SUPPORTING INFORMATION

Ag(I) and Cu(I) cyclic-triimidazole coordination polymers: revealing different deactivation channels for multiple room temperature phosphorescences

Daniele Malpicci,^a Elena Lucenti,^b Alessandra Forni,^{*b} Daniele Marinotto,^b Andrea Previtali,^{ab} Lucia Carlucci,^a Pierluigi Mercandelli,^a Chiara Botta,^c Stefania Righetto^a and Elena Cariati^{*ab}

^a Department of Chemistry, Università degli Studi di Milano and INSTM RU, via Golgi 19, 20133 Milano, Italy. ^b Institute of Sciences and Chemical Technologies "Giulio Natta" (SCITEC) of CNR, via Golgi 19, 20133 Milano, Italy. ^c Institute of Sciences and Chemical Technologies "Giulio Natta" (SCITEC) of CNR, via Corti 12, 20133 Milano, Italy.

Table of Contents

1. Experimental details	2
1.1 General information	2
1.2 Synthesis of 1D [Ag(TT)I]n (1-Ag)	2
1.3 Synthesis of 3D [Ag(TT)Cl]n (2-Ag)	2
1.4 Synthesis of 3D [Ag ₃ (TT) ₄] _n (NO ₃) _{3n} ·6nH ₂ O (3-Ag)	2
1.5 Crystal Structure Analysis	2
1.6 Computational details	3
2. Crystal structures	4
3. Photophysical Studies	6
3.1 1D Coordination Polymer [Ag(TT)I] _n (1-Ag)	6
3.2 1D Coordination Polymer [Cu(TT)I] _n (1-Cu)	
3.3. 3D Coordination Polymer [Ag(TT)Cl] ⁿ (2-Ag)	
3.4. 3D Coordination Polymer [Cu(TT)Cl] ⁿ (2-Cu)	
3.5 3D Coordination Polymer $[Ag_3(TT)_4]_n(NO_3)_{3n} \cdot 6nH_2O$ (3-Ag)	
4. Theoretical studies	17
4.1. 1-Ag, 1-Cu	
4.2. 2-Ag, 2-Cu and 3-Ag	
5. References	63

1. Experimental details

1.1 General information

All reagents and solvents were purchased from chemical suppliers and used without further purification unless otherwise stated. Triimidazo[1,2-a:1',2'-c:1'',2''-e][1,3,5]triazine (**TT**) [S1], [Cu(TT)I]_n (**1-Cu**) [S2], **TTI** and **TTCo** [S3] have been prepared according to literature procedures.

UV-Visible spectra were collected by a Shimadzu UV3600 spectrophotometer. Absolute photoluminescence quantum yields were measured using a C11347 (Hamamatsu Photonics K.K). Steady state emission and excitation spectra and photoluminescence lifetimes were obtained using both a FLS 980 (Edinburg Instrument Ltd) and a Nanolog (Horiba Scientific) spectrofluorimeter composed of a iH320 spectrograph equipped with a Synapse QExtra charge-coupled device. The steady state measurements were recorded by excitation with a monochromated 450 W Xenon arc lamp and the spectra are corrected for the instrument response. Phosphorescence spectra are obtained with a PPD-850 single photon detector module with time-gated separation by exciting with a pulsed Xe lamp. Photoluminescence lifetime measurements were performed using: Edinburgh Picosecond Pulsed Diode Laser EPL-375, EPLED-300, (Edinburg Instrument Ltd) and microsecond flash Xe-lamp (60W, $0.1 \div 100$ Hz) with data acquisition devices time correlated single-photon counting (TCSPC) and multi-channel scaling (MCS) methods, respectively. Nanolog TCSPC measurements were performed using DeltaTime series DD-300 DeltaDiode and a DD-405L DeltaDiode Laser, with a PPD-850 single photon detector module and are analysed

with the instrument software DAS6. Average lifetimes are obtained as $\tau_{av} = \sum \frac{A_i \tau_i^2}{A_i \tau_i}$ from bi-exponential or three-exponential fits. Low temperature measurements are performed in a quartz dewar by immersion of the sample in liquid nitrogen or with a variable temperature liquid nitrogen cryostat Oxford DN1704.

Elemental analyses were carried out at the Microanalytical Laboratory of the University of Milan with a PerkinElmer 2400 instrument.

Solvothermal syntheses were performed in a sealed 20 mL Teflon-lined reactor, heated (5 °C/min rate) in an oven at 120 °C for 36 h and slowly (0.1 °C/min rate) cooled to 35 °C.

1.2 Synthesis of 1D $[Ag(TT)I]_n$ (1-Ag)

AgI (55 mg, 0.234 mmol) is added to a solution of N,N-dimethylformamide (DMF, 5 mL) and KI (20 mg, 0.4 wt%) at 25 °C in the dark. After 15 minutes the resulting transparent solution is transferred into a vial. **TT** (47 mg, 0.238 mmol) dissolved in acetonitrile (CH₃CN, 3 mL) is added to this solution. The vial is kept closed at 25 °C in the dark producing after few days a white powder which is filtered and dried over filter paper.

Alternatively, **TT** (11 mg, 0.056 mmol) dissolved in CH_3CN (2 mL) is added to a vial containing 4 mL of a saturated aqueous solution of AgI in KI. The vial is kept closed at 25 °C in the dark producing after few days needle-shaped crystals suitable for X-ray diffraction analysis.

Anal. Calcd. for C₉H₆AgIN₆ (%): C, 25.03; H, 1.17; N, 19.46. Found: C, 25.39; H, 1.29; N, 19.63.

1.3 Synthesis of 3D $[Ag(TT)CI]_n$ (2-Ag)

In a Teflon beaker, solid AgCl (14 mg, 0.098 mmol) and **TT** (21 mg, 0.106 mmol) are suspended in a CH₃CN/DMF (3 mL/1 mL) solution. The reaction is heated under solvothermal conditions according to the ramp described in the General Information section. An unknown yellow solid is filtered from the reaction mixture. The resulting yellow solution is left for crystallization at 25 °C. Colorless crystals of **2-Ag** start to appear after few weeks.

1.4 Synthesis of 3D [Ag₃(TT)₄]_n(NO₃)_{3n}·6nH₂O (3-Ag)

A solution of AgNO₃ (17 mg, 0.100 mmol) in ethanol (EtOH, 20 mL) is added to a beaker containing **TT** (20 mg, 0.101 mmol) dissolved in dichloromethane (CH₂Cl₂, 20 mL). The resulting mixture is stirred 16 h at 25 °C in the dark to give a white precipitate which is filtered and characterized as $[Ag_3(TT)_4]_n(NO_3)_{3n} \cdot 6nH_2O$ (**3-Ag**) by X-ray powder diffraction (XRPD) and elemental analysis. Slow evaporation of the clear solution left at 25 °C in the dark afforded after few weeks colorless crystals of **3-Ag** suitable for single crystal X-ray diffraction analysis.

The same crystalline product can be obtained in a vial by slow diffusion of $AgNO_3$ (9.3 mg, 0.055 mmol) dissolved in ethanol (EtOH, 10 mL) into a dichloromethane solution (CH_2Cl_2 , 10 mL) of **TT** (10 mg, 0.051 mmol). The vial is kept closed at 25 °C in the dark.

Anal. Calcd. for C₃₇H₃₉Ag₃N₂₇O₁₅ (%): C, 31.18; H, 2.76; N, 26.53. Found: C, 30.71; H, 2.87; N, 25.86.

1.5 Crystal Structure Analysis

Single-crystal X-ray diffraction data for the coordination networks **1-Ag–3-Ag** were collected at 150 K on a Bruker APEX II CCD area detector diffractometer, using graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). A full sphere of reciprocal space was scanned by 0.5° ω steps, collecting 2160 frames in six different regions of the reciprocal space. After

integration, an empirical absorption correction was made on the basis of the symmetry-equivalent reflection intensities measured [S4].

The structures were solved by direct methods (SIR 2014 [S5]) and subsequent Fourier synthesis; they were refined by fullmatrix least-squares on F^2 (SHELX 2014 [S6]) using all reflections. Weights were assigned to individual observations according to the formula $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$, where $P = (F_0^2 + 2F_c^2)/3$; *a* and *b* were chosen to give a flat analysis of variance in terms of F_0^2 . Anisotropic parameters were assigned to all non-hydrogen atoms. All the hydrogen atoms were clearly visible in difference-Fourier maps (except those of the disordered water molecules in **3-Ag**); however, they were eventually placed in idealized position and refined riding on their parent atom with an isotropic displacement parameter 1.2 times that of the pertinent parent atom.

In the structure of **3-Ag** the nitrate anion is disordered over the Wyckoff position 16*c* (site symmetry 3). One of the oxygen atoms lies on the threefold axis while the nitrogen atom and the other independent oxygen atom lay outside the axis, generating three images of the anion equally occupied. The overall site occupancy of the nitrate anion has been fixed in order to grant the electroneutrality of the structure. In the same structure, the oxygen atom of the water molecule shows a markedly prolate atomic displacement ellipsoid because of the large volume (32 Å³) of the cavity occupied. Any attempt to refine the water molecule as disordered over more than one position leads only to negligible improvements on the *R* factors at the expense of a significant increase of the number of refined parameters, and has been therefore discarded. The water content is in agreement with the results of elemental and thermogravimetric analyses.

The final difference electron density map showed no features of chemical significance, with the largest peaks lying close to the silver atoms.

Crystal data, data collection and refinement details of the structural analyses are summarized in Table S1, while a selection of geometric parameters for the three coordination networks are collected in Tables S2–S4. CCDC 2041933–2041935 contain the supplementary crystallographic data for **1-Ag–3-Ag**. These data can be obtained free of charge via <u>http://www.ccdc.cam.ac.uk/conts/retrieving.html</u>, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: <u>deposit@ccdc.cam.ac.uk</u>.

1.6 Computational details

Computational studies have been performed on discrete models of the **1+3-Ag** coordination polymers and the Cu analogues **1-Cu** and **2-Cu** by using the Gaussian 16 suite of programs [S7]. The geometries of the 1-M and 2-M (M = Ag, Cu) model compounds have been optimized with proper constraints (see below) at the ω B97X/def2-TZVP and ω B97X/6-311++G(d,p) levels of theory for the Ag and the Cu compounds, respectively, starting from the X-ray fragments extracted from the respective crystal structures. The def2-TZVP basis set [S8] and the all-electron basis set for iodine were downloaded from the Basis Set Exchange site [S9], with the exponents of the s and p diffuse functions taken from the literature [S10]. The ω B97X functional [S11] has been chosen in view of its optimal performance in treating the geometrical and electronic features of **TT** derivatives [S12], including π - π interactions that play an important role in the photophysics of the present structures. In particular, it was previously verified [S12a] that other largely used functionals such as PBEO are not able to provide stable π - π stacked dimeric units of **TT**. On the other side, geometry optimization of **3-Ag** (lacking π - π interactions in its crystal structure) was performed by adopting the PBEO functional owing to the strong tendency of the four **TT** units of the complex to collapse into dimeric pairs during optimization if the ω B97X functional is used. The same def2-TZVP basis set as adopted for **1-Ag** and **2-Ag** has been chosen. TDDFT calculations were performed for all compounds at the ω B97X/def2-TZVP (Ag) and ω B97X/6-311++G(d,p) (Cu) levels of theory. QTAIM analysis has been performed by the AIMAII program [S13]

2. Crystal structures

Table S1. Crystal data, data collection and refinement details for the silver coordination networks **1-Ag**, **2-Ag**, and **3-Ag**.

	[Ag(TT)I] _n (1-Ag)	[Ag(TT)Cl] _n (2-Ag)	[Ag ₃ (TT) ₄] _n (NO ₃) _{3n} ⋅6nH ₂ O (3-Ag)
Crystal data			
Chemical formula	C ₉ H ₆ AgIN ₆	C ₉ H ₆ AgClN ₆	C ₃₆ H ₂₄ Ag ₃ N ₂₄ (NO ₃) ₃ ·6H ₂ O
			$= C_{36}H_{36}Ag_{3}N_{27}O_{15}$
Mr	432.97	341.52	1410.53
Crystal system	monoclinic	cubic	cubic
Space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	Pa3 (No. 205)	/ 4 3 <i>d</i> (No. 220)
Temperature [K]	150(2)	150(2)	150(2)
a [Å]	13.858(2)	12.7192(4)	17.2491(7)
b [Å]	4.7312(7)	12.7192(4)	17.2491(7)
<i>c</i> [Å]	17.303(3)	12.7192(4)	17.2491(7)
α [°]	90	90	90
β[°]	105.388(2)	90	90
γ [°]	90	90	90
<i>V</i> [Å ³]	1093.8(3)	2057.69(19)	5132.2(6)
Ζ	4	8	4
μ(MoKα) [mm ⁻¹]	4.650	2.202	1.226
Crystal size [mm]	$0.305 \times 0.045 \times 0.030$	$0.125 \times 0.125 \times 0.070$	$0.200 \times 0.200 \times 0.160$
Data collection			
T _{min} , T _{max}	0.331, 0.934	0.804, 0.857	0.742, 0.828
No. of measured reflections	12349	48142	36683
No. of independent reflections	3516	1220	1422
No. of observed reflections	2515	1118	1361
$[l > 2\sigma(l)]$			
R _{int}	0.0478	0.0215	0.0625
Rσ	0.0456	0.0056	0.0205
(sin θ/λ) _{max} [Å ⁻¹]	0.743	0.752	0.737
Refinement			
$R[F^2 > 2\sigma(F^2)]$	0.0343	0.0160	0.0326
wR(F ²)	0.0692	0.0435	0.0822
S	0.962	1.053	1.319
No. of reflections	3516	1220	1422
No. of parameters	154	52	75
No. of restraints	0	0	5
Δρ _{max} , Δρ _{min} (e Å ⁻³)	2.145, -1.211	0.488, -0.428	0.517, –0.342

Ag1–N1	2.319(3)	N1–Ag1–I1	123.34(10)	C4-C5-N4	105.1(3)
Ag1–I1	2.8084(5)	N1–Ag1–I1 ⁱ	102.71(7)	N5-C6-N6	113.6(3)
Ag1–I1 ⁱ	2.8682(5)	N1–Ag1–I1 ⁱⁱ	94.77(7)	N5-C6-N4	128.9(3)
Ag1–I1 ⁱⁱ	2.9221(5)	N1–Ag1…Ag1 ⁱ	132.62(7)	N6-C6-N4	117.5(3)
Ag1 Ag1 ⁱ	3.1591(5)	N1–Ag1…Ag1 ⁱⁱ	123.67(7)	C8–C7–N5	112.3(3)
C1–C2	1.354(5)	I1–Ag1–I1 ⁱ	113.568(12)	C7–C8–N6	105.2(3)
C1-N1	1.400(4)	I1–Ag1–I1 ⁱⁱ	111.927(12)	N1-C9-N2	112.8(3)
C2-N2	1.391(4)	I1 ⁱ –Ag1–I1 ⁱⁱ	109.584(16)	N1-C9-N6	129.9(3)
C3–N3	1.299(4)	Ag1 ⁱ …Ag1…Ag1 ⁱⁱ	96.975(18)	N2-C9-N6	117.3(3)
C3–N4	1.371(4)	Ag1 ⁱ …Ag1–l1	58.284(13)	C9-N1-C1	104.1(3)
C3–N2	1.391(4)	Ag1 ⁱ Ag1–l1 ⁱ	55.288(10)	C9–N1–Ag1	135.1(2)
C4–C5	1.353(5)	Ag1 ⁱ …Ag1–I1 ⁱⁱ	130.801(16)	C1–N1–Ag1	119.4(2)
C4–N3	1.393(5)	Ag1 ⁱⁱ …Ag1–I1	57.090(13)	C9-N2-C3	123.3(3)
C5–N4	1.389(4)	Ag1 ⁱⁱ …Ag1–I1 ⁱ	130.428(16)	C9-N2-C2	106.6(3)
C6–N5	1.297(4)	Ag1 ⁱⁱ ···Ag1–I1 ⁱⁱ	54.840(11)	C3-N2-C2	130.0(3)
C6–N6	1.374(4)	Ag1–I1–Ag1 ⁱⁱ	67.621(9)	C3-N3-C4	103.1(3)
C6-N4	1.382(4)	Ag1–I1–Ag1 ⁱ	66.875(9)	C3-N4-C6	123.1(3)
С7–С8	1.344(5)	Ag1 ⁱⁱ –I1–Ag1 ⁱ	109.584(16)	C3-N4-C5	105.5(3)
C7–N5	1.386(4)	C2-C1-N1	111.5(3)	C6-N4-C5	131.3(3)
C8–N6	1.392(4)	C1C2N2	105.0(3)	C6-N5-C7	103.6(3)
C9-N1	1.305(4)	N3-C3-N4	114.1(3)	C9-N6-C6	122.3(3)
C9–N2	1.368(4)	N3-C3-N2	129.4(3)	C6-N6-C8	105.3(3)
C9–N6	1.384(4)	N4-C3-N2	116.4(3)	C9-N6-C8	132.3(3)
		C5-C4-N3	112.2(3)		

Table S2. Bond distances [Å] and angles [°] for the coordination network [Ag(TT)I]ⁿ (1-Ag)

Superscripts i–ii indicate atoms generated by the following symmetry operations: (i) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$ and (ii) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Table S3. Bond distances [Å] and angles [°] for the silver coordination network [Ag(TT)Cl]n (2-Ag)

Ag1–N1	2.3544(10)	N1–Ag1–Cl1	117.31(2)	C2–N2–C3 ⁱⁱ	131.01(10)
Ag1–Cl1	2.4562(5)	N1–Ag1–N1 ⁱ	100.62(3)	C3–N2–C3 ⁱⁱ	122.25(10)
N1-C1	1.3956(15)	Ag1-N1-C1	119.43(7)	N1-C3-N2	112.95(10)
N1-C3	1.3035(14)	Ag1-N1-C3	134.03(8)	N1–C3–N2 ⁱⁱⁱ	129.47(10)
C1–C2	1.3596(16)	C1-N1-C3	104.17(9)	N2–C3–N2 ⁱⁱⁱ	117.56(10)
C2-N2	1.3930(14)	N1-C1-C2	111.54(10)		
N2-C3	1.3700(13)	C1C2N2	104.83(10)		
N2–C3 ⁱⁱ	1.3833(13)	C2-N2-C3	106.51(9)		

Superscripts i–iii indicate atoms generated by the following symmetry operations: (i) z, x, y; (ii) -y + 1, $z + \frac{1}{2}$, $-x + \frac{1}{2}$ and (iii) $z - \frac{1}{2}$, -x + 1, $y - \frac{1}{2}$.

	•••				
Ag1–N1	2.308(4)	N1–Ag1–N1 ⁱ	124.7(2)	C2-N2-C3	106.2(4)
N1-C1	1.386(6)	N1–Ag1–N1 ⁱⁱ	102.45(9)	C2–N2–C3 ⁱⁱⁱ	131.7(4)
N1-C3	1.304(6)	Ag1-N1-C1	119.2(3)	C3–N2–C3 ⁱⁱⁱ	122.1(4)
C1–C2	1.358(7)	Ag1-N1-C3	134.3(3)	N1-C3-N2	112.3(4)
C2-N2	1.394(6)	C1-N1-C3	105.3(4)	N1–C3–N2 ^{iv}	129.7(4)
N2-C3	1.370(5)	N1-C1-C2	110.7(4)	N2–C3–N2 ^{iv}	117.9(4)
N2–C3 ⁱⁱⁱ	1.373(5)	C1-C2-N2	105.5(4)		

Table S4. Bond distances [Å] and angles [°] for the coordination network [Ag₃(TT)₄]_n(NO₃)_{3n}·6nH₂O (**3-Ag**)

Superscripts i–iv indicate atoms generated by the following symmetry operations: (i) -x + 1, $-y + \frac{1}{2}$, z; (ii) $y + \frac{1}{4}$, $-x + \frac{3}{4}$, $-z + \frac{1}{4}$; (iii) -y + 1, $z + \frac{1}{2}$, $-x + \frac{1}{2}$ and (iv) $-z + \frac{1}{2}$, -x, $y - \frac{1}{2}$.

3. Photophysical Studies

3.1 1D Coordination Polymer [Ag(TT)I]_n (1-Ag)

Figure S1. Lifetime measurement (λ_{exc} =374nm , λ_{em} =400 nm) of 1-Ag at 298 K. τ_{av} = 2.15 ns

Figure S2. Lifetime measurement of **1-Ag** at 298 K. Upper panel: λ_{exc} =374nm, λ_{em} =449nm, τ_{av} = 2835.35 µs. Lower panel: λ_{exc} =374nm, λ_{em} =530nm, τ_{av} = 39.76 ms

Figure S3. Lifetime measurement (λ_{exc} =374nm, λ_{em} =424nm) of **1-Ag** at 77 K. τ_{av} = 2.31 ns.

Figure S4. Lifetime measurement (λ_{exc} =374nm, λ_{em} =449nm) of **1-Ag** at 77 K. τ_{av} = 421.03 µs.

Figure S5. Lifetime measurement (λ_{exc} = 360nm, λ_{em} = 449nm) of **1-Ag** at 77 K. τ_{av} = 5.67ms; τ_1 = 7.13 ms (A₁ = 32.52%); τ_2 = 2.08 ms (A₂ = 41.10%); τ_3 = 0.21 ms (A₃ = 26.37%); Adj. R-Square 0.99967

Figure S6. Lifetime measurement (λ_{exc} =374nm, λ_{em} =530nm) of 1-Ag at 77 K. τ_{av} = 44.51 ms.

Figure S7. Normalized emission spectrum of 1-Ag at 77 K, λ_{exc} =300nm

Figure S8. Comparison of the normalized emission band associated with **TT** organization in H-aggregates in crystals of **1-Ag** (red line); **1-Cu** (green line); **TTI** (blue line) and **TTCo** (black line).

3.2 1D Coordination Polymer [Cu(TT)I]_n (1-Cu)

Figure S9. Lifetime measurement (λ_{exc} =390nm, λ_{em} =530nm) of 1-Cu at 298 K. τ_{av} = 302.12 µs

Figure S10. Lifetime measurement (λ_{exc} =300nm, λ_{em} =550nm) of 1-Cu at 77 K. τ_{av} = 41.85 µs

Figure S11. Lifetime measurement (λ_{exc} =390nm, λ_{em} =530nm) of 1-Cu at 77 K. τ_{av} = 1030.87 µs

3.3. 3D Coordination Polymer [Ag(TT)Cl]_n (2-Ag)

Figure S12. Phosphorescence decays of **2-Ag** (λ_{exc} =360nm; λ_{em} =565nm, black points) at room temperature. Three exponential fit (solid line): τ_{av} =47.7ms (0.47104ms (0.62), 5.55881 ms (0.23), 55.648ms (0.15), Adj. R-Square 0.95313).

3.4. 3D Coordination Polymer [Cu(TT)Cl]_n (2-Cu)

Figure S13. Phosphorescence decays of **2-Cu** (λ_{exc} =360nm; λ_{em} =570nm, red triangles) at room temperature. Three exponential fit (solid line): τ_{av} =3.56ms (0.11482ms (0.89), 0.67398 ms (0.10), 8.9524ms (0.01), Adj. R-Square 0.99933).

Figure S14. Lifetime measurement (λ_{exc} =300nm, λ_{em} =410nm) of **3-Ag** at 298 K. τ_{av} = 1.49 ns.

Figure S15. Phosphorescence decays of **3-Ag** (λ_{exc} =300nm; λ_{em} =520nm, green points; λ_{em} =620nm, blue points) at room temperature. Three exponential fits (solid lines): λ_{em} =520nm, τ_{av} =3.41ms (0.1322ms (0.81), 1.022 ms (0.16), 7.029ms (0.03), Adj. R-Square 0.99954). λ_{em} =620nm, τ_{av} =1.04ms (2.648ms (0.03), 0.10686 ms (0.72), 0.32194ms (0.25) Adj. R-Square 0,99971).

Figure S16. Normalized Emission spectra: λ_{exc} =300nm (black line), λ_{exc} =334nm (red line), λ_{exc} =400nm (green line), λ_{exc} =500nm (blue line) and excitation spectra λ_{em} =400nm (cyan line), λ_{em} =469nm (pink line), λ_{em} =563nm (orange line) of **3**-**Ag** at 77 K.

Figure S17. Lifetime measurement (λ_{exc} =300nm, λ_{em} =392nm) of 3-Ag at 77 K. τ_{av} = 1.76 ns.

Figure S18. Lifetime measurement (λ_{exc} =334nm, λ_{em} =448nm) of 3-Ag at 77 K. τ_{av} = 32.69 ms.

Figure S19. Lifetime measurement (λ_{exc} =334nm, λ_{em} =563nm) of 3-Ag at 77 K. τ_{av} = 33.36 ms.

4. Theoretical studies

4.1. 1-Ag, 1-Cu

To simulate the 1D $[M(TT)I]_n$ (M = Ag, Cu) stair-step polymeric structures 1-Ag and 1-Cu, the $[M(TT)I]_4$ discrete model (see Fig. S20), including two TT ligands on either sides of the stair, has been chosen in order to properly describe the π - π interactions between the aromatic moieties, in addition to the metal-ligand and the metal-iodine bonds. Geometry optimization has been performed by freezing angles and torsions to preserve the correct coordination geometry around the metal ions. The optimized distances are generally rather close to the experimental values, though the symmetry of the infinite polymeric chain is lost owing to major boundary effects. In particular, the interplanar distances between adjacent TT ligands are equal to 3.213, 3.169 Å (M = Ag) and 3.228, 3.083 Å (M = Cu), to be compared with the X-ray values of 3.1726(19) (1-Ag) and 3.1730(6) Å (1-Cu), respectively. The distances between triazinic centroids are equal to 4.735, 4.693 Å (Ag) and 4.537, 4.451 Å (Cu), close to the experimental values of 4.731(2) (1-Ag) and 4.5090(13) Å (1-Cu), respectively. The M-I bond lengths within a step are slightly shorter for the steps external to the chain with respect to the internal ones, varying from 2.75 to 2.91 Å (Ag) and from 2.56 to 2.65 Å (Cu), to be compared with the X-ray distances of 2.8084(5) (1-Ag) and 2.611 Å (1-Cu), and the M···M separations are 3.19, 3.24 (Ag) and 3.16, 3.24 Å (Cu), in good agreement with the X-ray values (3.1591(5) for 1-Ag and 3.248 Å for 1-Cu). Finally, the M–N bond lengths, 2.35-2.38 Å (Ag) and 2.05-2.10 Å (Cu), are only slightly longer than the experimental values, 2.319(3) (1-Ag) and 2.028 Å (1-Cu).

Figure S20. Tetrameric model compound of 1-Ag, [Ag(TT)I]4.

The nature of bonding and non-bonding interactions involved in $[Ag(TT)I]_4$ and $[Cu(TT)I]_4$ has been explored by means of the QTAIM approach. The topological properties computed at selected bond critical points and ring critical points are reported in Table S2, while in Figure S21 are reported the molecular graphs. Looking at the bcp properties of the M–N bonds, it emerges a larger shared-shell character for the Cu compound with respect to the Ag compound. This is evidenced especially by the H_{bcp}/ρ_{bcp} and $|V_{bcp}|/G_{bcp}$ ratios and by the electron Delocalization Index (i.e., average number of electrons shared between M and N), which are larger for the former than for the latter compound.

Table S5 . Selected bond distances and bcp and rcp properties (electron density, ρ_{bcp} , Laplacian of electron density, $\nabla^2 \rho_{bcp}$,
potential, kinetic and total energy density, Vbcp, Gbcp and Hbcp, respectively, and delocalization index, DI) for [Ag(TT)I]4 and
[Cu(TT)I]4 model compounds.

	r (Å)	ρ _{bcp} (e/ų)	$ abla^2 ho_{bcp}$ (e/ų)	H _{bcp} /p _{bcp}	V _{bcp} /G _{bcp}	DI(A,B)
Ag–N ^a	2.35-2.38	0.327-0.352	4.75-5.18	-0.0840.091	1.076-1.082	0.353-0.391
Cu–N ^a	2.05-2.10	0.448-0.506	7.11-8.36	-0.1690.174	1.131-1.132	0.426-0.470
<ag–n>^{a,b}</ag–n>	2.374	0.334	4.87	-0.086	1.08	0.368
<cu–n>^{a,b}</cu–n>	2.072	0.480	7.75	-0.171	1.13	0.452
Ag…Ag	3.19, 3.24	no bcp				
Си…Си	3.16, 3.24	no bcp				
Ag–I–Ag–I ^c		0.104-0.113				
Cu–I–Cu–I ^c		0.091-0.109				

^{*a*}Bond critical point; ^{*b*}Averages on the bcp properties of the four M–N bonds of the tetrameric models; ^{*c*}Ring critical point.

Figure S21. Molecular graphs of [Ag(TT)I]₄ (top) and [Cu(TT)I]₄ (bottom) with bond paths, bond critical points (green circles) and ring critical points (red circles).

The results of DFT/TDDFT calculations on model compounds $[Ag(TT)I]_4$ and $[Cu(TT)I]_4$ are reported in Figures S22 (simulated absorption spectra), S23 (scheme of excited states), S24, S25 (Plots of the MOs mainly involved in the lowest energy transitions) and Tables S6, S7 (Gaussian16 output of the S₀ \rightarrow S_n and T₀ \rightarrow T_n transitions).

Figure S22. Simulated absorption spectra of model compounds $[Ag(TT)I]_4$ (at $\omega B97X/def2$ -TZVP level. left) and $[Cu(TT)I]_4$ (at $\omega B97X/6$ -311++G(d,p) level, right), resulting from convolution of the excitation energies with 0.06 eV ($[Ag(TT)I]_4$) and 0.1 eV ($[Cu(TT)I]_4$) of half-bandwidth.

Figure S23. Scheme of singlet and triplet electronic levels with oscillator strengths for singlet states (in blue) and character for model compounds $[Ag(TT)I]_4$ (at $\omega B97X/def2$ -TZVP level, left) and $[Cu(TT)I]_4$ (at $\omega B97X/6-311++G(d,p)$ level, right).

288 (HOMO-4)

292 (HOMO)

289 (HOMO-3)

290 (HOMO-2)

291 (HOMO-1)

[Ag(TT)I]4: LUMOs

Figure S24. Plots of the ω B97X/def2-TZVP MOs mainly involved in the lowest energy transitions of [Ag(TT)I]₄ (Isosurfaces value 0.02).

[Cu(TT)I]₄: HOMOs

348 (HOMO-20) 349 (HOMO-19)

350 (HOMO-18) 351 (HOMO-17)

352 (HOMO-16) 353 (HOMO-15)

354 (HOMO-14) 355 (HOMO-13)

356 (HOMO-12) 357 (HOMO-11) 358 (HOMO-10) 359 (HOMO-9)

360 (HOMO-8) 361 (HOMO-7) 362 (HOMO-6) 363 (HOMO-5)

364 (HOMO-4)

365 (HOMO-3)

366 (HOMO-2)

367 (HOMO-1)

368 (HOMO)

[Cu(TT)I]₄: LUMOs

Figure S25. Plots of the ω B97X/6-311++G(d,p) MOs mainly involved in the lowest energy transitions of [Cu(TT)I]₄ (Isosurfaces value 0.02).

<u>511191000</u>						
Excited State 290 -> 29 290 -> 29 292 -> 29 292 -> 29 292 -> 29	1: 3 4 3 4	Singlet-A -0.29536 -0.25764 0.40815 0.23580	4.5326 eV	273.54 nm	f=0.1274	<s**2>=0.000</s**2>
Excited State 290 -> 29 291 -> 29 291 -> 29 292 -> 29 292 -> 29 292 -> 29 292 -> 29 292 -> 29	2: 3 4 3 3 4 6 7	Singlet-A -0.28652 0.16850 -0.10771 -0.27900 0.35119 -0.13051 -0.11634	4.6615 eV	265.97 nm	f=0.1046	<s**2>=0.000</s**2>
Excited State 286 -> 29 286 -> 29 287 -> 29 287 -> 29 290 -> 29 291 -> 29 291 -> 29 292 -> 29	3: 3 4 3 4 4 4 3 4 3 4 3 3	Singlet-A 0.12916 0.11063 0.38717 0.28041 -0.10694 -0.27546 -0.15628 0.12200	4.7565 eV	260.66 nm	f=0.0739	<s**2>=0.000</s**2>
Excited State 287 -> 29 288 -> 29 288 -> 29 289 -> 29 289 -> 29 291 -> 29 291 -> 29	4: 3 4 3 4 3 4 3 4	Singlet-A -0.10406 0.25566 -0.23671 0.21377 -0.21300 -0.22367 0.18753	4.8212 eV	257.17 nm	f=0.0599	<s**2>=0.000</s**2>
Excited State 284 -> 29 286 -> 29 286 -> 29 287 -> 29 287 -> 29 288 -> 29 288 -> 29 288 -> 29 289 -> 29 291 -> 29 291 -> 29	5: 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	Singlet-A 0.14346 0.10553 -0.16108 -0.15820 0.14649 0.15265 0.35589 0.18314 -0.23219 0.15423 0.10394	4.9067 eV	252.68 nm	f=0.0321	<s**2>=0.000</s**2>
Excited State 287 -> 29 289 -> 29 289 -> 29 289 -> 29 289 -> 29 289 -> 30 290 -> 29 291 -> 29	6: 3 4 6 7 4 4 3	Singlet-A 0.20070 0.30757 -0.27348 0.11509 0.12376 0.10846 0.10596 0.21666	4.9937 eV	248.28 nm	f=0.0658	<s**2>=0.000</s**2>
Excited State 286 -> 29 286 -> 29 286 -> 30 288 -> 29 290 -> 29 291 -> 29 291 -> 30 292 -> 30	7: 3 6 3 4 4 3 3 3 3	Singlet-A 0.39834 0.11132 0.18811 -0.10482 0.11232 0.19636 0.13012 0.22670	5.0891 eV	243.63 nm	f=0.1397	<s**2>=0.000</s**2>
Excited State 278 -> 29 284 -> 29 288 -> 29 290 -> 30 291 -> 29 291 -> 29	8: 3 4 4 3 6	Singlet-A 0.17708 0.10922 0.14408 0.11486 -0.25200 -0.14357	5.2131 eV	237.83 nm	f=0.0815	<s**2>=0.000</s**2>

Table S6. First TD- ω B97X/def2-TZVP S₀ \rightarrow S_n and T₀ \rightarrow T_n transitions computed for the optimized geometry of [Ag(TT)I]₄. Singlets:

291 -> 303 292 -> 293 292 -> 296 292 -> 303	-0.25204 0.13187 0.14070 0.30077				
Excited State 9: 272 -> 294 275 -> 293 278 -> 294 282 -> 293 283 -> 293 284 -> 293 285 -> 293 286 -> 294 291 -> 294 292 -> 303	Singlet-A 0.10219 -0.11939 0.10630 0.24307 0.10639 -0.13953 0.23596 0.19845 0.16969 -0.12984	5.3205 eV	233.03 nm	f=0.0049	<s**2>=0.000</s**2>
Excited State 10: 277 -> 295 278 -> 296 278 -> 298 281 -> 298 282 -> 298 284 -> 295 284 -> 296 284 -> 298	Singlet-A 0.38704 -0.12437 -0.13417 -0.10147 0.10850 0.14521 0.17544 0.18657	5.3262 eV	232.78 nm	f=0.0139	<s**2>=0.000</s**2>
<u>Triplets:</u>					
Excited State 1: 277 -> 295 278 -> 296 278 -> 298 282 -> 298 283 -> 295 284 -> 295 284 -> 296 284 -> 298 284 -> 298 284 -> 302	Triplet-A 0.26814 -0.12064 -0.13934 0.10061 -0.10919 0.23524 0.13498 0.17610 -0.10479	3.8293 eV	323.78 nm	f=0.0000	<\$**2>=2.000
Excited State 2: 276 -> 297 279 -> 296 279 -> 301 281 -> 294 281 -> 298 281 -> 298 281 -> 299 281 -> 301 282 -> 301 283 -> 301	Triplet-A 0.21015 0.11215 -0.13618 0.16837 0.17159 -0.19495 -0.11523 -0.13222 -0.12540 0.15228	3.8478 eV	322.22 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 3: 279 -> 299 279 -> 300 281 -> 301 282 -> 296 283 -> 296 283 -> 298 283 -> 298 283 -> 298 283 -> 301 285 -> 298 285 -> 298 285 -> 301	Triplet-A -0.24022 -0.14002 -0.21599 0.11167 -0.10531 -0.17086 0.18268 -0.15012 -0.10633 0.11301 -0.11285	3.8539 eV	321.71 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 4: 280 -> 299 280 -> 300 280 -> 302 282 -> 302 283 -> 298 283 -> 302 285 -> 297 285 -> 298 285 -> 298 285 -> 301 285 -> 302	Triplet-A -0.12638 0.25507 0.10775 0.14254 0.12192 0.21699 0.10779 -0.14708 -0.11592 -0.25795	3.8690 eV	320.46 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 5:	Triplet-A	4.1040 eV	302.10 nm	f=0.0000	<s**2>=2.000</s**2>

277 277 277 277 277 277 277 278 284	-> 295 -> 296 -> 297 -> 298 -> 299 -> 302 -> 295 -> 295		0.21563 -0.23047 0.10428 -0.22324 0.10354 0.11403 0.15994 -0.12468				
Excited 273 273 273 276 279 279 279 281 282	State -> 296 -> 298 -> 301 -> 297 -> 299 -> 300 -> 301 -> 299 -> 301	6:	Triplet-A -0.10878 0.12518 -0.12833 -0.19919 -0.25405 -0.15779 0.15080 0.10882 -0.10767	4.1138 eV	301.39 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 273 276 276 276 278 279 279 281	State -> 301 -> 294 -> 296 -> 297 -> 297 -> 299 -> 301 -> 306	7:	Triplet-A -0.10702 0.11506 0.33173 -0.11373 -0.13331 0.15332 0.11007	4.1221 eV	300.78 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 274 280 280 280 280 285	State -> 302 -> 299 -> 300 -> 301 -> 302 -> 302	8:	Triplet-A -0.18511 0.16561 -0.35634 -0.11305 -0.19164 -0.11740	4.1280 eV	300.35 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 290 290 291 292 292	State -> 293 -> 294 -> 293 -> 293 -> 294	9:	Triplet-A -0.27763 -0.26320 -0.11189 0.40902 0.18371	4.1410 eV	299.41 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 273 273 279 279 279 279 279 279 279 281 283 283	State -> 299 -> 300 -> 296 -> 298 -> 299 -> 301 -> 307 -> 301 -> 299 -> 301	10:	Triplet-A -0.25366 -0.14548 0.10250 -0.15396 0.15349 -0.14492 -0.12224 -0.14296 0.10882 -0.13888 0.10356	4.1836 eV	296.35 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 270 271 277 277 277 284	State -> 295 -> 295 -> 295 -> 305 -> 307 -> 295	11:	Triplet-A -0.19114 0.23331 -0.29561 -0.15982 -0.10653 -0.10634	4.2013 eV	295.11 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 274 280 280 280 280 282 283 283 285	State -> 299 -> 300 -> 298 -> 302 -> 308 -> 300 -> 300 -> 300	12:	Triplet-A 0.13795 -0.27474 -0.13223 -0.21757 0.19171 -0.11279 -0.12394 0.15857	4.2131 eV	294.28 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 269	State -> 297	13:	Triplet-A -0.15263	4.2236 eV	293.55 nm	f=0.0000	<s**2>=2.000</s**2>

270 271 276 276 276 276 276 281 281	-> 297 -> 297 -> 294 -> 296 -> 298 -> 301 -> 306 -> 297 -> 297		0.18057 0.15481 0.12600 0.12704 -0.13318 -0.13594 0.19926 0.20937 0.10582					
Excited 288 290 290 292 292 292 292 292	State -> 293 -> 293 -> 294 -> 293 -> 294 -> 296 -> 297	14:	Triplet-A -0.13671 -0.29376 0.12553 -0.23149 0.31132 -0.13996 -0.11090	4.2700 e	₽V 290.	36 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 286 287 287 291 291 292	State -> 293 -> 294 -> 293 -> 294 -> 293 -> 294 -> 293	15:	Triplet-A 0.17014 0.12154 0.31046 0.25557 -0.30601 -0.14088 -0.11375	4.3959 6	₽V 282.	04 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 287 288 289 289 290 291 291 291 291 292	State -> 293 -> 294 -> 294 -> 294 -> 294 -> 293 -> 294 -> 294 -> 296 -> 294	16:	Triplet-A 0.16146 -0.22403 0.21408 -0.13469 0.11811 0.10020 0.20217 -0.20124 0.10371 -0.10462	4.4838 6	≥V 276.	52 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 284 287 287 288 288 289 289 289 291 291	State -> 293 -> 293 -> 294 -> 293 -> 294 -> 293 -> 294 -> 293 -> 293 -> 303	17:	Triplet-A 0.11020 0.24067 0.20076 0.31635 0.13258 -0.15282 -0.13907 0.19492 0.14244	4.6848 6	₽V 264.	65 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 278 284 286 288 289 291 291 291	State -> 293 -> 293 -> 293 -> 294 -> 293 -> 293 -> 293 -> 296 -> 303	18:	Triplet-A -0.11135 -0.11334 0.19873 -0.19216 0.19008 0.20919 0.18425 0.37087	4.7167 6	₽V 262.	86 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 286 287 289 289 289 289 289 289 289 291	State -> 293 -> 294 -> 294 -> 294 -> 294 -> 294 -> 296 -> 297 -> 304 -> 303	19:	Triplet-A -0.11794 0.14634 -0.11012 0.32443 -0.29433 0.12483 0.13435 0.11597 -0.11860	4.7822 6	eV 259.	26 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 278 286 286 290 290	State -> 293 -> 293 -> 303 -> 294 -> 304	20:	Triplet-A 0.11187 0.26547 0.15105 0.14962 0.13382	4.8647 e	eV 254.	87 nm	f=0.0000	<s**2>=2.000</s**2>

292	->	293	0.11395
292	->	296	0.15828
292	->	303	0.38636

Table S7. First TD- ω B97X/6-311++G(d,p) S₀ \rightarrow S_n and T₀ \rightarrow T_n transitions computed for the optimized geometry of [Cu(TT)I]₄. Singlets:

Excited State 366 -> 370 366 -> 383 366 -> 385 368 -> 370 368 -> 371 368 -> 371 368 -> 383 368 -> 383 368 -> 385	1:	Singlet-A 0.19515 0.12027 -0.16744 -0.12479 0.20325 0.12385 -0.17253 -0.13018	4.0385 eV	307.01 nm	f=0.0109	<s**2>=0.000</s**2>
Excited State 349 -> 369 361 -> 369 366 -> 369 367 -> 369 367 -> 386 368 -> 369 368 -> 386	2:	Singlet-A 0.12407 0.12702 -0.17398 0.20183 -0.10714 0.23296 -0.12012	4.2393 eV	292.46 nm	f=0.0152	<s**2>=0.000</s**2>
Excited State 364 -> 370 364 -> 371 364 -> 383 364 -> 385 365 -> 370 365 -> 383	3:	Singlet-A -0.18461 -0.12601 0.16278 0.11918 -0.12602 0.11030	4.2588 eV	291.13 nm	f=0.0043	<s**2>=0.000</s**2>
Excited State 364 -> 369 364 -> 386 364 -> 390 365 -> 369 365 -> 386 368 -> 369	4:	Singlet-A 0.24714 -0.13397 -0.10334 -0.19547 0.10496 -0.12234	4.4184 eV	280.61 nm	f=0.0034	<s**2>=0.000</s**2>
Excited State 345 -> 370 345 -> 383 362 -> 370 362 -> 383 363 -> 370 363 -> 371 363 -> 383 363 -> 383 363 -> 385	5:	Singlet-A 0.13117 -0.12171 0.13266 -0.11490 0.17083 0.10877 -0.14467 -0.10424	4.5995 eV	269.56 nm	f=0.0075	<s**2>=0.000</s**2>
Excited State 343 -> 370 343 -> 383 346 -> 370 346 -> 383 349 -> 370 349 -> 383	6:	Singlet-A -0.13655 0.12651 0.11888 -0.10857 -0.11858 0.10413	4.7308 eV	262.08 nm	f=0.0223	<s**2>=0.000</s**2>
Excited State 335 -> 369 336 -> 369 342 -> 369 344 -> 369 362 -> 369 362 -> 386 363 -> 369 363 -> 386	7:	Singlet-A 0.10133 -0.11191 -0.11001 0.12343 -0.19986 0.11342 0.19565 -0.10687	4.7939 eV	258.63 nm	f=0.0174	<s**2>=0.000</s**2>
Excited State 338 -> 370 338 -> 383 338 -> 385 340 -> 370 340 -> 383	8:	Singlet-A 0.14997 -0.14017 -0.10686 -0.14274 0.13206	4.8812 eV	254.00 nm	f=0.0387	<s**2>=0.000</s**2>

$345 \rightarrow 370$ $345 \rightarrow 371$ $345 \rightarrow 383$ $345 \rightarrow 385$ $346 \rightarrow 370$ $346 \rightarrow 383$	0.16277 0.10649 -0.14863 -0.11269 -0.12811 0.11688				
Excited State 9: 333 -> 369 339 -> 369 342 -> 369 344 -> 369 346 -> 369 347 -> 369 357 -> 369 367 -> 369	Singlet-A -0.10280 0.10157 0.12432 0.14294 0.10396 0.10860 0.11657 0.14685	4.9008 eV	252.99 nm	f=0.0282	<s**2>=0.000</s**2>
Triplets:					
Excited State 1: 349 -> 371 349 -> 374 352 -> 371 352 -> 374 352 -> 376 356 -> 371 356 -> 371 358 -> 374 359 -> 374 359 -> 374 359 -> 379 360 -> 371 360 -> 374	Triplet-A -0.12414 0.10744 -0.11782 -0.11660 -0.11124 -0.13966 0.15399 -0.11021 0.15530 -0.19296 0.10259 0.12164 -0.16941	3.7725 eV	328.65 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 2: 353 -> 372 355 -> 375 357 -> 375 358 -> 372 358 -> 372 359 -> 372 359 -> 377 359 -> 378 360 -> 372 360 -> 377 360 -> 378	Triplet-A -0.10658 -0.23405 -0.12739 -0.12884 0.12655 -0.15260 -0.11243 0.14849 0.13936 0.10098 -0.13322	3.7905 eV	327.09 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 3: 351 -> 369 351 -> 372 351 -> 375 353 -> 369 355 -> 369 356 -> 369 357 -> 369 357 -> 372 357 -> 373 357 -> 378	Triplet-A 0.14103 0.11961 -0.11164 -0.18437 -0.13172 -0.11196 0.23351 -0.21356 -0.15658 -0.16448	3.8036 eV	325.97 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 4: 366 -> 370 366 -> 371 366 -> 383 366 -> 385 368 -> 370 368 -> 371 368 -> 383 368 -> 383 368 -> 385	Triplet-A 0.18425 0.11298 -0.16314 -0.12259 0.19084 0.11733 -0.16598 -0.12453	3.8097 eV	325.44 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 5: 354 -> 376 358 -> 374 358 -> 379 359 -> 374 359 -> 379	Triplet-A 0.22179 0.19161 0.24108 -0.17505 -0.19645	3.8288 eV	323.82 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 6: 364 -> 370	Triplet-A -0.18371	4.0017 eV	309.83 nm	f=0.0000	<s**2>=2.000</s**2>

364 -> 371 364 -> 383 364 -> 385 365 -> 370 365 -> 383	-0.11608 0.16416 0.12271 -0.11744 0.10512				
Excited State 7: 352 -> 374 352 -> 376 366 -> 369 367 -> 369 368 -> 369	Triplet-A 0.20405 0.13510 -0.10438 0.11964 0.13854	4.0236 eV	308.14 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 8: 352 -> 374 352 -> 376 366 -> 369 367 -> 369 368 -> 369	Triplet-A -0.19865 -0.13016 -0.11325 0.12313 0.14599	4.0244 eV	308.08 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 9: 355 -> 375 355 -> 377 355 -> 378 357 -> 378 359 -> 375 360 -> 375	Triplet-A 0.23425 -0.12680 0.14028 0.10886 -0.10535 0.10613	4.0305 eV	307.61 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 10: 350 -> 372 350 -> 375 351 -> 369 351 -> 372 351 -> 372 351 -> 375 351 -> 378 355 -> 378 357 -> 369	Triplet-A -0.17124 0.10177 -0.13821 -0.22672 0.19149 -0.10563 0.10809 0.17261	4.0593 eV	305.43 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 11: 352 -> 376 354 -> 376 354 -> 379 356 -> 376 358 -> 376 359 -> 376	Triplet-A 0.10478 -0.21838 -0.27856 -0.11995 -0.13136 0.10836	4.0732 eV	304.39 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 12: 340 -> 375 341 -> 375 343 -> 375 346 -> 375 351 -> 372 351 -> 372 355 -> 372 355 -> 375 355 -> 402 358 -> 375 359 -> 375	Triplet-A 0.10210 -0.15297 -0.16587 -0.12132 -0.11462 -0.11216 -0.18890 -0.20481 -0.12455 -0.10578 -0.10487	4.1308 eV	300.15 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 13: 344 -> 369 351 -> 369 364 -> 369 364 -> 386 365 -> 369	Triplet-A -0.13926 -0.17790 0.18130 -0.10589 -0.13129	4.1673 eV	297.52 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 14: 337 -> 376 338 -> 376 339 -> 376 342 -> 376 354 -> 376 354 -> 376 354 -> 376 354 -> 376	Triplet-A 0.14278 -0.10051 -0.10584 0.12547 -0.11831 0.16249	4.1834 eV	296.37 nm	f=0.0000	<s**2>=2.000</s**2>
358 -> 379	0.11342 -0.12803 -0.12717				

336 -> 371	-0.10627				
337 -> 371	0.13293				
339 -> 371	0 11132				
245 > 270	0.10064				
345 -> 370	-0.10964				
345 -> 371	0.16038				
349 -> 371	-0.10061				
352 -> 370	0.13844				
352 -> 371	-0.19721				
252 > 205	0 10920				
352 -> 395	0.10820				
Evaited State 16	Triplot-A	1 1062 017	205 17 pm	£-0 0000	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
Excited State in	Tripiet-A	4.1962 ev	295.47 1111	I=0.0000	<5^^2>=2.000
336 -> 369	0.11980				
344 -> 369	0.12894				
350 -> 369	0.10755				
351 -> 369	0.14293				
351 -> 373	-0 10022				
252 > 273	0.10022				
353 -> 369	-0.13770				
357 -> 372	0.12278				
364 -> 369	0.14640				
365 -> 369	-0.11494				
Excited State 17:	Triplet-A	4.3507 eV	284.97 nm	f=0.0000	<s**2>=2.000</s**2>
345 -> 370	0.11031				
345 -> 383	-0 10504				
262 > 270	0 11026				
302 -> 370	0.11920				
362 -> 383	-0.1068/				
363 -> 370	0.16708				
363 -> 371	0.11099				
363 -> 383	-0 14833				
363 -> 385	-0 10902				
303 / 303	0.10902				
Excited State 18	. Triplet-A	4.4625 eV	277.84 nm	f=0.0000	<s**2>=2.000</s**2>
	0 11015	1.1025 CV	277.04 1111	T 0.0000	10 27 2:000
340 -> 370	-0.11615				
340 -> 383	0.11036				
343 -> 370	-0.12532				
343 -> 383	0.11897				
349 -> 370	-0.11098				
349 -> 383	0.10369				
319 / 303	0.10000				
Evolted State 10	. Triplet-A	1 5511 oV	272 /1 nm	f-0 0000	<\$**2>-2 000
Exciled State 13	· IIIpiet-A	4.3314 60	2/2.41 1111	1-0.0000	<3~~2>=2.000
338 -> 370	0.13845				
338 -> 383	-0.13248				
338 -> 385	-0.10188				
340 -> 370	-0.12315				
340 -> 383	0 11704				
245 > 270	0 17590				
345 > 370	0.11465				
345 -> 371	0.11465				
345 -> 383	-0.16579				
345 -> 385	-0.12654				
346 -> 370	-0.13366				
346 -> 383	0 12560				
340 / 303	0.12300				
Excited State 20	. Trinlot-A	4 5623 017	271 76 nm	f=0 0000	<\$**2>=2 000
	0 10770	1.3023 CV	2/1./0 1111	T 0.0000	10 27 2:000
222 - 222	-0.11207				
336 -> 369	0.11387				
362 -> 369	0.17624				
362 -> 386	-0.10565				
363 -> 369	-0.18229				
363 -> 386	0.10857				
Excited State 21	Triplet-A	4.6509 eV	266.58 nm	f=0.0000	<s**2>=2.000</s**2>
222 \ 2C0	_0 10240	1.0000 00	200.00 1111	- 0.0000	2, 2.000
202 - 202	-0.10049				
339 -> 369	0.10270				
342 -> 369	0.12044				
344 -> 369	0.14076				
346 -> 369	0.10804				
347 -> 369	0 10783				
367 -> 369	0.13066				
501 - 509	0.10000				
Excited State 22.	Trinlet-A	4.7346 PV	261.87 nm	f=0.0000	<\$**2>=2 000
335 _~ 360	=0 10231	1.1010 61	int		
333 -2 309	-0.10231				
339 -> 369	-0.10091				
340 -> 369	0.10383				
341 -> 369	0.12132				
342 -> 369	-0.15186				
341 -> 360	0 15156				
JHH / JUJ	0.11000				
JJU -> J69	-0.11282				

Excited 350 351 351 351 351 351 357	State -> 369 -> 369 -> 372 -> 373 -> 378 -> 369	23:	Triplet-A 0.15998 0.26149 -0.14114 -0.12574 -0.12303 -0.14105	4.9100 eV	252.51 nm	f=0.0000	<\$**2>=2.000
Excited 355 355 355 358 359 360	State -> 372 -> 375 -> 378 -> 375 -> 375 -> 375	24:	Triplet-A 0.22037 0.10893 -0.11875 -0.14308 -0.17428 0.16604	4.9334 eV	251.31 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 349 352 352 354 354 356 359 359 360	State -> 374 -> 370 -> 371 -> 374 -> 371 -> 374 -> 374 -> 371	25:	Triplet-A -0.12007 -0.14162 0.22766 -0.16893 0.12533 -0.11715 0.11052 0.11250 0.12275	4.9377 eV	251.10 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 345 352 368 368	State -> 374 -> 395 -> 370 -> 371	26:	Triplet-A 0.13383 0.12409 0.13683 -0.12301	4.9769 eV	249.12 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 354 366 366 368 368	State -> 401 -> 370 -> 376 -> 374 -> 376	27:	Triplet-A -0.10859 -0.10889 -0.12268 -0.10607 0.12322	4.9847 eV	248.73 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 354 354 354 358 358 358 359	State -> 374 -> 376 -> 379 -> 376 -> 379 -> 376	28:	Triplet-A -0.19002 0.14947 -0.19408 0.17365 0.10319 -0.14039	4.9946 eV	248.24 nm	f=0.0000	<s**2>=2.000</s**2>

4.2. 2-Ag, 2-Cu and 3-Ag

In the case of the 3D $[M(TT)Cl]_n$ (M =Ag, Cu) and $[Ag_3(TT)_4]_n(NO_3)_{3n} \cdot 6nH_2O$ polymeric structures, the $M(TT)_3Cl$ and the Ag $(TT)_4^+$ models, respectively, have been adopted (see Figure S26). For these systems geometry optimizations have been performed without constraints, starting from the X-ray structures. In $M(TT)_3Cl$ optimized complexes, the M–N and M–Cl bonds measure 2.426, 2.448 Å (M=Ag) and 2.168, 2.274 Å (M=Cu), respectively, to be compared with the X-ray values 2.3544(10), 2.4562(5) Å (**2-Ag**) and 2.130, 2.257 Å (**2-Cu**). In Ag $(TT)_4^+$ complex, the Ag–N bond measures 2.346-2.363 Å, to be compared with the X-ray value 2.308(4) Å.

The results of DFT/TDDFT calculations on M(TT)₃Cl are reported in Figures S27 (scheme of excited states), S28, S29 (Plots of the MOs mainly involved in the lowest energy transitions) and Tables S8, S9 (Gaussian16 output of the $S_0 \rightarrow S_n$ and $T_0 \rightarrow T_n$ transitions), while those on Ag(TT)₄⁺ are reported in Figures S30 (scheme of excited states), S31 (Plot of the MOs mainly involved in the lowest energy transitions) and Table S10 (Gaussian16 output of the $S_0 \rightarrow S_n$ and $T_0 \rightarrow T_n$ transitions).

Figure S26. Discrete model compounds of 2-Ag, Ag(TT)₃Cl (left), and 3-Ag, Ag(TT)_{4⁺} (right).

Figure S27. Scheme of singlet and triplet electronic levels with oscillator strengths (for singlet states, in blue) and character for model compounds $Ag(TT)_3Cl$ (at $\omega B97X/def2$ -TZVP level, left) and $Cu(TT)_3Cl$ (at $\omega B97X/def2$ -TZVP level, left) and Cu(TT)_3Cl (at $\omega B97X/def2$ -TZVP level) and Cu(TT)_3Cl (be a block by the cut be a block by th

Ag(TT)₃Cl: HOMOs

MO = 158 (HOMO-13) 159 (HOMO-12)

160 (HOMO-11)

161 (HOMO-10)

162 (HOMO-9)

163 (HOMO-8)

164 (HOMO-7)

165 (HOMO-6)

166 (HOMO-5)

167 (HOMO-4)

168 (HOMO-3)

169 (HOMO-2)

170 (HOMO-1)

171 (HOMO)

Ag(TT)₃Cl: LUMOs

MO = 172 (LUMO) 173 (LUMO+1)

174 (LUMO+2)

176 (LUMO+4) 177 (LUMO+5) 178 (LUMO+6) 179 (LUMO+7)

180 (LUMO+8) 181 (LUMO+9) 182 (LUMO+10)

183 (LUMO+11)

184 (LUMO+12)

188 (LUMO+16)

Figure S28. Plots of the ω B97X/def2-TZVP MOs mainly involved in the lowest energy transitions of Ag(TT)₃Cl (Isosurfaces value 0.02).

Figure S29. Plots of the ω B97X/6-311++G(d,p) MOs mainly involved in the lowest energy transitions of Cu(TT)₃Cl (Isosurfaces value 0.02).

Table S8. First TD- ω B97X/def2-TZVP S₀ \rightarrow S_n and T₀ \rightarrow T_n transitions computed for the optimized geometry of Ag(TT)₃Cl. <u>Singlets:</u>

Excited State 163 -> 173 164 -> 172 164 -> 172 165 -> 172 165 -> 174 166 -> 175 166 -> 177 167 -> 175 168 -> 177 170 -> 175	1:	Singlet-A -0.24365 -0.23516 -0.17898 -0.12451 0.18025 -0.12192 0.24997 0.11634 -0.24310 -0.19198 0.11605	5.4066 eV	229.32 nm	f=0.0083	<\$**2>=0.000
Excited State 163 -> 174 164 -> 172 164 -> 174 165 -> 172 165 -> 173 166 -> 176 166 -> 177 167 -> 175 167 -> 177 168 -> 175 168 -> 176	2:	Singlet-A 0.23820 -0.12606 -0.18314 0.23358 -0.18085 0.13561 -0.16010 -0.11515 0.21540 0.21702 0.18842	5.4068 eV	7 229.31 nm	f=0.0083	<s**2>=0.000</s**2>
Excited State 163 -> 172 164 -> 173 165 -> 174 166 -> 175 167 -> 176 168 -> 177 169 -> 175 170 -> 176 171 -> 177	3:	Singlet-A 0.26539 0.25739 0.26047 0.26418 -0.24215 -0.24505 -0.10068 0.11660 0.11766	5.4142 eV	229.00 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 163 -> 173 164 -> 175 166 -> 173 167 -> 172 167 -> 173 168 -> 174 169 -> 173 170 -> 172 170 -> 173 171 -> 174	4:	Singlet-A -0.11269 -0.11911 0.37150 0.28985 0.12392 -0.22490 -0.15255 -0.13101 -0.10233 0.10235	5.8026 eV	213.67 nm	f=0.2680	<s**2>=0.000</s**2>
Excited State 163 -> 174 165 -> 175 166 -> 174 167 -> 174 168 -> 172 168 -> 173 169 -> 174 170 -> 174 171 -> 172 171 -> 173	5:	Singlet-A -0.10935 -0.10120 0.24147 -0.29978 0.30069 -0.21771 -0.15071 0.10350 -0.12929 0.10307	5.8028 eV	213.66 nm	f=0.2683	<s**2>=0.000</s**2>
Excited State 163 -> 175 164 -> 176 165 -> 177 166 -> 172 167 -> 173 168 -> 174 169 -> 172 170 -> 173 171 -> 174	6:	Singlet-A -0.15003 0.13030 0.30239 0.30049 0.31279 -0.13842 -0.15329 -0.15371	5.8284 eV	212.72 nm	f=0.0104	<s**2>=0.000</s**2>
Excited State 163 -> 173	7:	Singlet-A 0.14925	6.0300 eV	205.61 nm	f=0.6092	<s**2>=0.000</s**2>

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.18453 0.11490 0.18840 0.12009 -0.15462 0.12879 0.15727 -0.12529 -0.15730 0.17808 0.12490 -0.14283 -0.16150				
Excited State 8: $161 \rightarrow 175$ $163 \rightarrow 174$ $163 \rightarrow 176$ $163 \rightarrow 177$ $164 \rightarrow 172$ $164 \rightarrow 172$ $164 \rightarrow 174$ $165 \rightarrow 172$ $165 \rightarrow 173$ $165 \rightarrow 173$ $165 \rightarrow 175$ $165 \rightarrow 176$ $166 \rightarrow 176$ $166 \rightarrow 177$ $167 \rightarrow 175$ $167 \rightarrow 175$ $167 \rightarrow 177$ $168 \rightarrow 176$	Singlet-A -0.10134 0.14765 -0.12187 0.18074 -0.15902 -0.12475 -0.14269 0.18795 -0.12310 -0.11405 -0.16147 -0.15756 0.11309 0.11231 -0.16616 -0.12882 -0.14211	6.0301 eV	205.61 nm	f=0.6075	<s**2>=0.000</s**2>
Excited State 9: 159 -> 178 160 -> 173 161 -> 172 163 -> 176 164 -> 175 165 -> 176 168 -> 178 171 -> 178 171 -> 184	Singlet-A -0.11423 0.15729 -0.13919 0.13881 -0.17169 0.10706 0.15618 0.28944 0.18322	6.0573 eV	204.68 nm	f=0.2063	<s**2>=0.000</s**2>
Excited State 10: 158 -> 178 160 -> 174 162 -> 172 163 -> 177 165 -> 175 165 -> 175 165 -> 177 167 -> 178 170 -> 184	Singlet-A 0.11406 -0.15631 -0.13849 -0.13628 0.14354 0.12202 0.15054 0.28879 0.18278	6.0582 eV	204.65 nm	f=0.2084	<s**2>=0.000</s**2>
Triplets:					
Excited State 1: $163 \rightarrow 172$ $164 \rightarrow 173$ $164 \rightarrow 176$ $165 \rightarrow 174$ $166 \rightarrow 173$ $166 \rightarrow 173$ $166 \rightarrow 175$ $166 \rightarrow 176$ $167 \rightarrow 173$ $167 \rightarrow 173$ $167 \rightarrow 176$ $168 \rightarrow 174$ $168 \rightarrow 177$ $169 \rightarrow 175$ $170 \rightarrow 176$	Triplet-A 0.16006 0.15789 0.10768 0.11043 0.10397 0.30244 -0.10174 0.17434 -0.22275 0.13857 -0.18822 -0.10681 0.11898	3.8608 eV	321.13 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 2: 163 -> 173 164 -> 172 165 -> 174 166 -> 173	Triplet-A 0.13088 0.13625 -0.13250 0.16721	3.8611 eV	321.11 nm	f=0.0000	<s**2>=2.000</s**2>

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		-0.20912 -0.12497 0.24311 -0.16775 0.10774 0.23702 -0.11243 -0.11081				
Excited State 163 -> 174 164 -> 174 165 -> 172 166 -> 174 166 -> 174 166 -> 177 167 -> 174 167 -> 175 167 -> 175 167 -> 177 168 -> 173 168 -> 175 168 -> 175	3:	Triplet-A 0.13300 -0.10469 0.14021 0.12035 0.13520 -0.14403 -0.15858 -0.13765 -0.12675 0.18824 -0.11579 0.21736 0.18114	3.8612 eV	321.10 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 160 -> 175 161 -> 176 162 -> 177 163 -> 172 163 -> 175 164 -> 173 164 -> 176 165 -> 174 165 -> 177 166 -> 175	4:	Triplet-A -0.14242 -0.13221 0.10645 0.23742 -0.13499 0.21664 0.21685 0.14502 0.15895 -0.11744	4.1075 eV	301.85 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 161 -> 175 162 -> 177 163 -> 173 163 -> 176 163 -> 177 164 -> 172 164 -> 175 165 -> 172 165 -> 174 165 -> 177	5:	Triplet-A 0.11403 -0.12920 0.16850 0.16381 0.11766 0.19719 -0.11512 0.15263 -0.18392 -0.19942	4.1077 eV	301.84 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 162 -> 175 163 -> 174 163 -> 176 163 -> 177 164 -> 172 164 -> 174 164 -> 177 165 -> 172 165 -> 173 165 -> 176	6:	Triplet-A 0.10142 -0.17118 0.11516 -0.16318 0.14208 0.14716 0.13487 -0.20446 0.12456 0.15048	4.1078 eV	301.83 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 160 -> 172 161 -> 173 162 -> 174 163 -> 172 163 -> 172 163 -> 175 163 -> 179 164 -> 173 164 -> 180 165 -> 174 165 -> 171 165 -> 181 166 -> 172 167 -> 173 168 -> 174	7:	Triplet-A -0.23662 0.18896 -0.17691 0.10224 0.15810 0.13245 0.13170 -0.12837 -0.15024 0.12366 -0.13058 -0.14252 0.12086 0.11230 0.10640	4.2075 eV	294.67 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State	8:	Triplet-A	4.2079 eV	294.65 nm	f=0.0000	<s**2>=2.000</s**2>

160 161 161 162 163 163 163 164 164 165 165 165	-> 173 -> 174 -> 174 -> 172 -> 173 -> 174 -> 174 -> 173 -> 180 -> 175 -> 179 -> 177 -> 181 -> 172		0.18069 0.10537 -0.15427 -0.12633 0.15284 -0.14252 -0.10662 0.11646 -0.13154 -0.10323 -0.10950 -0.11163 -0.11739				
Excited 160 161 161 162 162 163 163 164 164 165 165 165 165 165 168	State -> 173 -> 174 -> 172 -> 174 -> 172 -> 173 -> 174 -> 173 -> 174 -> 181 -> 175 -> 181 -> 175 -> 176 -> 179 -> 180 -> 172	9:	Triplet-A -0.10450 0.17848 0.15185 0.14029 0.15239 -0.12631 -0.10399 0.11331 0.10940 -0.10645 -0.10848 -0.10523 -0.10168 -0.10127 -0.11984	4.2080 eV	294.64 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 160 161 163 163 164 164 164 164 166 166 166 167 167	State -> 179 -> 180 -> 180 -> 173 -> 175 -> 175 -> 176 -> 176 -> 173 -> 176 -> 173 -> 176 -> 173 -> 176	10:	Triplet-A 0.10018 -0.10347 0.15353 0.13985 0.16889 0.22429 0.27570 -0.15868 0.11716 -0.15059 -0.14066 -0.11815 -0.12039 -0.11274	5.0247 eV	246.75 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 162 163 163 163 164 165 165 165 165 165 165 165 168 168 168	State -> 181 -> 173 -> 174 -> 175 -> 177 -> 175 -> 174 -> 175 -> 177 -> 177 -> 187 -> 172 -> 172 -> 174 -> 177	11:	Triplet-A -0.16049 -0.10054 -0.10470 0.11297 0.11600 -0.10174 0.23037 -0.11393 -0.20472 -0.11514 0.11565 0.10323 -0.15480 -0.15665	5.0249 eV	246.74 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 160 163 163 163 164 164 165 165 165 165 167 167	State -> 181 -> 174 -> 176 -> 177 -> 174 -> 175 -> 173 -> 175 -> 176 -> 174 -> 177 -> 172	12:	Triplet-A 0.11646 -0.15479 -0.10821 0.10788 0.13907 0.11413 0.12207 -0.15557 -0.12833 -0.12396 -0.10102 0.13472	5.0249 eV	246.74 nm	f=0.0000	<s**2>=2.000</s**2>
Excited	State	13:	Triplet-A	5.0732 eV	244.39 nm	f=0.0000	<s**2>=2.000</s**2>

160 - 161 - 162 - 163 - 164 - 165 - 166 - 166 - 167 - 167 - 167 - 168 - 168 - 168 - 168 -	-> 175 -> 176 -> 177 -> 179 -> 180 -> 181 -> 172 -> 179 -> 173 -> 176 -> 180 -> 174 -> 177 -> 181		0.17395 0.17983 -0.16592 0.13603 -0.13363 -0.11585 -0.14851 0.13208 -0.10872 -0.10872 -0.10989 -0.12429 -0.12014 -0.10504 -0.11480				
Excited 8 160 - 161 - 162 - 163 - 164 - 165 - 166 - 166 - 166 - 166 - 167 - 168 - 168 - 168 -	State -> 176 -> 177 -> 175 -> 175 -> 177 -> 180 -> 179 -> 173 -> 176 -> 176 -> 172 -> 179 -> 174 -> 177 -> 181	14:	Triplet-A 0.14191 0.11279 0.13941 -0.10038 -0.15267 0.10675 -0.11026 -0.10348 0.13539 0.12049 0.12145 0.11833 -0.11561 -0.11176 -0.10127 -0.10883	5.0738 eV	244.36 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 8 160 - 161 - 161 - 162 - 162 - 163 - 165 - 167 - 167 - 168 - 168 -	State -> 176 -> 177 -> 175 -> 175 -> 176 -> 176 -> 178 -> 179 -> 174 -> 177 -> 181 -> 172 -> 179	15:	Triplet-A -0.11364 0.13920 -0.11560 0.11122 -0.11042 -0.13351 0.10532 -0.11020 -0.12339 -0.10138 -0.11331 0.11849 -0.11603	5.0740 eV	244.35 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 5 160 - 161 - 162 - 163 - 163 - 164 - 164 - 165 - 165 -	State -> 172 -> 175 -> 173 -> 174 -> 172 -> 179 -> 173 -> 180 -> 174 -> 181	16:	Triplet-A 0.18056 0.11846 -0.21371 0.20650 0.13523 0.10436 0.10413 -0.13036 0.10068 -0.12619	5.2036 eV	238.26 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 8 160 - 161 - 161 - 162 - 163 - 163 - 164 - 164 - 166 -	State -> 173 -> 172 -> 173 -> 175 -> 174 -> 173 -> 180 -> 172 -> 180	17:	Triplet-A -0.21526 0.18207 0.11202 0.11456 0.12172 -0.10206 0.12768 -0.13623 -0.10894 -0.10646	5.2048 eV	238.21 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 8 160 - 161 - 162 - 162 -	State -> 174 -> 174 -> 172 -> 173	18:	Triplet-A 0.21361 0.11779 0.18025 -0.11910	5.2048 eV	238.21 nm	f=0.0000	<s**2>=2.000</s**2>

162 -> 175 163 -> 181 165 -> 172 165 -> 179	0.10530 -0.12409 0.13532 0.10857				
Excited State 19: 166 -> 178 166 -> 184 169 -> 178 169 -> 184 169 -> 184 169 -> 185 169 -> 188	Triplet-A 0.14720 0.10366 0.45092 0.31129 0.14793 -0.14070	5.7071 eV	217.25 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 20: 159 -> 178 168 -> 178 168 -> 184 170 -> 178 170 -> 184 171 -> 178 171 -> 184 171 -> 184	Triplet-A -0.17118 0.18554 0.12298 -0.16019 -0.11526 0.32803 0.22905 0.10466	5.7734 eV	214.75 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 21: 158 -> 178 167 -> 178 167 -> 184 170 -> 178 170 -> 184 170 -> 185 171 -> 178 171 -> 184	Triplet-A -0.17021 -0.17662 -0.11743 -0.32521 -0.22722 -0.10358 -0.15833 -0.11423	5.7747 eV	214.70 nm	£=0.0000	<s**2>=2.000</s**2>
Excited State 22: 145 -> 177 160 -> 179 161 -> 180 162 -> 181 163 -> 185 164 -> 186 165 -> 187 166 -> 172 166 -> 191 167 -> 173 168 -> 174 168 -> 195	Triplet-A 0.10917 -0.11521 -0.11801 0.11861 0.10541 -0.11184 0.11168 -0.14084 0.16164 -0.12668 -0.13162 0.10287	5.7982 eV	213.83 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 23: 143 -> 175 143 -> 176 160 -> 180 161 -> 179 163 -> 186 166 -> 173 166 -> 186 166 -> 194 167 -> 172 167 -> 191 171 -> 178	Triplet-A -0.10761 0.11619 0.11610 0.10028 -0.11080 -0.14436 -0.10021 0.11757 -0.13717 0.14650 0.12745	5.8003 eV	213.75 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 24: 145 -> 177 160 -> 181 163 -> 187 167 -> 174 168 -> 172 168 -> 191 170 -> 178	Triplet-A -0.13197 0.11444 0.10712 0.11625 -0.13990 0.15025 -0.13378	5.8005 eV	213.75 nm	£=0.0000	<s**2>=2.000</s**2>
Excited State 25: 160 -> 172 161 -> 173 162 -> 174 163 -> 175 164 -> 176 165 -> 177 166 -> 172 167 -> 180	Triplet-A -0.12882 0.15046 -0.14190 -0.16042 0.15746 0.14810 -0.13208 0.12367	6.1489 eV	201.64 nm	f=0.0000	<s**2>=2.000</s**2>

168 -> 18	81	0.12142				
Excited State 160 -> 1 161 -> 1 163 -> 1 164 -> 1 165 -> 1 166 -> 1 166 -> 1	e 26: 73 72 – 76 – 75 76 – 73 80 –	Triplet-A 0.11859 0.14340 0.14940 0.16906 0.10173 0.12303 0.12863	6.1499 eV	201.60 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 160 -> 1 162 -> 1 163 -> 1 165 -> 1 165 -> 1 168 -> 1	e 27: 74 – 72 – 77 75 – 77 – 72 –	Triplet-A 0.11731 0.14212 0.14499 0.13660 0.12285 0.10139	6.1500 eV	201.60 nm	f=0.0000	<\$**2>=2.000
Excited State 137 -> 1 158 -> 1 159 -> 1 167 -> 1 168 -> 1 169 -> 1 170 -> 1 170 -> 1 171 -> 1 171 -> 1	e 28: 72 – 74 73 74 73 – 72 73 74 73 74 73 – 74	Triplet-A 0.10017 0.21301 0.22074 0.13911 0.15262 0.12886 0.14184 0.21476 0.22566 0.13721	6.2082 eV	199.71 nm	f=0.0000	<\$**2>=2.000
Excited State 137 -> 1 158 -> 1 159 -> 1 159 -> 1 159 -> 1 168 -> 1 168 -> 1 169 -> 1 170 -> 1 171 -> 1 171 -> 1 171 -> 1	e 29: 73 74 72 – 73 – 75 – 72 74 73 – 73 – 73 – 73 – 73 – 73 – 73 – 73 – 74 73 – 75 – 74 75 – 75 –	Triplet-A 0.13414 0.13265 0.14628 0.12671 0.10748 0.12369 0.10507 0.19159 0.18106 0.17652 0.18572 0.11184	6.2268 eV	199.11 nm	f=0.0000	<\$**2>=2.000
Excited State 158 -> 1' 158 -> 1' 159 -> 1' 167 -> 1' 168 -> 1' 169 -> 1' 169 -> 1' 170 -> 1' 170 -> 1' 171 -> 1'	e 30: 72 – 73 74 72 – 74 73 74 – 73 74 – 72 – 74 73	Triplet-A 0.14408 0.12971 0.13132 0.11798 0.12374 0.10665 0.19070 0.17401 0.19156 0.17926	6.2271 eV	199.10 nm	f=0.0000	<\$**2>=2.000

Table S9. First TD- ω B97X/def2-TZVP S₀ \rightarrow S_n and T₀ \rightarrow T_n transitions computed for the optimized geometry of Cu(TT)₃Cl. <u>Singlets:</u>

Excited State 175 -> 18 176 -> 17 176 -> 18	1: 30 79 32	Singlet-A -0.38006 0.46147 -0.11715	5.1537 eV	240.57 nm	f=0.0008	<s**2>=0.000</s**2>
Excited State 175 -> 17 175 -> 18 176 -> 17 176 -> 17 176 -> 18 176 -> 18	2: 79 30 77 78 30 31	Singlet-A -0.29541 -0.13104 -0.28790 -0.23596 0.30377 0.22257	5.1726 eV	239.70 nm	f=0.0093	<s**2>=0.000</s**2>
Excited State	e 3:	Singlet-A 0.28447	5.1747 eV	239.59 nm	f=0.0094	<s**2>=0.000</s**2>

175 175 175 175 176 176	-> 178 -> 179 -> 180 -> 181 -> 179 -> 180		0.23214 -0.12504 0.34666 -0.21957 0.25442 0.10397				
Excited 174 174 175 175 175 175 175	State -> 179 -> 182 -> 177 -> 178 -> 180 -> 181 -> 179	4:	Singlet-A 0.44458 -0.13309 -0.18090 -0.15253 0.17441 0.14190 0.16858	5.3251 eV	232.83 nm	f=0.1155	<s**2>=0.000</s**2>
Excited 172 174 174 175 176 176 176 176	State -> 181 -> 180 -> 183 -> 179 -> 177 -> 178 -> 180 -> 181	5:	Singlet-A -0.10216 0.32826 -0.10108 0.22281 -0.22723 -0.18911 -0.20238 0.17634	5.3271 eV	232.74 nm	f=0.1080	<s**2>=0.000</s**2>
Excited 174 174 175 175 175 175 175 175 175	State -> 179 -> 182 -> 177 -> 178 -> 179 -> 180 -> 181 -> 179	6:	Singlet-A 0.41671 -0.11021 0.21915 0.17625 0.11266 -0.18543 -0.16452 -0.18603	5.3319 eV	232.53 nm	f=0.0043	<s**2>=0.000</s**2>
Excited 174 174 175 176 176 176 176	State -> 180 -> 183 -> 203 -> 179 -> 177 -> 178 -> 180 -> 181	7:	Singlet-A 0.51358 -0.14001 -0.10858 -0.16693 0.16677 0.13187 0.10962 -0.12289	5.3350 eV	232.40 nm	f=0.0122	<s**2>=0.000</s**2>
Excited 167 168 170 171 174 174 175 176 176	State -> 179 -> 180 -> 183 -> 181 -> 177 -> 178 -> 179 -> 180 -> 183	8:	Singlet-A 0.12773 0.13770 -0.10652 0.15645 0.19060 0.15793 0.30209 0.34523 -0.11117	5.3450 eV	231.96 nm	f=0.0009	<s**2>=0.000</s**2>
Excited 166 167 167 167 168 168 168 168 169 170 171 171 171 173 175 175 175	State -> 179 -> 180 -> 177 -> 178 -> 178 -> 177 -> 178 -> 179 -> 181 -> 182 -> 182 -> 182 -> 181 -> 183 -> 181 -> 182 -> 181 -> 182 -> 181 -> 183 -> 181 -> 183 -> 182 -> 181 -> 183 -> 181 -> 183 -> 182 -> 181 -> 183 -> 181 -> 183 -> 183 -> 181 -> 181 -> 183 -> 181 -> 180 -> 179 -> 179	9:	Singlet-A -0.17299 -0.15159 0.13604 0.12809 -0.16579 0.11923 0.11262 -0.16472 -0.19384 0.14761 0.14964 0.12621 0.21167 -0.11184 -0.11189 0.11382 0.11007	5.3832 eV	230.32 nm	f=0.0005	<s**2>=0.000</s**2>
Excited 166	State -> 179	10:	Singlet-A 0.15185	5.3834 eV	230.31 nm	f=0.0005	<s**2>=0.000</s**2>

$166 \rightarrow 180$ $167 \rightarrow 177$ $167 \rightarrow 178$ $167 \rightarrow 179$ $168 \rightarrow 177$ $168 \rightarrow 177$ $168 \rightarrow 180$ $169 \rightarrow 182$ $170 \rightarrow 181$ $170 \rightarrow 183$ $171 \rightarrow 183$ $171 \rightarrow 183$ $172 \rightarrow 181$ $175 \rightarrow 179$ $176 \rightarrow 177$ $176 \rightarrow 180$	-0.17023 -0.11811 -0.11197 -0.17063 0.13540 0.12702 0.16309 0.15121 -0.19212 -0.14477 -0.21090 0.12864 0.11046 0.11530 -0.11177 -0.11266				
Excited State 1 166 -> 177 166 -> 178 167 -> 179 168 -> 180 169 -> 182 170 -> 183 171 -> 181 172 -> 183 173 -> 182 175 -> 179 176 -> 180	1: Singlet-A 0.15599 0.14544 -0.21081 -0.21596 0.14687 0.15128 -0.21271 -0.11370 0.11102 0.23692 0.24556	5.3966 eV	229.75 nm	f=0.0006	<s**2>=0.000</s**2>
Excited State 1. 174 -> 177 174 -> 178 174 -> 181 175 -> 179 176 -> 180	2: Singlet-A 0.38086 0.32738 -0.31774 -0.15992 -0.16048	5.4542 eV	227.32 nm	f=0.0012	<s**2>=0.000</s**2>
Excited State 1 171 -> 179 172 -> 179 173 -> 177 173 -> 178 173 -> 180 176 -> 177 176 -> 181 176 -> 195 176 -> 204 176 -> 208	3: Singlet-A -0.15779 0.21308 0.20224 0.16818 -0.21051 0.17265 0.18495 -0.15299 0.11062 -0.14213	5.6692 eV	218.70 nm	f=0.1962	<s**2>=0.000</s**2>
Excited State 1 171 -> 180 172 -> 177 172 -> 178 172 -> 180 173 -> 179 175 -> 177 175 -> 181 175 -> 195 175 -> 204 175 -> 208	4: Singlet-A 0.15846 0.20017 0.16558 0.20429 0.22156 0.17100 0.18535 -0.15291 0.11036 -0.14155	5.6711 eV	218.63 nm	f=0.1942	<s**2>=0.000</s**2>
Excited State 1 171 -> 179 172 -> 179 173 -> 177 173 -> 178 173 -> 180 173 -> 180 173 -> 181 176 -> 177 176 -> 181 176 -> 195 176 -> 204 176 -> 208	5: Singlet-A 0.14100 -0.17274 -0.18054 -0.15275 0.17082 0.10020 0.24150 0.23479 -0.18629 0.12240 -0.14567	5.6920 eV	217.82 nm	f=0.0591	<s**2>=0.000</s**2>
Excited State 1 171 -> 180 172 -> 177 172 -> 178	6: Singlet-A -0.14479 -0.18154 -0.15310	5.6941 eV	217.74 nm	f=0.0563	<s**2>=0.000</s**2>

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-0.16642 0.10055 -0.17533 0.24111 0.23684 -0.18710 0.12267 -0.14555	
Excited State 17: 169 -> 179 170 -> 180 171 -> 177 171 -> 178 172 -> 180 173 -> 179 174 -> 181	Singlet-A -0.13796 -0.14398 0.20467 0.18463 0.36159 -0.35344 0.10208	5.7430 eV 215.89 nm f=0.0310 <s**2>=0.000</s**2>
Excited State 18: 172 -> 180 173 -> 179 174 -> 177 174 -> 181 174 -> 187 174 -> 195 174 -> 198 174 -> 204 174 -> 208 174 -> 238	Singlet-A -0.10504 0.10974 0.31793 0.32512 0.10171 -0.24526 0.11368 0.14525 -0.16049 -0.10576	5.8074 eV 213.49 nm f=0.0113 <s**2>=0.000</s**2>
Excited State 19: 169 -> 180 170 -> 179 172 -> 179 172 -> 182 173 -> 180 173 -> 183	Singlet-A -0.11785 0.13346 0.40912 -0.11307 0.37954 -0.10392	5.8268 eV 212.78 nm f=0.0020 <s**2>=0.000</s**2>
Excited State 20: 169 -> 179 170 -> 180 172 -> 177 172 -> 178 172 -> 180 173 -> 179 176 -> 178 176 -> 181 176 -> 198 176 -> 208	Singlet-A -0.10639 0.10223 -0.19252 -0.17106 0.20762 0.20595 0.23048 0.23273 0.21593 0.12650	5.8451 eV 212.12 nm f=0.0233 <s**2>=0.000</s**2>
Triplets: Excited State 1: 166 -> 179 167 -> 179 167 -> 182 169 -> 179 169 -> 181 169 -> 182 170 -> 182 170 -> 181 170 -> 181 170 -> 181 171 -> 182 171 -> 181 171 -> 182 173 -> 179 173 -> 181 173 -> 182	Triplet-A 0.10838 -0.13610 -0.11513 -0.15740 0.18139 0.21423 0.11316 -0.11726 -0.12859 0.15501 -0.16882 -0.20057 -0.10765 0.10197 0.11250	3.8338 eV 323.40 nm f=0.0000 <s**2>=2.000</s**2>
Excited State 2: 169 -> 179 169 -> 180 169 -> 181 169 -> 182 169 -> 183 170 -> 181 171 -> 179 171 -> 180	Triplet-A 0.12456 0.12559 0.18740 -0.10840 -0.18631 0.13219 0.10197 0.13732	3.8342 eV 323.37 nm f=0.0000 <s**2>=2.000</s**2>

171 -> 181 171 -> 183		0.14226 -0.19847				
Excited State 168 -> 180 168 -> 183 170 -> 180 170 -> 181 170 -> 182 170 -> 183 171 -> 180 171 -> 181 171 -> 182 171 -> 183 172 -> 180 172 -> 181 172 -> 183	3:	Triplet-A -0.15992 -0.10924 -0.19567 0.19035 -0.11683 0.22965 0.13501 -0.19869 0.11548 -0.14753 0.12366 -0.10065 -0.11806	3.8343 eV	323.36 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 162 -> 181 163 -> 183 166 -> 180 166 -> 183 167 -> 183 168 -> 177 168 -> 178 168 -> 180 168 -> 181 168 -> 182 170 -> 181 171 -> 180	4:	Triplet-A -0.12312 -0.11928 -0.17623 -0.20199 -0.11789 0.18722 0.19448 0.10595 0.10081 -0.12091 0.10977 0.10901	4.0849 eV	303.52 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 161 -> 181 163 -> 182 166 -> 179 166 -> 182 167 -> 177 167 -> 178 167 -> 180 167 -> 181 167 -> 182 168 -> 179 168 -> 183 169 -> 181 171 -> 179	5:	Triplet-A 0.12381 0.11796 0.17860 0.20317 -0.18737 -0.19500 0.10019 -0.10266 -0.11446 0.10043 0.12252 -0.11036 -0.10748	4.0850 eV	303.51 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 161 -> 182 162 -> 183 163 -> 181 166 -> 177 166 -> 178 166 -> 181 167 -> 182 167 -> 182 168 -> 180 168 -> 183 169 -> 179 171 -> 181	6:	Triplet-A -0.11546 -0.11207 -0.14039 -0.17833 -0.18743 -0.11744 0.19247 0.19837 0.18504 0.19153 -0.10116 -0.10999	4.0874 eV	303.34 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 161 -> 179 162 -> 177 162 -> 178 162 -> 180 163 -> 180 166 -> 180 166 -> 183 168 -> 181	7:	Triplet-A 0.10932 -0.14423 -0.14585 -0.11194 -0.20141 0.11033 -0.11257 0.15421	4.1713 eV	297.23 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 161 -> 177 161 -> 178 161 -> 180 162 -> 179 163 -> 179 166 -> 179	8:	Triplet-A -0.14426 -0.14632 0.11121 0.11364 -0.19816 0.11104	4.1714 eV	297.22 nm	f=0.0000	<s**2>=2.000</s**2>

166 -> 182 167 -> 181 167 -> 198	-0.11439 0.15544 -0.10031				
Excited State 9: 161 -> 179 161 -> 182 162 -> 180 162 -> 183 163 -> 177 163 -> 178 166 -> 181 167 -> 179 167 -> 182 168 -> 180 168 -> 183 172 -> 180 173 -> 179	Triplet-A 0.18098 0.10334 0.18043 0.10357 0.17428 0.17371 0.15592 0.13329 -0.12115 0.13322 -0.12091 -0.11668 0.11804	4.1741 eV	297.03 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 10: 161 -> 182 162 -> 183 163 -> 181 166 -> 198 167 -> 202 168 -> 203 173 -> 179 175 -> 180 176 -> 179	Triplet-A 0.12052 0.10743 0.16008 -0.11432 -0.11357 0.10097 -0.10589 -0.22611 0.25940	4.9756 eV	249.18 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 11: 161 -> 181 163 -> 182 167 -> 181 167 -> 198 174 -> 179 175 -> 179 175 -> 180 176 -> 177 176 -> 179 176 -> 180 176 -> 180 176 -> 181	Triplet-A -0.13272 -0.13514 -0.12520 -0.13684 -0.11489 -0.13793 -0.11429 -0.11250 0.10540 0.12924	4.9886 eV	248.54 nm	£=0.0000	<s**2>=2.000</s**2>
Excited State 12: 162 -> 181 163 -> 183 168 -> 181 168 -> 198 174 -> 180 175 -> 177 175 -> 179 175 -> 180 175 -> 181 176 -> 180	Triplet-A -0.13165 -0.13637 -0.13684 -0.12503 -0.13615 0.11374 -0.12343 0.11972 -0.12844 0.12946	4.9896 eV	248.48 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 13: 166 -> 181 167 -> 179 167 -> 182 168 -> 180 168 -> 183 169 -> 179 169 -> 182 170 -> 182 170 -> 180 170 -> 183 171 -> 177 171 -> 178 172 -> 180 173 -> 179 174 -> 177	Triplet-A 0.17166 0.18545 -0.10558 0.17756 -0.10326 -0.13510 -0.12103 -0.12774 -0.11333 0.15426 0.15824 0.12016 -0.12879 0.11316	5.0049 eV	247.73 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 14: 166 -> 179 167 -> 180 167 -> 181 168 -> 179 169 -> 177 169 -> 178	Triplet-A -0.15945 -0.11510 -0.15537 -0.11388 -0.12031 -0.12598	5.0068 eV	247.63 nm	f=0.0000	<s**2>=2.000</s**2>

171 -> 179 171 -> 182 173 -> 177 173 -> 178 174 -> 179	0.17118 0.13064 -0.11700 -0.11248 0.14063				
Excited State 15: 166 -> 180 167 -> 179 168 -> 180 168 -> 181 170 -> 177 170 -> 178 170 -> 180 171 -> 180 171 -> 183 172 -> 177 172 -> 178 174 -> 180	Triplet-A -0.15690 -0.10743 0.12381 -0.15390 -0.12006 -0.12542 -0.10106 0.17305 0.13224 0.11669 0.11194 0.13977	5.0070 eV	247.62 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 16: 166 -> 179 175 -> 179 176 -> 177 176 -> 178 176 -> 179 176 -> 180 176 -> 181	Triplet-A -0.10598 0.19411 0.19652 0.16687 0.25642 -0.16132 -0.15286	5.0621 eV	244.92 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 17: 166 -> 180 175 -> 177 175 -> 178 175 -> 179 175 -> 181 176 -> 179 176 -> 180	Triplet-A 0.10053 0.18032 0.15249 -0.15224 -0.13821 0.27328 0.19242	5.0630 eV	244.89 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 18: 162 -> 183 168 -> 180 175 -> 177 175 -> 180 176 -> 179	Triplet-A 0.10554 -0.13691 0.10007 0.39490 -0.15200	5.0661 eV	244.73 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 19: 161 -> 179 162 -> 180 167 -> 179 169 -> 179 169 -> 182 170 -> 180 174 -> 177 174 -> 178 174 -> 181 175 -> 180 176 -> 179	Triplet-A -0.12015 -0.10248 0.10192 0.12106 0.10613 0.10314 0.17198 0.14144 -0.13841 0.11838 -0.13900	5.1078 eV	242.73 nm	f=0.0000	<\$**2>=2.000
Excited State 20: 163 -> 179 171 -> 182 174 -> 179 175 -> 179 176 -> 180	Triplet-A -0.11904 -0.11542 0.26568 -0.11052 0.12225	5.1127 eV	242.50 nm	f=0.0000	<\$**2>=2.000
Excited State 21: 163 -> 180 171 -> 183 174 -> 180 175 -> 180 176 -> 179	Triplet-A -0.12102 -0.11532 0.26210 0.14419 0.10406	5.1137 eV	242.46 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 22: 174 -> 177 174 -> 178 174 -> 181 175 -> 179 175 -> 182	Triplet-A -0.14176 -0.12571 0.12137 -0.41740 0.12515	5.2914 eV	234.31 nm	f=0.0000	<s**2>=2.000</s**2>

176 -> 180 176 -> 183	-0.37789 0.11230				
Excited State 23: 174 -> 179 175 -> 177 175 -> 178 175 -> 179 175 -> 180 175 -> 181 176 -> 179 176 -> 180	Triplet-A 0.26011 0.29429 0.24666 0.11828 -0.21106 -0.21682 -0.20810 -0.14272	5.3096 eV	233.51 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 24: 174 -> 180 175 -> 179 175 -> 180 176 -> 177 176 -> 178 176 -> 179 176 -> 179 176 -> 180 176 -> 181	Triplet-A -0.25623 0.18469 0.12731 -0.29479 -0.24650 0.12881 -0.24254 0.21596	5.3110 eV	233.45 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 25: 163 -> 179 174 -> 179 174 -> 182 174 -> 202 175 -> 177 175 -> 178 175 -> 180 176 -> 179	Triplet-A 0.13047 0.41537 -0.12735 0.10376 -0.14157 -0.10588 0.11926 0.11134	5.3881 eV	230.11 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 26: 163 -> 180 174 -> 180 174 -> 183 174 -> 203 175 -> 179 176 -> 177 176 -> 178 176 -> 180	Triplet-A -0.13034 -0.41745 0.12728 0.10382 -0.12251 0.13418 0.10001 0.10214	5.3906 eV	230.00 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 27: 162 -> 180 172 -> 180 174 -> 177 174 -> 178 174 -> 181 176 -> 180	Triplet-A 0.10200 -0.10684 0.33292 0.26130 -0.23967 -0.10613	5.3996 eV	229.62 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 28: $176 \rightarrow 177$ $176 \rightarrow 181$ $176 \rightarrow 187$ $176 \rightarrow 201$ $176 \rightarrow 201$ $176 \rightarrow 205$ $176 \rightarrow 205$ $176 \rightarrow 208$ $176 \rightarrow 225$ $176 \rightarrow 229$ $176 \rightarrow 229$ $176 \rightarrow 232$ $176 \rightarrow 233$ $176 \rightarrow 238$ $176 \rightarrow 241$ $176 \rightarrow 268$	Triplet-A 0.24008 0.17524 0.12664 -0.18905 0.13921 0.16859 0.14169 -0.24549 -0.11976 -0.11219 -0.14480 0.15037 -0.17959 0.11102 -0.12148 0.13455	5.5252 eV	224.40 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 29: 175 -> 177 175 -> 181 175 -> 187 175 -> 195 175 -> 201 175 -> 204 175 -> 205 175 -> 208	Triplet-A 0.23957 0.17572 0.12658 -0.18943 0.13929 0.16868 0.14174 -0.24574	5.5272 eV	224.32 nm	f=0.0000	<s**2>=2.000</s**2>

175	->	225		-0.11971								
175	->	229		-0.11235								
175	->	232		-0.14506								
175	->	233		0.15044								
175	->	238		-0.17956								
175	->	241		0.11112								
175	->	245		-0.12147								
175	->	268		0.13471								
Excited	Sta	ate	30:	Triplet	-A	5.6170	eV	220.73 nr	n f=0.00	00	<s**2>=2.</s**2>	000
174	->	177		0.23932								
174	->	181		0.19158								
174	->	187		0.12781								
174	->	195		-0.19682								
174	->	201		0.14024								
174	->	204		0.17056								
174	->	205		0.14149								
174	->	208		-0.24311								
174	->	225		-0.12066								
174	->	229		-0.11117								
174	->	232		-0.14487								
174	->	233		0.14928								
174	->	238		-0.17933								
174	->	241		0.10951								
174	->	245		-0.12102								
174	->	268		0.13303								

Figure S30. Scheme of singlet and triplet electronic levels with oscillator strengths (for singlet states, in blue) and character for model compound Ag(TT)₄⁺ at ω B97X/def2-TZVP level of theory.

Ag(TT)₄: HOMOs

205 (HOMO-8)

204 (HOMO-9)

MO = 202 (HOMO-11) 203 (HOMO-10)

208 (HOMO-5)

207 (HOMO-6)

206 (HOMO-7)

210 (HOMO-3) 211 (HOMO-2)

Ag(TT)₄: LUMOs

212 (HOMO-1)

216 (LUMO+2)

217 (LUMO+3)

213 (HOMO)

215 (LUMO+1)

MO = 214 (LUMO)

Figure S31. Plots of the ω B97X/def2-TZVP MOs mainly involved in the lowest energy transitions of Ag(TT)₄+ (Isosurfaces value 0.02).

Table S10. First TD- ω B97X/def2-TZVP S₀ \rightarrow S_n and T₀ \rightarrow T_n transitions computed for the optimized geometry of Ag(TT)₄⁺. <u>Singlets:</u>

Excited State 206 -> 216 206 -> 217 207 -> 217 208 -> 214 208 -> 215 209 -> 214 210 -> 220 211 -> 219 211 -> 221 212 -> 218 213 -> 219	1:	Singlet-A 0.23112 0.11532 0.22663 0.18378 0.22464 0.21158 -0.21759 0.17561 -0.19034 0.21373 -0.17306	5.2985	eV	234.00 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 206 -> 217 207 -> 216 208 -> 214 209 -> 215 210 -> 218 211 -> 219 212 -> 220 213 -> 221	2:	Singlet-A 0.21956 0.25860 0.21778 0.27808 0.20725 0.18008 -0.22059 0.24685	5.3026	eV	233.82 nm	f=0.0036	<s**2>=0.000</s**2>
Excited State 206 -> 214 206 -> 215 207 -> 214 207 -> 215 208 -> 216 208 -> 217 209 -> 216 209 -> 217 210 -> 219 210 -> 221 212 -> 221 213 -> 218 213 -> 220	3:	Singlet-A 0.13372 -0.16999 -0.15673 0.24633 -0.11921 0.11617 0.25407 -0.19744 0.11380 0.15247 -0.11687 -0.20492 0.19316 0.20756	5.3054	eV	233.70 nm	f=0.0029	<s**2>=0.000</s**2>
Excited State 206 -> 214 206 -> 215 207 -> 214 207 -> 215 208 -> 216 208 -> 217 209 -> 217 210 -> 219 210 -> 221 211 -> 218 211 -> 219 212 -> 219 213 -> 218	4:	Singlet-A 0.23433 0.16773 0.19288 0.11106 0.21342 0.23766 0.14007 0.19108 -0.13455 0.20271 -0.19827 0.16875 -0.11096	5.3073	eV	233.61 nm	f=0.0019	<s**2>=0.000</s**2>
Excited State	5:	Singlet-A	5.6429	eV	219.72 nm	f=0.1963	<s**2>=0.000</s**2>

210 210 211 211 212 212 213 213	-> 214 -> 215 -> 216 -> 217 -> 214 -> 215 -> 216 -> 217		0.31095 0.16098 0.23968 0.33015 0.20395 0.20454 -0.17593 -0.10820				
Excited 210 211 212 212 212 213 213	State -> 214 -> 215 -> 216 -> 214 -> 215 -> 216 -> 217	6:	Singlet-A -0.11417 0.25661 0.18942 0.23966 -0.26017 0.29841 -0.27785	5.6452 eV	219.63 nm	f=0.2647	<s**2>=0.000</s**2>
Excited 210 211 211 212 213 213	State -> 216 -> 214 -> 215 -> 217 -> 214 -> 214 -> 215	7:	Singlet-A 0.30239 0.15420 0.27585 0.30368 -0.29026 0.17393	5.6632 eV	218.93 nm	f=0.3908	<s**2>=0.000</s**2>
Excited 206 207 208 209 210 211 212 213	State -> 218 -> 220 -> 219 -> 221 -> 217 -> 214 -> 216 -> 215	8:	Singlet-A -0.11797 0.11951 -0.13034 0.12589 0.29237 0.31325 0.30024 -0.29560	5.6879 eV	217.98 nm	f=0.0022	<s**2>=0.000</s**2>
Excited 206 206 207 207 208 208 208 209 209 210 211 211 211 212 213	State -> 214 -> 219 -> 221 -> 215 -> 219 -> 217 -> 218 -> 220 -> 216 -> 218 -> 218 -> 219 -> 218 -> 220 -> 221 -> 222 -> 222	9:	Singlet-A 0.14988 -0.14420 0.16754 0.11022 -0.18245 0.12466 -0.16851 0.22691 0.11966 -0.18228 -0.21752 -0.17792 0.10806 0.17953 -0.12142	5.9362 eV	208.86 nm	f=0.3445	<s**2>=0.000</s**2>
Excited 206 207 207 208 208 209 209 210 211 212 213	State -> 217 -> 220 -> 216 -> 218 -> 214 -> 221 -> 215 -> 219 -> 218 -> 219 -> 220 -> 221	10:	Singlet-A -0.14678 -0.15045 -0.16606 0.15138 -0.14861 -0.18807 -0.16132 0.18515 0.22141 0.16883 -0.21692 0.19627	5.9441 eV	208.58 nm	f=1.3181	<s**2>=0.000</s**2>
Excited 206 207 207 208 208 208 209 209 209 209 209	State -> 215 -> 219 -> 214 -> 214 -> 216 -> 218 -> 217 -> 218 -> 220 -> 221	11:	Singlet-A 0.11907 -0.16574 0.10828 0.22300 0.11693 -0.19788 0.14253 0.12721 0.23366 0.19184	5.9467 eV	208.49 nm	f=0.4917	<s**2>=0.000</s**2>

211 -> 220 212 -> 219 212 -> 221 213 -> 218 213 -> 220	0.11606 -0.17537 -0.12403 0.16488 0.12172				
Excited State 12: 202 -> 214 203 -> 215 204 -> 217 205 -> 216 206 -> 216 207 -> 217 208 -> 214 208 -> 214 208 -> 214 209 -> 214 210 -> 220 211 -> 219 211 -> 219 211 -> 218 213 -> 219 213 -> 221	Singlet-A -0.14997 0.14239 -0.15629 0.15540 -0.18476 -0.17108 -0.11525 -0.15973 -0.16458 -0.21858 0.14397 -0.18594 0.22487 -0.17640 -0.10578	5.9687 eV	207.72 nm	f=0.0202	<s**2>=0.000</s**2>
Excited State 13: 202 -> 214 202 -> 215 203 -> 214 203 -> 215 204 -> 216 205 -> 217 206 -> 220 207 -> 218 208 -> 219 208 -> 221 209 -> 219 209 -> 221	Singlet-A 0.12641 0.15920 -0.16774 0.13239 0.20502 -0.20185 -0.22663 0.25585 0.10912 -0.18507 0.18952 0.12323	6.0464 eV	205.05 nm	f=0.0753	<s**2>=0.000</s**2>
Excited State 14: 202 -> 216 202 -> 217 203 -> 217 204 -> 214 204 -> 215 205 -> 214 206 -> 219 206 -> 221 207 -> 219 208 -> 217 208 -> 217 208 -> 218 208 -> 220 209 -> 218 211 -> 218 213 -> 220	Singlet-A -0.19584 -0.16689 0.13593 -0.14860 -0.19456 0.21172 -0.14733 0.15414 -0.17478 -0.10126 -0.14669 0.18649 -0.15762 0.14543 0.12834	6.0524 eV	204.85 nm	f=0.5693	<s**2>=0.000</s**2>
Excited State 15: 202 -> 217 203 -> 216 203 -> 217 204 -> 214 205 -> 215 206 -> 219 207 -> 214 207 -> 221 208 -> 218 209 -> 218 209 -> 220 211 -> 220 213 -> 218	Singlet-A -0.14315 0.22904 -0.13137 -0.19109 0.24162 -0.13192 -0.10115 0.19681 -0.13417 0.15522 0.18404 -0.13145 -0.14636	6.0595 eV	204.61 nm	f=0.6095	<s**2>=0.000</s**2>
Excited State 16: 202 -> 214 203 -> 215 204 -> 217 205 -> 216 206 -> 218 207 -> 220 208 -> 219 209 -> 221	Singlet-A 0.16404 -0.15758 0.16424 -0.17102 0.26071 -0.24824 0.26621 -0.25508	6.0918 eV	203.53 nm	f=0.0069	<s**2>=0.000</s**2>

Triplets:

Excited State 206 -> 216 207 -> 217 208 -> 215 209 -> 214 209 -> 215 210 -> 220 211 -> 221 212 -> 218 212 -> 220 213 -> 215 213 -> 221	1:	Triplet-A 0.16821 -0.15727 0.18792 0.12974 0.16616 -0.19243 -0.16136 -0.12897 0.17674 0.12973 0.13974 -0.17100 -0.19951	3.7593 eV	329.81 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 206 -> 215 207 -> 214 207 -> 215 209 -> 216 209 -> 217 210 -> 221 212 -> 219 212 -> 221 213 -> 216 213 -> 217 213 -> 218 213 -> 220	2:	Triplet-A -0.15161 -0.14151 0.19806 0.19741 -0.16987 0.15593 -0.13335 -0.18594 -0.12609 0.12186 0.17476 0.18337	3.7595 eV	329.79 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 206 -> 216 207 -> 217 207 -> 216 207 -> 217 208 -> 214 208 -> 215 209 -> 215 210 -> 218 210 -> 220 211 -> 221 212 -> 218 212 -> 220 213 -> 221	3:	Triplet-A 0.11503 0.20492 0.15321 0.10216 0.21995 0.11924 0.11816 0.19558 -0.12744 -0.12193 0.23133 -0.12577 0.10373 -0.16090 0.10475 0.11635	3.7630 eV	329.48 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 206 -> 214 207 -> 215 207 -> 215 208 -> 215 208 -> 216 208 -> 217 210 -> 219 210 -> 221 211 -> 218 211 -> 220 212 -> 219 212 -> 221	4:	Triplet-A 0.20235 0.12869 0.14914 0.10736 0.15839 0.19721 0.19310 -0.12599 0.20721 -0.18184 0.15464 -0.11417	3.7649 eV	329.32 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 205 -> 221 206 -> 221 207 -> 219 207 -> 221 208 -> 220 209 -> 218 209 -> 220 210 -> 221 212 -> 221 213 -> 216 213 -> 218 213 -> 220	5:	Triplet-A -0.10061 -0.12277 0.11412 0.15034 -0.11819 0.16092 0.15492 0.12655 -0.16440 0.11921 0.13024 0.14406	3.9824 eV	311.33 nm	f=0.0000	<s**2>=2.000</s**2>

Excited 203 206 207 207 208 209 210 212 212 212 213 213 213	State -> 221 -> 220 -> 218 -> 221 -> 219 -> 219 -> 218 -> 218 -> 218 -> 220 -> 214 -> 214 -> 215 -> 221	6:	Triplet-A -0.11747 -0.12443 0.14897 0.10940 -0.15007 0.15008 0.16707 0.12717 -0.10766 -0.15395 -0.11672 0.11630 0.16889	3.9826	eV	311.31 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 206 208 208 208 210 210 211 211 211	State -> 218 -> 219 -> 219 -> 220 -> 220 -> 219 -> 220 -> 214 -> 217 -> 219	7:	Triplet-A 0.11621 0.11832 0.13302 0.13477 -0.10910 0.11524 -0.10958 0.10099 0.10394 0.10806	3.9851	eV	311.12 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 206 208 208 208 208 210 211	State -> 218 -> 219 -> 218 -> 219 -> 220 -> 220 -> 220 -> 219	8:	Triplet-A -0.11714 0.10642 0.12928 -0.15258 -0.10658 0.10419 -0.10485	3.9853	eV	311.10 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 202 203 204 204 204 204 205 206 207 208 209	State -> 216 -> 217 -> 217 -> 214 -> 215 -> 219 -> 214 -> 214 -> 214 -> 215 -> 217 -> 217 -> 216	9:	Triplet-A 0.16498 0.16294 -0.11654 0.12499 0.17753 0.10087 -0.16993 0.14885 0.12628 0.17330 0.11454	4.1975	eV	295.37 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 202 203 203 204 205 206 207 207 207 208 209 209	State -> 217 -> 216 -> 217 -> 218 -> 214 -> 215 -> 215 -> 214 -> 221 -> 221 -> 216 -> 217 -> 220	10:	Triplet-A -0.11541 0.17624 -0.10317 0.11374 -0.15077 0.19245 -0.12813 -0.12593 0.10341 -0.11432 -0.12724 0.10169	4.1982	eV	295.33 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 202 203 204 205 206 207 207 208 209	State -> 215 -> 214 -> 215 -> 216 -> 217 -> 217 -> 216 -> 218 -> 214 -> 215	11:	Triplet-A 0.14632 -0.15042 0.11034 0.16975 -0.16907 0.13024 0.13354 0.12271 0.14628 0.15444	4.1984	eV	295.31 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 202 203	State -> 214 -> 215	12:	Triplet-A -0.18511 0.17223	4.1994	eV	295.24 nm	f=0.0000	<s**2>=2.000</s**2>

204 205 206 206 207 207 208 209	-> 217 -> 216 -> 218 -> 216 -> 218 -> 217 -> 220 -> 215 -> 214		-0.19386 0.17904 0.10578 -0.13054 -0.12116 -0.13103 0.11127 -0.15253 -0.14211				
Excited 203 207 209 210 210 210 212 212 212 213 213	State -> 228 -> 216 -> 215 -> 221 -> 216 -> 217 -> 216 -> 217 -> 214 -> 215	13:	Triplet-A -0.11873 -0.10087 -0.13248 0.10359 -0.11320 0.10733 0.15876 -0.11977 0.12322 -0.18118	4.8214 eV	257.15 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 203 205 207 209 209 210 212 212 212 213 213	State -> 218 -> 228 -> 215 -> 216 -> 217 -> 215 -> 214 -> 215 -> 216 -> 217	14:	Triplet-A 0.10025 -0.10127 -0.10007 -0.13744 0.11523 -0.12543 -0.11276 0.16000 -0.17161 0.13118	4.8217 eV	257.14 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 202 208 210 210 211 211 212	State -> 229 -> 214 -> 216 -> 217 -> 214 -> 215 -> 217	15:	Triplet-A 0.11696 -0.13591 -0.12628 -0.14120 -0.16752 -0.12981 -0.11769	4.8232 eV	257.06 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 202 204 208 208 208 208 210 210 211 211 212	State -> 218 -> 227 -> 229 -> 216 -> 217 -> 218 -> 214 -> 215 -> 216 -> 217 -> 214	16:	Triplet-A -0.10251 0.10015 -0.10468 0.11155 0.11319 -0.11138 0.15184 0.10397 0.13441 0.15218 0.13671	4.8239 eV	257.02 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 202 202 210 211	State -> 214 -> 219 -> 217 -> 214	17:	Triplet-A -0.12171 0.10177 0.11565 0.14196	5.0934 eV	243.42 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 202 204 206 208 211 211 212	State -> 218 -> 219 -> 229 -> 227 -> 216 -> 217 -> 214	18:	Triplet-A 0.10722 0.10269 0.10240 -0.12380 0.11512 0.11704 0.10410	5.0938 eV	243.40 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 203 203 205 205 207 209	State -> 216 -> 217 -> 215 -> 219 -> 229 -> 227	19:	Triplet-A -0.13852 0.10301 -0.12596 0.10136 -0.10673 0.12992	5.0957 eV	243.31 nm	f=0.0000	<s**2>=2.000</s**2>

210 212 213 213	-> 214 -> 215 -> 216 -> 218		-0.10400 -0.13308 0.15087 0.12537				
Excited 203 204 205 209 210 212 212 212 213 213 213	State -> 215 -> 221 -> 216 -> 217 -> 228 -> 216 -> 217 -> 220 -> 214 -> 215 -> 221	20:	Triplet-A -0.12815 0.12384 -0.10097 0.11388 -0.12557 0.11011 0.10517 -0.10628 -0.13042 0.13590 0.12657	5.0958 ev	243.31 nm	£=0.0000	<s**2>=2.000</s**2>
Excited 202 204 204 205 206 206 206 207 208 208 211 211	State -> 216 -> 217 -> 214 -> 215 -> 214 -> 219 -> 221 -> 219 -> 218 -> 220 -> 224 -> 227	21:	Triplet-A 0.12811 0.15003 0.13204 0.10463 -0.10823 -0.14959 0.11456 -0.12534 -0.11722 0.13715 0.10968 0.11180	5.1654 eV	240.03 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 203 205 206 207 209 209 213 213	State -> 216 -> 217 -> 215 -> 221 -> 221 -> 228 -> 220 -> 224 -> 227	22:	Triplet-A 0.14676 -0.10737 0.13976 0.11104 -0.16509 -0.12412 -0.14461 0.11858 -0.11356	5.1663 eV	239.99 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 202 204 205 206 207 208 210	State -> 214 -> 217 -> 216 -> 218 -> 220 -> 219 -> 227	23:	Triplet-A 0.15728 0.14619 -0.11152 -0.13520 0.13006 -0.16734 0.10829	5.1665 eV	239.98 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 203 204 205 205 206 207 207 207 208 209 209 209 212 213	State -> 214 -> 215 -> 216 -> 217 -> 220 -> 218 -> 220 -> 221 -> 221 -> 221 -> 221 -> 229	24:	Triplet-A -0.12356 0.13831 0.11752 0.10285 -0.12160 0.12814 -0.13996 -0.10220 0.10808 -0.12554 -0.14805 0.11092 0.11456	5.1676 eV	239.93 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 211 211	State -> 239 -> 243	25:	Triplet-A 0.11963 -0.11071	5.7542 eV	215.47 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 208 211	State -> 237 -> 243	26:	Triplet-A 0.10293 0.11647	5.7545 eV	215.46 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 182 204	State -> 221 -> 229	27:	Triplet-A 0.10751 -0.10182	5.7552 eV	215.43 nm	f=0.0000	<s**2>=2.000</s**2>

206 207 209 210 212 212 212 213 213	-> 237 -> 235 -> 231 -> 243 -> 215 -> 241 -> 216 -> 239		0.10254 -0.11387 -0.12259 0.12649 -0.10590 -0.14977 0.11304 0.11840				
Excited 183 203 205 206 209 209 213 213 213	State -> 221 -> 229 -> 227 -> 231 -> 232 -> 235 -> 215 -> 241 -> 243	28:	Triplet-A 0.10982 0.10483 -0.10575 -0.10029 -0.10424 0.12563 -0.10463 -0.15444 -0.10058	5.7563 eV	215.39 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 201 201	State -> 222 -> 230	29:	Triplet-A -0.35075 0.20481	6.0228 eV	205.86 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 200 200 208 210 211	State -> 222 -> 230 -> 214 -> 218 -> 219	30:	Triplet-A 0.30115 -0.17995 0.10771 -0.10699 -0.10844	6.0368 eV	205.38 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 203 205 209 212 213 213	State -> 215 -> 216 -> 214 -> 218 -> 219 -> 221	31:	Triplet-A 0.14048 0.13277 0.10534 -0.11791 0.10056 0.10297	6.0513 eV	204.89 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 202 204 205 206 207 208 210 210 211 211 211 211 212 213	State -> 217 -> 214 -> 215 -> 215 -> 214 -> 216 -> 221 -> 220 -> 220 -> 227 -> 240 -> 219 -> 218	32:	Triplet-A -0.11816 -0.13576 0.11810 0.10466 0.11577 0.11538 0.10055 -0.10027 0.11028 0.11563 0.10521 -0.11060 0.11625	6.0518 eV	204.87 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 200 200 205	State -> 222 -> 230 -> 222	33:	Triplet-A -0.41164 0.24084 0.12294	6.0836 eV	203.80 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 201 201	State -> 222 -> 230	34:	Triplet-A 0.38424 -0.22440	6.0874 eV	203.67 nm	f=0.0000	<s**2>=2.000</s**2>

5. References

[S1] Schubert, D. M.; Natan, D. T.; Wilson, D. C.; Hardcastle, K. I. Facile Synthesis and Structures of Cyclic Triimidazole and Its Boric Acid Adduct. *Cryst. Growth Des.* 2011, **11**, 843-850

[S2] Lucenti, E.; Cariati, E.; Previtali, A.; Marinotto, D.; Forni, A.; Bold, V.; Kravtsov, V. C.; Fonari, M. S.; Galli, S.; Carlucci, L., Versatility of Cyclic Triimidazole to Assemble 1D, 2D, and 3D Cu(I) Halide Coordination Networks. *Cryst. Growth Des.* 2019, **19**, 1567-1575.

[S3] Lucenti, E.; Forni, A.; Botta, C.; Giannini, C.; Malpicci, D.; Marinotto, D.; Previtali, A.; Righetto, S.; Cariati, E., Intrinsic and Extrinsic Heavy-Atom Effects on the Multifaceted Emissive Behavior of Cyclic Triimidazole. *Chem. Eur. J.* 2019, **25**, 2452-2456.

[S4] SADABS 2012. Area detector absorption correction. Bruker AXS Inc., Madison, Wisconsin, USA.

[S5] Burla, M. C.; Caliandro, R.; Carrozzini, B.; Cascarano, G. L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone A.; Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Cryst. 2015, **48**, 306–309.

[S6] Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.

[S7] Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

[S8] (a) Andrae, D., Häußermann, U., Dolg, M., Stoll, H., Preuß, H., Energy-adjusted ab initio pseudopotentials for the second and third row transition elements, *Theor. Chim. Acta* 1990, **77**, 123-141; (b) Peterson, K. A., Figgen, D., Goll, E., Stoll, H., Dolg, M., Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements, *J. Chem. Phys.* 2003, **119**, 11113-11123; (c) Weigend, F., Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297.

[S9] (a) Pritchard, B. P., Altarawy, D., Didier, B., Gibsom, T. D., Windus, T. L., A New Basis Set Exchange: An Open, Up-to-date Resource for the Molecular Sciences Community, J. Chem. Inf. Model., 59, 4814-4820 (2019); (b) Feller, D., The role of databases in support of computational chemistry calculations, J. Comput. Chem., 17, 1571-1586 (1996); (c) Schuchardt, K. L., Didier, B. T., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., Windus, T. L., Basis Set Exchange: A Community Database for Computational Sciences, J. Chem. Inf. Model., 47, 1045-1052 (2007).

[S10] Glukhovtsev, M. N.; Pross, A.; McGrath, M. P.; Radom, L. Extension of Gaussian-2 (G2) Theory to Bromine- and Iodine Containing Molecules: Use of Effective Core Potentials. *J. Chem. Phys.* 1995, **103**, 1878–1885.

[S11] Chai, J.D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. *J. Chem. Phys.* 2008, **128**, 084106.

[S12] (a) Lucenti, E.; Forni, A.; Botta, C.; Carlucci, L.; Giannini, C.; Marinotto, D.; Previtali, A.; Righetto, S.; Cariati, E., H-Aggregates Granting Crystallization-Induced Emissive Behavior and Ultralong Phosphorescence from a Pure Organic Molecule. *J. Phys. Chem. Lett.* 2017, **8**, 1894-1898. (b) Lucenti, E.; Forni, A.; Botta, C.; Carlucci, L.; Giannini, C.; Marinotto, D.; Pavanello, A.; Previtali, A.; Righetto, S.; Cariati, E., Cyclic Triimidazole Derivatives: Intriguing Examples of Multiple Emissions and Ultralong Phosphorescence at Room Temperature. *Angew. Chem. Int. Ed.* 2017, **56**, 16302-16307. (c) Lucenti, E.; Forni, A.; Botta, C.; Carlucci, L.; Colombo, A.; Giannini, C.; Marinotto, D.; Previtali, A.; Righetto, S.; Cariati, E., The Effect of Bromo Substituents on the Multifaceted Emissive and Crystal-Packing Features of Cyclic Triimidazole Derivatives. *ChemPhotoChem* 2018, **2**, 801-805. (d) Previtali, A.; Lucenti, E.; Forni, A.; Mauri, L.; Botta, C.; Giannini, C.; Malpicci, D.; Marinotto, D.; Righetto, S.; Cariati, E., Solid State Room Temperature Dual Phosphorescence from 3-(2-Fluoropyridin-4-yl)triimidazo[1,2-*a*:1',2'-*c*:1",2"-*e*][1,3,5]triazine. *Molecules* 2019, **24**, 2552. (e) Lucenti, E.; Forni, A.; Previtali, A.; Marinotto, D.; Malpicci, D.; Righetto, S.; Giannini, C.; Virgili, T.; Kabacinski, P.; Ganzer, L.; Giovanella, U.; Botta, C.; Cariati, E., Unravelling the intricate photophysical behavior of 3-(pyridin-2-yl)triimidazotriazine AIE and RTP polymorphs. *Chem. Sci.* 2020, **11**, 7599-7608.

[S13] Keith, T. A. AIMAII, Version 17.11.14, Professional; TK Gristmill Software: Overland Park, KS, 2017, http://aim.tkgristmill.com.