Electronic Supplementary Information

Rapid synthesis of high-areal-capacitance ultrathin hexagon Fe2O3 nanoplates on carbon cloth via a versatile molten salt method

Yi-Jie Gu^a, Wei Wen^b, Shilie Zheng^c and Jin-Ming Wu^{*a}

^a State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

^b College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, P. R. China.

^c College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

* Corresponding author

Name: Jin-Ming Wu

E-mail: msewjm@zju.edu.cn

Affiliation: State Key Laboratory of Silicon Materials, Zhejiang University

Contact address: Hangzhou 310027, PR China

Calculation

For MO@CC electrodes, the areal (C_s, mF cm⁻²) and gravimetric (C_m, F g^{-1}) capacitances are calculated from the corresponding CV curves at different scan rates according to following equations (1) and (2), respectively,

$$
C_s = \frac{\int idV}{S \times v \times \Delta V} \tag{1}
$$

$$
C_m = \frac{\int idV}{m \times v \times \Delta V}
$$
 (2)

where *∫idV* is the area of CV curve, *∆V* is the potential window (V), *v* is the scan rate $(mV s⁻¹)$, *S* is the working area (*l cm*²), and *m* is the mass density (Table S1, mg cm⁻²).

For supercapacitors, the areal capacitance $(C, mF cm^{-2})$, energy density $(E, \mu Wh)$ cm⁻³) and power density (*P*, mW cm⁻³) are calculated from GCD curves at different current densities according to equations (3)−(5),

$$
C = \frac{I \times \Delta t}{S \times \Delta V} \tag{3}
$$

$$
E = \frac{C \times \Delta V^2}{2 \times d} \tag{4}
$$

$$
P = \frac{E}{\Delta t} \tag{5}
$$

where *I* is the charge/discharge current (mA), *S* is the working area of electrodes (*ca.* 1 cm^2), ΔV is the potential window (V) during the discharge process (excluding IR drop), *d* is the thickness of the device (*0.2 cm*), and *∆t* is the discharge time (s).

For the electro-kinetic study, the power law equation (6) can be used to determine *a* and *b* values by taking the current *vs.* voltage response of the electrode active material at various scan rates, $¹$ </sup>

$$
i = av^b \tag{6}
$$

where i and v are the peak current and the scan rate for the CV measurements, respectively. For a redox reaction limited by a semi-infinite diffusion, $b = 0.5$; for a capacitive process that corresponds to fast faradic surface controlled energy storage behaviour, $b = 1$.

The total current *i* measured at a specific voltage can be separated into two segments which are capacitive (k_1v) and diffusive contribution $(k_2v^{0.5})$, using the following equation $(7),^2$

$$
i = k_1 v + k_2 v^{0.5}
$$
 (7).

Samples	Mass loading of $Fe2O3$ (mg cm ⁻²)
$0.3\text{-Fe}_2\text{O}_3@CC$	1.18
$0.6\text{-Fe}_2\text{O}_3@CC$	1.89
$0.9\text{-}Fe2O3@CC$	3.33
$1.2\text{-Fe}_2\text{O}_3@CC$	4.70

Table S1. Mass loading of Fe₂O₃ for *x*-Fe₂O₃ @CC ($x = 0.3, 0.6, 0.9$ and 1.2 mmol).

Material	Electrolyte	Potential	Scan rate/ Current	Capacity	Ref.
$Fe2O3$ nanoneedles on Ni NTAs	1 M Na ₂ SO ₄	$-0.8 - 0$ V	10 mV s^{-1}	418.0 F g^{-1}	$\overline{3}$
α -Fe ₂ O ₃ /PPy	1 M Na ₂ SO ₄	$-0.8-0$ V	0.5 mA cm^{-2}	382.4 mF cm^{-2}	$\overline{4}$
α -Fe ₂ O ₃ @PANI nanowires	1 M Na ₂ SO ₄	$-0.8-0$ V	0.5 mA cm^{-2}	103.0 mF cm^{-2}	5
$Fe2O3$ nanocrystals	1 M Na ₂ SO ₄	$-0.2 - 1$ V	2 mA cm^{-2}	1660 mF cm^{-2}	6
$GF/H-Fe2O3$ nanoplates	3 M KOH	$-1-0$ V	1 mA cm^{-2}	694.0 mF cm^{-2}	$\overline{7}$
Ti-doped Fe ₂ O ₃ @PEDOT	5 M LiCl	$-0.8-0$ V	1 mA cm^{-2}	1150.0 mF cm^{-2}	8
Fe ₂ O ₃ /graphene	1 M KOH	$-1.05 - -0.3V$	2 A g^{-1}	908.0 F g^{-1}	9
$Fe2O3$ nanotubes	5 M LiCl	$-0.8 - 0V$	1 mA cm^{-2}	180.4 mF cm^{-2}	10
α -Fe ₂ O ₃ nanorods	3 M LiCl	$-0.8-0$ V	0.5 mA cm ⁻²	382.7 mF cm^{-2}	11
α -Fe ₂ O ₃ @NiO	1 M LiOH	$-0.2 - 0.8V$	1 mA cm^{-2}	557.0 mF cm^{-2}	12
0.3 -Fe ₂ O ₃ @CC				1754.9 mF cm^{-2}	
0.6 -Fe ₂ O ₃ @CC	6M KOH	$-1.0-0$ V	2 mV s^{-1}	1762.7 mF cm^{-2}	This
$0.9 - Fe2O3@CC$				4175.7 mF cm^{-2}	work
1.2- $Fe2O3@CC$				3339.0 mF cm^{-2}	

Table S2. Comparison in the electrochemical performance of the $Fe₂O₃$ -based electrodes in aqueous electrolytes.

Abbreviations in Table S2

NTAs: nanotube arrays, **PPy**: polypyrrole, **PANI**: polyaniline, **GF**: graphene foam, **H**: hydrogenated, **PEDOT**: 3,4**-**ethylenedioxythiophene.

REFERENCES

- 1 Z. H. Huang, Y. Song, D. Y. Feng, Z. Sun, X. Q. Sun and X. X. Liu, High mass loading MnO₂ with hierarchical nanostructures for supercapacitors, *ACS Nano*, 2018, **12**, 3557−3567.
- 2 J. B. Cook, H. S. Kim, T. C. Lin, C. H. Lai, B. Dunn and S. H. Tolbert, Pseudocapacitive charge storage in thick composite $MoS₂$ nanocrystal-based electrodes, *Adv. Energy Mater.*, 2017, **7**, 1601283−1601295.
- 3 Y. Li, J. Xu, T. Feng, Q. F. Yao, J. P. Xie and H. Xia, $Fe₂O₃$ nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors, *Adv. Funct. Mater.*, 2017, **27**, 1606728−1606738.
- 4 L. B. Wang, H. L. Yang, X. X. Liu, R. Zeng, M. Li, Y. H. Huang and X. L. Hu, Constructing hierarchical tectorum-like alpha- $Fe₂O₃/PPy$ nanoarrays on carbon cloth for solid-state asymmetric supercapacitors, *Angew. Chem. Int. Ed.*, 2017, **56**, 1105−1110.
- 5 X. F. Lu, X. Y. Chen, W. Zhou, Y. X. Tong and G. R. Li, α -Fe₂O₃@PANI core−shell nanowire arrays as negative electrodes for asymmetric supercapacitors, *ACS Appl. Mater. Interfaces*, 2015, **7**, 14843-14850.
- 6 S. M. Peng, L. Yu, B. Lan, M. Sun, G. Cheng, S. H. Liao, H. Cao and Y. L. Deng, Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals, *Nanotechnology*, 2016, **27**, 505404−505416.
- 7 K. Chi, Z. Y. Zhang, Q. Y. Lv, C. Y. Xie, J. Xiao, F. Xiao and S. Wang, Well-ordered oxygen-deficient $CoMoO₄$ and $Fe₂O₃$ nanoplate arrays on 3D graphene foam: Toward flexible asymmetric supercapacitors with enhanced capacitive properties, *ACS Appl. Mater. Interfaces*, 2017, **9**, 6044-6053.
- 8 Y. X. Zeng, Y. Han, Y. T. Zhao, Y. Zeng, M. H. Yu, Y. J. Liu, H. L. Tang, Y. X. Tong and X. H. Lu, Advanced Ti-doped $Fe₂O₃@PEDOT$ core/shell anode for

high-energy asymmetric supercapacitors, *Adv. Energy Mater.*, 2015, **5**, 1402176–1402183.

- 9 H. W. Wang, Z. J. Xu, H. Yi, H. G. Wei, Z. H. Guo and X. F. Wang, One-step preparation of single-crystalline $Fe₂O₃$ particles/graphene composite hydrogels as high performance anode materials for supercapacitors, *Nano Energy*, 2014, **7**, 86−96.
- 10 P. H. Yang, Y. Ding, Z. Y. Lin, Z. W. Chen, Y. Z. Li, P. F. Qiang, M. Ebrahimi, W. J. Mai, C. P. Wong and Z. L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO₂ nanowires and Fe₂O₃ nanotubes, *Nano Lett*., 2014, **14**, 731-736.
- 11 X. H. Lu, Y. X. Zeng, M. H. Yu, T. Zhai, C. L. Liang, S. L. Xie, M. S. Balogun and Y. X. Tong, Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors, *Adv. Mater.*, 2014, **26**, 3148–3155.
- 12 Y. Jiao, Y. Liu, B. Yin, S. W. Zhang, F. Y. Qu and X. Wu, Hybrid α -Fe₂O₃@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts, *Nano Energy*, 2014, **10**, 90−98.

Figure S1. FESEM images (left) and XRD patterns (right) of MOs/CC. (a) $Fe₂O₃@CC$ obtained using Fe₂(SO₄)₃; (b) ZnO@CC obtained using ZnSO₄; Mn₃O₄@CC obtained using (c) MnCl₂ and (d) MnSO₄, respectively; $Co₃O₄@CC$ samples obtained using (e) $Co(NO₃)₂$ and (f) $CoCl₂$, respectively; $CuO@CC$ obtained using (g) $Cu(NO₃)₂$, (h) $CuCl₂$ and (i) CuSO₄, respectively; NiO@CC obtained using (j) Ni(NO₃)₂, (k) NiCl₂ and (l) NiSO4, respectively.

Figure S2. FESEM image of blank carbon cloth substrate.

Figure S3. (a) FESEM image and (b) XRD pattern of the $Fe₂O₃@CC$ obtained using 2.5

g NaNO₃ and 0.3 mmol FeCl₃.

Figure S4. FESEM images of the 0.9-Fe₂O₃@CC electrode.

Figure S5. Full scan XPS spectrum of the 0.9-Fe₂O₃@CC electrode.

Figure S6. (a, d and g) CV curves at virous scan rates, (b, e and h) GCD curves at different current densities and (c, f and i) coulombic efficiencies of the 0.3 -Fe₂O₃@CC,

 0.6 -Fe₂O₃@CC and 1.2-Fe₂O₃@CC, respectively.

Figure S7. CV curves of the 0.3-Fe₂O₃@CC electrode at scan rates of 2 and 5 mV s⁻¹.

The circled region shows the redox peaks.

Figure S8. The Nyquist plots of the 0.9 -Fe₂O₃@CC electrode. The inset is the enlarged plots at high frequency.

Figure S9. The GCD curve of the 0.9-Fe₂O₃@CC electrode at a current density of 7.5 mA cm⁻². The areal capacitance is 4583.5 mF cm⁻². The coulombic efficiency is ca. 96%.

Figure S10. Areal capacitances of the untreated CC, the blank CC-1 and the blank CC-2 electrodes within -1−0 V in 6M KOH electrolyte.

Figure S11. (a) CV and (b) GCD curves of the $Mn_3O_4@CC$ electrode at different scan rates and current densities, respectively. (c) the Nyquist plots; the inset is the enlarged plots at high frequency. (d) Areal specific capacitance at different scan rates.