Supporting information for

Facile fabrication of BiOCl nanoplates with high exposure {001} facets for efficient photocatalytic degradation of nitro explosives

Jing Yana, Bo Jina*, Ping Zhaoa, and Rufang Penga

^aState Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering,

Southwest University of Science and Technology, Mianyang, 621010, China

*E-mail: jinbo0428@163.com

Table. S1 The sizes and thicknesses of products with different CA additions.

Products	Size(nm)	Thicknesses(nm)
BC-0	200-500	30-60
BC-5	80-200	30-60
BC-10	60-180	20-50
BC-15	60-180	20-50

Fig. S1 The FT-IR spectra of the as-prepared samples.

Fig. S2 Nitrogen adsorption-desorption isotherms and the corresponding pore-size distribution curves (inset) of BC-0 and BC-10.

Fig. S3 (a) UV-vis absorption spectra and (b) band gap maps of different photocatalysts.

Fig. S4 Photocatalytic degradation of (a)PNP (C=40 mg/L) and (b) 2,4-DNP (C=40 mg/L) by BC-10 under simulated sunlight.

Catalyst		Concentration	Catalysts	Reaction	
	Substrate	(mg/L)	Concentration(g/L)	Time(min)	Reference
BiOCl _{1-x} Br _x	חוות	10	1	60	Qin et
	PNP				al. ⁴⁸
BiOCl/	PNP	20	0.6	50	Wang et
$Ti_3C_2T_x$		20	0.0	50	al. ⁴⁹
MoSe ₂	DNID	40	0.4	90	Huang et
	1 1 11				al. ⁴
MoSe ₂	2 4-DNP	40	0.4	150	Huang et
	2,1 2111				al. ⁴
MWCNTs/	2,4-DNP	38.8	8	150	Wang et
TiO ₂		2010	Ŭ		al. ⁵⁰
MgO	2,4,6-TNP	30	0.2	124	Ali et
					al. ⁵¹
Nano-TiO ₂	TNT	80	5	1440	Li et al. ⁵²
BC-10	PNP	20	0.4	50	This work
BC-10	PNP	40	0.4	150	This work
BC-10	2,4-DNP	20	0.4	90	This work
BC-10	2,4-DNP	40	0.4	120	This work
BC-10	2,4,6-TNP	20	0.4	90	This work
BC-10	TNT	20	0.4	90	This work

 Table. S2 Comparison of degradation efficiency of nitro explosives with different catalysts.

Fig. S5 The PL spectra of BC-0 and BC-10 (λ_{exc} = 320 nm).