 01)	0.011	3.6(1.0)		0.005	E 0	2.1
рН 8	0	2.33(0.01)	0.011	U	3.855(0.008)	0.005	5.9	5.1
0.01M U(IV)	4.2 0	2 22(0 01)	0.011	2.9	2 961(0 007)	0.004	7.0	2.0
pH >11	(0.5)	2.33(0.01)	0.011	U(0.8)	3.861(0.007)	0.004	7.0	2.6
UO ₂ structure	80	2.3677		12 U	3.8665 U			

Reactivity of the NPs

Fig. S8. HRTEM images of the one-year-old 0.1 M U(IV) pH >11 sample at different scales: a), b) scale bar 20 nm, different analysis regions, c) scale bar 10 nm.

Fig. S9. X-ray diffraction patterns measured from fresh and 1-year old samples.

References:

- 1 S. M. Butorin, K. O. Kvashnina, A. L. Smith, K. Popa and P. M. Martin, Crystal-Field and Covalency Effects in Uranates : An X-ray Spectroscopic Study, *Chem. Eur. J.*, 2016, **22**, 9693–9698.
- 2 S. M. Butorin, K. O. Kvashnina, J. R. Vegelius, D. Meyer and D. K. Shuh, High-resolution X-ray absorption spectroscopy as a probe of crystal-field and covalency effects in actinide compounds, *Proc. Natl. Acad. Sci.*, 2016, **113**, 8093–8097.
- S. M. Butorin, A. Modin, J. R. Vegelius, K. O. Kvashnina and D. K. Shuh, Probing Chemical Bonding in
 Uranium Dioxide by Means of High- Resolution X-ray Absorption Spectroscopy, *J. Phys. Chem. C*, 2016, **120**, 29397–29404.
- 4 N. Edelstein, Optical and magnetic properties of tetravalent actinide ions and compounds, *J. Less Common Met.*, 1987, **133**, 39–51.
- 5 J. C. Krupa, Spectroscopic properties of tetravalent actinide ions in solids, *Inorganica Chim. Acta*, 1987, **139**, 223–241.