Supporting Information:

Interface catalysis by Pt nanocluster@Ni₃N for bifunctional hydrogen evolution and oxygen evolution

Yu Pei,^a Babak Rezaei,^c Xuyang Zhang,^c Zichuang Li,^a Hangjia Shen,^c Minghui Yang,^{b,c,*} and Jiacheng Wang^{a,b,*}

^a State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, P. R. China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^c Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, P. R. China

*Emails: myang@nimte.ac.cn; jiacheng.wang@mail.sic.ac.cn

Fig. S1 The XRD of precursor Ni(OH)₂·2H₂O and Ni(OH)₂-1.5Pt.

Fig. S2 XPS survey spectra of Ni_3N and 1.5 Pt@Ni_3N-360.

Fig. S3 O 1s XPS spectra of 1.5 Pt@Ni₃N-360.

Table S1. The comparison of $1.5Pt@Ni_3N-360$ in this work and state of art literature

Catalyst	Pt ratio	Electrolyte	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Reference
1.5Pt@Ni ₃ N-360	1 wt%	0.1 M KOH	71	48	This work
Pt-WS ₂	-	1 M KOH	50	65	Adv. Mater.,
					2018, 30, 1704779.
Ni ₃ N/Pt	15 wt%	1 M KOH	50	36	Adv. Energy Mater.,
					2017, 7, 1601390
PtNWs/SL-Ni(OH)2	38 wt%	1.0 M KOH	~70		Nat. Commun.,
					2015, 6, 6430
NiO _x /Pt ₃ Ni NWs	75 at%	1.0 M KOH	40		Angew. Chem. Int. Ed.,
					2016, 55, 12859
Pd-Pt-T	29 at%	1.0 M KOH	70		ACS Appl. Mater. Interfaces,

HER catalysts in alkaline solution.

					2017, 9, 18008
hcp Pt–Ni	14 at%	0.1 M KOH	65	78	Nat. Commun.,
					2017, 8, 15131
PtNi-Ni NA/CC	7.7 wt%	0.1 M KOH	38	42	Inorg. Chem. Front.,
					2018, 5, 1365-1369.
Pt ₃ Ni ₂ -NWs-S/C	60.9	0.1 M KOH	42		Nat. Commun.,
	wt%				2017, 8, 14580
Pt ₃ Ni	73 at%	0.1 M KOH	65(E5)	46	Science,
					2014, 343, 1339

Catalyst	Pt ratio	Electrolyte	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Reference
1.5Pt@Ni ₃ N-360	1 wt%	0.1M KOH	285	57	This work
Pt/C-LiCoO ₂	10 wt%	0.1 M KOH	440	87	J. Mater. Chem. A,
					2016, 4, 4516-4524
CoSe _{2-x} -Pt	2.25 wt%	0.1 M KOH	314	31	Adv. Mater.,
					2019, 31, 1805581
Pt-CoS ₂ /CC	7.3 wt%	1 M KOH	300	58	Adv. Energy Mater., 2018,
					8, 1800935
Pt/Fe-Au nanorods		1.0 M KOH	>570		J. Mater. Chem. A,
					2018, 6, 7364-7369
Pt-NiFe LDH	1.51wt%	1.0 M KOH	230	33	Nano Energy,
					2017, 39, 30-43
Co-PB/Pt	4 wt%	1.0 M KOH	320	68	ACS Sustain. Chem. Eng.,
					2017, 5, 11577-11583.
Co-Pt/C	2.5 wt%	1.0 M KOH	320	72	J. Mater. Chem. A,
					2018, 6,20214-20223

Table S2. The comparison of 1.5Pt@Ni₃N-360 in this work and state of art literature OER catalysts in alkaline solution.

Fig. S4 Typical cyclic voltammetry curves of (a) $1.5Pt@Ni_3N-360$; (b) $1.5Pt@Ni_3N-400$; (c) $0.75Pt@Ni_3N-360$; (d) Ni_3N-360 with different scan rate.

Fig. S5 The electrochemically active surface area of $1.5Pt@Ni_3N-360$, $1.5Pt@Ni_3N-400$, $0.75Pt@Ni_3N-360$, Ni_3N-360 .

Fig. S6 HRTEM image of 1.5 Pt@Ni $_3$ N-360 after reaction.

Fig. S7 Ni 2p XPS spectra of 1.5 Pt@Ni₃N-360 after HER/OER.

Fig. S8 N 1s XPS spectra of 1.5 Pt@Ni₃N-360 after HER/OER.

Fig. S9 Pt 4f XPS spectra of 1.5 Pt@Ni₃N-360 after HER/OER.

Fig. S10 Top view (left) and side view (right) of the Pt@Ni₃N.