Supporting Information

Kinetics of the reaction of H_2 with Pt^0 -nanoparticles in aqueous suspensions monitored by the catalytic reduction of $PW_{12}O_{40}^{3-1}$

Aswin Kottapurath Vijay, ^a Dan Meyerstein, ^{*a,b} Vered Marks, ^c Yael Albo^{*d}

 ^a Department of Chemical Sciences and The Radical Research Center Ariel University, Ariel, Israel. E-mail: <u>danm@ariel.ac.il</u>
^b Chemistry Department Ben-Gurion University, Beer-Sheva, Israel
^c Department of Chemical Sciences Ariel University, Ariel, Israel
^d Department of Chemical Engineering and The Radical Research Center Ariel University, Ariel, Israel. E-mail: <u>yaelyt@ariel.ac.il</u>

Table of contents

Sample preparation for HR-TEM, Cryo-TEM and NMR spectroscopy	2
Figure S1	3
Figure S2	4
Figure S3	4
Figure S4	5
Table S1	5
Figure S5	6
Table S2	6
Figure S6	7
Table S3	7
Figure S7	8
Table S4	8
Figure S8	9
Table S5	9
Figure S9	10
Table S6	
Figure S10	11
Table S7	11

Sample Preparation for High-Resolution TEM (HR-TEM)

The Pt⁰ NPs and Pt⁰-POM nanoparticles were characterized using HR TEM (JEOL 2100, operated at 200 KeV,) equipped with an EDS system for composition analysis. The samples were prepared by dispersing the NPs in an isopropanol-water mixture and placing one drop of the suspension onto a 400 mesh copper grid. The grids were dried in air prior to the measurement.

Samples preparation for Transmission Electron Microscopy (Cryo-TEM).

A FEI Tecnai 12 G² transmission electron microscope (120 kV), equipped with a Gatan slow-scan camera (for imaging) was used for Cryo-TEM measurements. Cryogenically frozen samples were prepared using a fully automated vitrification device (Vitribot, FEI). First, 5 μL of the POM protected Pt⁰ nanoparticles suspension was placed by pipet onto a glow discharged Cu grid covered with a lacey-carbon film, held inside a 100%-humidity chamber. The grid was mechanically "blotted" and immediately plunged into liquid ethane (mp 90.34 K) cooled by liquid nitrogen (77.2 K).

NMR Spectroscopy

The NMR spectra were measured on a 400 MHz Bruker Avance III HD (¹H 400MHz,³¹P 162MHz, and ¹⁹⁵Pt 86 MHz) spectrometer equipped with a 5 mm tunable broadband probe (BBFO). All the samples were dissolved in solutions of H₂O (90%)/D₂O (10%) and the NMR experiments were performed at 300 K.

¹H NMR spectra were acquired using a pre-saturation experiment (*zgpr*) and the remaining signal for water was used as an internal reference, (4.79 ppm for H_2O), for the chemical shifts. ([Pt] = 0.50 mM)

³¹P{¹H} NMR spectra were acquired using a proton decoupling experiment (*zgpg*) with an equal number of scans among all the samples. A solution of 85% H₃PO₄ in H₂O (0 ppm for ³¹PO₄) was used as an external reference. ([Pt] = 0.25 mM, [POM] = 10.0 mM)

¹⁹⁵Pt NMR spectra were acquired in different arrays through the large chemical shift range of the ¹⁹⁵Pt nucleus (approximately 10,000 ppm). The pulse sequence was a simple 1D pulse of 90° (*zg*) and the acquisition time of each experiment took an hour. The chemical shifts were determined compared to the external reference of 0.1M K₂PtCl₄ in D₂O (-1623 ppm relative to Na₂PtCl₆ in H₂O). The final pH of the solution was ~ 1.6. ([Pt] = 5 mM, [POM] = 10.0 mM)

Calculations for the number of Pt atoms on the surface

[NP] = C/n, where C = 0.5 mM = 0.5 × 10⁻³ M where C = Concentration of Pt⁰, based on the $[K_2PtCl_4]$, n = number of Pt atoms per particle

$$n = \frac{4}{3}\pi r^3 \frac{N}{M.W}\rho$$

For Pt,

 $\rho_{Pt} = 21.4 \text{ g/cm}^3$

M.W. = 195 g/mol

Diameter of Pt nanoparticle = 2.0 nm $r = 1.0 \text{ nm} = 1.0 \times 10^{-7} \text{ cm}$

From the calculations,

n = 276.8 Pt atoms/ Pt NPs

Therefore,

 $[NP] = \frac{0.5 \times 10^{-3} \text{mol/L}}{276.8}$ $[NP] = 1.81 \times 10^{-6} \left[\frac{\text{mole of Pt nanoparticles}}{L}\right]$

Number of Pt atoms on the surface of the NPs (n_s),

 $n_s = n [\frac{r^3 - (r - 2r_{(Pt)})^3}{r^3}] \qquad r_{Pt} = 1.39 \text{ Å} = 1.39 \times 10^{-8} \text{ cm} \qquad r = 1.0 \times 10^{-9} \text{ m} = 1.0 \times 10^{-7} \text{ cm}$

 $n_s = 170$ Number of Pt atoms on the surface of one NP. This is for Pt with radius 1nm.

For, r=2 nm by same calculations, n= 2213 atoms per particle and n_s = 800 atoms/particle

¹H NMR

Figure S1. ¹H NMR (400 MHz, 90 % H₂O/10 % D₂O, 300 K) spectrum of synthesized Pt nanoparticles (0.50 mM)

- (a) before washing (blue color)
- (b) after washing with resin (red color)

Figure S2. Size distribution curve of synthesized Pt⁰ NPs (From HR-TEM)

Figure S3. Cryo-TEM images (A) citrate-protected and (B) PW₁₂O₄₀³⁻ protected Pt°-NPs

Pt⁰NP@POM-H₂ (2 nm Pt)

POM dependence

Figure S4. Typical kinetic curves of the reaction of Pt°-NP@PW₁₂O₄₀³⁻ with three different concentrations of PW₁₂O₄₀³⁻ with H₂ saturated water (pH – 1.5) at 490 nm.

Table S1. The k_{obs} values and the ratio of their absorbance for three different concentrations of $PW_{12}O_{40}^{3-}$ (0.00005, 0.0001, and 0.00015 mol/L) by maintaining a constant concentration of surface Pt atoms (6.14 × 10⁻⁵ mol/L) and H₂ (0.00040 mol/L).

Concentration of H ₃ PW ₁₂ O ₄₀ (mol/L)	k _{obs} s ⁻¹ in Pt ⁰ -POM <i>k</i> 1	k _{obs} s ⁻¹ in Pt ^o -POM <i>k</i> 2	Ratio of Absorbance A1/A2
0.000050	0.82	0.19	9.69
0.00010	0.86	0.17	33.20
0.00015	0.77	0.16	42.0

Figure S5. A typical kinetic curve of the reaction of Pt°-NP@PW₁₂O₄₀³⁻ with four different concentrations of surface Pt atoms with H₂ saturated water (pH – 1.6) at 490 nm.

Table S2. The k_{obs} values and the ratio of their absorbance for four different concentrations of surface Pt atoms by maintaining a constant concentration of $PW_{12}O_{40}^{3-}$ (0.00010 mol/L) and H_2 (0.00040 mol/L).

Concentration of Pt atoms on the surface (mol/L)	k _{obs s} ⁻¹ in Pt ⁰ -POM <i>k</i> 1	k _{obs s} ⁻¹ in Pt ⁰ -POM <i>k</i> 2	Ratio of Absorbance A1/A2
3.07×10 ⁻⁵	0.44	0.13	7.33
4.91×10 ⁻⁵	0.68	0.15	13.0
6.14×10 ⁻⁵	0.80	0.16	23.23
7.67×10 ⁻⁵	1.04	0.18	90.0

H₂ dependence

Figure S6. A typical kinetic curve of the reaction $Pt^{\circ}-NP@PW_{12}O_{40}^{3-}$ with three different concentrations of H_2 saturated water (pH 1.5) at 490 nm.

Table S3. The k_{obs} values and ratio of their absorbance for four different concentrations of H₂ by maintaining a constant concentration of PW₁₂O₄₀³⁻ (0.00010 mol/L) and surface Pt atoms (7.68 ×10⁻⁶ mol/L).

Concentration of H ₂ (mol/L)	k _{obs s} -1 in Pt ⁰ -POM <i>k</i> 1	k _{obs s} -1 in Pt ⁰ -POM <i>k</i> 2	Ratio of Absorbance A1/A2
0.00030	0.37	0.09	43.10
0.00036	0.45	0.12	17.25
0.00040	0.51	0.14	7.50

Pt-H₂-POM (2 nm Pt)

POM dependence

Figure S7. A typical kinetic curve of the reaction of $Pt^{\circ}-NP-H_2$ with three different concentrations of $PW_{12}O_{40}^{3-}$ at 490 nm.

Table S4. The k_{obs} values and the ratio of their absorbance for three different concentrations of $PW_{12}O_{40}^{3-}$ by maintaining a constant concentration of surface Pt^0 atoms (3.07 × 10⁻⁵ mol/L) and H₂ (0.00040 mol/L)

Concentration of H ₃ PW ₁₂ O ₄₀ (mol/L)	k _{obs} s ⁻¹ in Pt ⁰ -POM <i>k</i> 1	k _{obs} s ⁻¹ in Pt ⁰ -POM <i>k</i> 2	Ratio of Absorbance A1/A2
0.000010	3.40	0.20	0.50
0.000080	3.33	0.27	0.54
0.00015	3.30	0.20	0.64

Figure S8. A typical kinetic curve of the reaction of $Pt^{\circ}-NP-H_2$ with four different concentrations of surface Pt atoms at 490 nm.

Table S5. The k_{obs} values and the ratio of their absorbance for four different concentrations of surface Pt atoms by maintaining a constant concentration of PW₁₂O₄₀³⁻ (0.00010 mol/L) and H₂ (0.00040 mol/L).

Concentration of Pt atoms on the surface (mol/L)	k _{obs} s ⁻¹ in Pt ⁰ -POM k1	k _{obs} s ⁻¹ in Pt ⁰ -POM k2	Ratio of Absorbance A1/A2
6.14×10 ⁻⁶	1.04	0.14	0.68
3.07×10 ⁻⁵	3.35	0.21	0.80
6.14×10 ⁻⁵	6.11	0.50	0.92
9.21×10 ⁻⁵	8.14	0.84	1.30

Pt°NP@POM-H₂ (4 nm Pt)

Figure S9. A typical kinetic curve of the reaction of Pt°-NP@PW₁₂O₄₀³⁻ with three different concentrations of surface Pt atoms (Pt = 4nm) with H₂ saturated water (pH – 1.6) at 490 nm.

Table S6. The k_{obs} values and the ratio of their absorbance for three different concentrations of surface Pt atoms by maintaining a constant concentration of PW₁₂O₄₀³⁻ (0.00020 mol/L) and H₂ (0.00040 mol/L).

Concentration of Pt atoms on the surface (mol/L)	k _{obs} s ⁻¹ in Pt ⁰ -POM <i>k</i> 1	k _{obs} s ⁻¹ in Pt ⁰ -POM <i>k</i> 2	Ratio of Absorbance A1/A2
6.78 × 10 ⁻⁶	0.64	0.07	1.10
1.80 × 10 ⁻⁵	0.70	0.085	1.71
2.71 × 10 ⁻⁵	0.77	0.093	3.50

Pt-H₂-POM (4 nm Pt)

Figure S10. A typical kinetic curve of the reaction of Pt° -NP-H₂ with three different concentrations of surface Pt atoms (Pt =4nm) at 490 nm.

Table S7. The k_{obs} values and the ratio of their absorbance for three different concentrations of surface Pt atoms by maintaining a constant concentration of PW₁₂O₄₀³⁻ (0.00020 mol/L) and H₂ (0.00040 mol/L).

Concentration of Pt atoms on the surface (mol/L)	k _{obs s} -1 in Pt ⁰ -POM <i>k</i> 1	k _{obs s} -1 in Pt ⁰ -POM <i>k</i> 2	Ratio of Absorbance A1/A2
6.78 × 10⁻ ⁶	0.55	0.056	1.10
2.71 × 10 ⁻⁵	1.64	0.21	1.90
5.42 × 10 ⁻⁵	2.44	0.33	3.0