Supporting Information:

Direct Molecular Confinement in Layered Double Hydroxides: From Fundamentals to Advanced Photo-luminescent Hybrid Materials

Fen-Di Zhang, ^a Chang-Gen Lin, ^{*a} Shu-Jing Diao, ^a Haralampos N. Miras ^b and Yu-Fei Song ^{*a,c}

^aState Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China.

^bWestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK. ^cSchool of Chemical Engineering, Qinghai University, Qinghai, 810016, P. R. China

Fig. S1 The SEM images of as-prepared Mg₂Al-L (left), Mg₂Al-M (mid), and Mg₂Al-S (right).

Fig. S2 A) The concentration curve of CO_2 during acetates intercalation reaction, B) the powder XRD patterns of Mg₂Al-L-NO₃ before and after reaction, C) the powder XRD patterns of Mg₂Al-L-AcO at different relative humidity (RH), and D) the powder XRD patterns of Mg₂Al-L before and after reaction in water.

Fig. S3 The photographs of Mg₂Al-M-AcO in water at different concentrations: A) $c = 1 \text{ mg mL}^{-1}$, B) $c = 10 \text{ mg mL}^{-1}$, and C) $c = 20 \text{ mg mL}^{-1}$.

	LDHs	Organic acid pKa		n	V or m	Yield	
		-	-	(mmol)			
	Mg ₂ Al-L		4.76	2.463	141 μL	103 mg	92.03 %
	Mg ₂ Al-M			1.231	71 μL	94 mg	83.54 %
	Mg ₂ Al-S			1.026	59 μL	88 mg	78.62 %
	Zn ₂ Al-L	Acetic acid		1.642	78 μL	76 mg	52.19 %
	Ni₂Fe-L			3.284	188 µL	80 mg	52.63 %
	Co ₂ Al-L			1.642	78 μL	93 mg	66.27 %
	Tris-LDH			0.616	35 μL	96 mg	83.70 %
The direct	Mg ₂ Al-L	Chloroacetic acid	2.86	2.463	147 μL	105 mg	83.29 %
method		Dichloroacetic acid	1.30	2.463	203 μL	125 mg	89.16 %
		Propionic acid	4.87	3.284	245 μL	105 mg	89.22 %
		Acrylic acid	4.26	2.463	169 μL	98 mg	83.84 %
		p-Fluorobenzoic acid	4.14	2.873	403 mg	127 mg	87.71 %
		<i>p</i> -Toluic acid	4.35	2.873	391 mg	104 mg	72.64 %
		<i>p</i> -Nitrobenzoic acid	3.44	2.873	480 mg	120 mg	76.98 %
		<i>p</i> -Hydroxybenzoic acid	4.48	2.873	397 mg	100 mg	69.46 %
		<i>p</i> -phthalic acid	3.54	1.231	205 mg	106 mg	87.33 %
The stepwise method	Mg ₂ Al-L	Trichloroacetic acid	0.70	2.586	259 μL	134 mg	86.82 %
		Glycolic acid	3.83	2.586	197 mg	106 mg	89.79 %
		Lactic acid	3.86	3.284	245 μL	114 mg	91.98 %
		Oxalic acid	1.27	3.284	296 mg	92 mg	86.66 %
		Propanedioic acid	2.85	3.284	342 mg	97 mg	88.77 %
		Succinic Acid	4.19	3.284	388 mg	99 mg	88.10 %
		Benzoic Acid	4.20	3.284	401 mg	117 mg	85.15 %
		Methanesulfonic acid	-1.92	0.821	53 μL	110 mg	86.80 %
		Ethanesulfonic acid	-1.68	1.231	136 mg	70 mg	52.84 %
		Isethionic acid	-1.60	0.739	93 mg	111 mg	79.83 %
		2-Acrylamido-2-methyl- propane sulfonic acid		1.231	255 mg	140 mg	81.22 %
		<i>p</i> -Toluenesulfonic acid	-2.80	1.231	234 mg	124 mg	78.50 %
		1,2-Ethanedisulfonic		0.646	-	400	60.40.0/
		acid		0.616	117 mg	100 mg	60.48 %
		1,5-Naphthalenedisulf- onic acid		1.642	473 mg	120 mg	58.36 %
		Methylenediphosphon- ic acid		0.739	130 mg	97 mg	78.61 %
		Phenylphosphonic acid		1.642	260 mg	110 mg	72.29 %
		TPE carboxylic acid		0.821	309 mg	185 mg	76.51 %

Table S1. The experimental parameters and yields of the intercalation reactions.

Fig. S4 The powder XRD of A) $Zn_2AI-LDHs$, B) $Ni_2Fe-LDHs$, C) $Co_2AI-LDHs$, and D) Tris-LDHs before and after acetate intercalation.

Fig. S5 The SEM images of A) Zn₂Al-LDHs, B) Ni₂Fe-LDHs, C) Co₂Al-LDHs after acetate intercalation.

Fig. S6 The photographs of A) Tris-LDHs dispersed in water (*c*: 10 mg mL⁻¹), B) Tris-LDHs-AcO in water (*c*: 10 mg mL⁻¹), and C) the gel state of Tris-LDHs-AcO in water (*c*: 25 mg mL⁻¹).

Fig. S7 A) The powder XRD and B) the FT-IR of Mg_2AI-L intercalated with different aliphatic dicarboxylates.

Fig. S8 A) The powder XRD and B) the FT-IR of Mg_2Al-L intercalated with different aromatic carboxylates.

Fig. S9 A) The powder XRD and B) the FT-IR of Mg₂Al-L intercalated with different phosphonates.

Fig. S10 The fluorescence decay curves of TPE carboxylates and the Mg₂Al-L-TPE hybrid, where the lifetime τ is obtained by fitting the equation $I_t = I_0 + B_1 \cdot exp(-t/\tau_1) + B_2 \cdot exp(-t/\tau_2)$, and $\tau = B_1 \cdot \tau_1^2 + B_2 \cdot \tau_2^2 / (B_1 \cdot \tau_1 + B_2 \cdot \tau_2)$.

Table S2. The fluorescence lift time and absolute quantum yield of TPE carboxylates and the Mg_2Al -L-TPE hybrid.

	Life time (ns)						Quantum yield (%)
	I ₀	B_1	B ₂	τ_1	τ_2	τ	
TPE carboxylates	1.804	0.239	0.046	1.42	5.41	3.10	16.88
Mg ₂ Al-L-TPE	2.017	0.183	0.047	1.72	4.68	2.94	23.72