Electronic Supplementary Information (ESI)

Fluoride etching opens the access for bulky molecules to active sites in microporous Ti-Beta zeolite

Guoju Yang^{a,b}, Ziyi Qiu^{a,c}, Ji Han^a, Xiaoxin Chen,*^a and Jihong Yu*^{a,b}

^{a.} State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China.

E-mail: chenxiaoxin@jlu.edu.cn, jihong@jlu.edu.cn.

^{b.} International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China.

^{c.} Electron Microscopy Center, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China.

Table of Contents

1. Experimental section

Chemicals and materials

- 2. Supplementary Figures and Tables
- 3. References

1. Experimental Section

Chemicals and materials

The reagents used in this work include tetraethylorthosilicate (TEOS) (Beijing Chemical Works), tetraethyl orthotitanate (TEOT) (35%, Sinopharm), tetrapropylammonium hydroxide (25 wt.%, Sinopharm), hydrogen peroxide (H₂O₂, 30% Beijing Chemical Works), hydrofluoric acid (HF, 40 wt.%, Beijing Chemical Works), ammonium fluoride (NH₄F, Beijing Chemical Works) and distilled water, tert-butyl hydroperoxide (TBHP) (65%, Sinopharm Chemical Reagent Co.). Ceric sulfate and 1-octane were purchased from Beijing Chemical Works. Pentadecane (99%), chlorobenzene (99%), 2-cyclohexen-1-one (97%), norbomene (99%), cyclooctene (95%) and methyl oleate (94%), dibenzothiophene (DBT) (98%) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) (99%) were purchased from Aladdin Biochemical Technology Co..

2. Supplementary Figures and Tables

Fig. S1 SEM images of the prepared Ti-Beta samples, (a) and (b) TB-Parent, (c) and (d) TB- $HF_{0.1}/AF_0$, (e) and (f) TB- $HF_{0.1}/AF_{0.5}$, (g) and (h) TB- $HF_{0.1}/AF_2$, (i) and (j) TB- $HF_{0.05}/AF_{0.5}$, (k) and (l) TB- $HF_{0.25}/AF_{0.5}$.

Fig. S2 STEM-energy-dispersive X-ray spectrometry (EDX) analysis for the prepared Ti-Beta samples, (a) TB-Parent, (b) TB-HF_{0.25}/AF_{0.5}.

Fig. S3 Pore size distributions of the prepared Ti-Beta samples.

Fig. S4 Recycle tests in the epoxidation of methyl oleate over $TB-HF_{0.25}/AF_{0.5}$. Reaction condition: 2.5 mmol of methyl oleate with 3.5 mmol H₂O₂, in 5mL acetonitrile, at 333 K for 2 h over 50 mg of catalysts.

Table S1 Chemical composition of fluoride medium solution, relative yield and crystallinity ofas-synthesized Ti-Beta samples

Sample	Mass _{TB} (g)	H ₂ O (g)	HF (M)	NH ₄ F (wt.%)	Yield (%) ^a	Crystallinity(%) ^b
TB-Parent	0.6	36	0	0	100	100
TB-HF _{0.1} /AF ₀	0.6	36	0.1	0	86	89
$TB-HF_{0.1}/AF_{0.5}$	0.6	36	0.1	0.5	78	91
$TB-HF_{0.1}/AF_2$	0.6	36	0.1	2.0	72	74
TB-HF _{0.05} /AF _{0.5}	0.6	36	0.05	0.5	88	93
TB-HF _{0.25} /AF _{0.5}	0.6	36	0.25	0.5	73	88

^a Yield refers to the mass ratio of individual sample to the TB-Parent sample; ^b Crystallinity is calculated based on the relative peak ($2\theta = 7.5-7.6$, 22.36°) intensity in XRD pattern.

Comple	T: (+ 0()b	DBT oxida	ition	4,6-DMDBT oxidation		
Sample	Con. _{DBT} (%) ^c TON ^d		TON ^d	Con. _{4,6-DMDBT} (%) ^c	TON ^d	
TB-Parent	1.24	24.8	2.1	9.8	0.8	
TB-HF _{0.1} /AF ₀	1.00	21.8	2.3	10.0	1.1	
TB-HF _{0.1} /AF _{0.5}	0.98	36.7	3.9	29.1	3.1	
$TB-HF_{0.1}/AF_2$	1.00	29.5	3.1	20.3	2.1	
TB-HF _{0.05} /AF _{0.5}	1.19	31.9	2.8	20.2	1.8	
TB-HF _{0.25} /AF _{0.5}	1.00	70.4	7.4	52.0	5.5	

Table S2 Oxidative desulfurization of DBT and 4,6-DMDBT over Ti-Beta samples.^a

^a Reaction conditions: 10 mL 500 ppm model fuels, 50 mg of catalyst, n(TBHP)/n(sulphide) is 2, for 30 min of the reaction at 60 °C. ^b Measured by ICP-OES. ^c Conversion (Conv.) = mole of converted reactant/mole of initial reactant × 100%. ^d Turnover number is defined as moles of the converted substrate at per mole of Ti sites for 30 min of reaction.

Table S3 Catalytic epoxidation activities of TB-HF_{0.25}/AF_{0.5} and TB-Parent for bulky molecules containing C=C bonds with various molecule sizes.^a

	TB	-HF _{0.25} /AF ₀).5	TB-Parent			
Substrates	Conv. ^b	Sele. ^c	TON	Come b (0()	Sele. ^c	TON ^d	
	(%)	(%)	TON ^a	Conv. ° (%)	(%)		
2-cyclohexen-1-one	50	98	118	39	97	76	
Norbornene	66	92	157	49	90	95	
Cyclooctene	35	99	84	20	98	39	
Methyl oleate	19	99	46	10	98	18	

^a Reaction conditions: 2.5 mmol of bulky substrates with 3.5 mmol H_2O_2 , in 5 mL acetonitrile, at 60 °C for 30 min over 50 mg of catalysts. ^b Conversion (Conv.) = mole of converted reactant/mole of initial reactant × 100%. ^c Selectivity (Sele.) refers to the selectivity of the main product, i.e., (mole of epoxide)/(mole of all products) × 100%. ^d Turnover number (TON) is defined as moles of the converted substrate at per mole of Ti sites for 2 h of the reaction.

Substrate	Catalysts	Temp.(K)	Time(h)	Substrate (mmol)	Cat.(mg)	Conversion (%)	Rate(mmol/g/h) ^a	Reference
	Ti-Beta	333	2	2.5	50	66.0	16.5	This work
norbornene	Ti-Beta	333	4	5.3	50	54.3	14.4 ^b	1
	Ti-Beta	333	2	2.5	50	35.0	5.0	This work
cyclooctene	Ti-Beta	333	4	4.0	60	14.0	2.3 ^b	1
	Ti-Beta	333	2	2.5	50	50.0	12.5	This work
2-cyclohexen-1-one Methyl Oleate	Ti-Beta	343	5	5.0	100	51.6	5.2 ^b	2
	Ti-Beta	333	2	2.5	50	18.0	4.5	This work
	TS-1	323	5	0.3	150	92.0	0.4 ^b	3
	TS-1	363	9	0.06	10	75.8	0.5 ^b	4
	TS-1	353	24	0.3	150	93.0	0.1 ^b	5
	Ti-MCM-41	323	8	1	30	26.7	1.1 ^b	6
	Ti-Beta	323	8	1.0	30	45.3	1.9 ^b	6
^a Rate refers to millimole of the converted substrate at per gram of catalyst for certain hours of the reaction. ^b Rate value is calculated based on the reported								

Table S4 Comparison of the catalytic activity of some representative titanosilicate catalysts with the prepared TB-HF_{0.25}/AF_{0.5} for the epoxidation reaction of bulky molecules.

^a Rate refers to millimole of the converted substrate at per gram of catalyst for certain hours of the reaction. ^b Rate value is calculated based on the reported data in the literature.

3. References

- 1. J. Přech and J. Čejka, UTL titanosilicate: An extra-large pore epoxidation catalyst with tunable textural properties, *Catal. Today*, 2016, **277**, 2-8.
- B. Tang, W. L. Dai, X. M. Sun, N. J. Guan, L. D. Li and M. Hunger, A procedure for the preparation of Ti-Beta zeolites for catalytic epoxidation with hydrogen peroxide, *Green Chem.*, 2014, 16, 2281-2291.
- N. Wilde, J. Přech, M. Pelz, M. Kubů, J. Čejka and R. Gläser, Accessibility enhancement of TS-1based catalysts for improving the epoxidation of plant oil-derived substrates, *Catal Sci Technol*, 2016, 6, 7280-7288.
- 4. Y. Wei, G. Li, Q. Lü, C. Cheng and H. Guo, Green and efficient epoxidation of methyl oleate over hierarchical TS-1, *Chinese J Catal*, 2018, **39**, 964-972.
- 5. N. Wilde, C. Worch, W. Suprun and R. Gläser, Epoxidation of biodiesel with hydrogen peroxide over Ti-containing silicate catalysts, *Microporous Mesoporous Mater.*, 2012, **164**, 182-189.
- 6. M. Camblor, A. Corma, P. Esteve, A. Martínez and S. Valencia, Epoxidation of unsaturated fatty esters over large-pore Ti-containing molecular sieves as catalysts: important role of the hydrophobic–hydrophilic properties of the molecular sieve, *Chem. Commun.*, 1997, 795-796.