**Electronic Supplementary Information** 

## Rapid synthesis of high-areal-capacitance ultrathin hexagon Fe<sub>2</sub>O<sub>3</sub> nanoplates on carbon cloth via a versatile molten salt method

Yi-Jie Gu<sup>a</sup>, Wei Wen<sup>b</sup>, Shilie Zheng<sup>c</sup> and Jin-Ming Wu<sup>\*a</sup>

<sup>a</sup> State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

<sup>b</sup> College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, P. R. China.

<sup>c</sup> College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

\* Corresponding author

Name: Jin-Ming Wu

E-mail: msewjm@zju.edu.cn

Affiliation: State Key Laboratory of Silicon Materials, Zhejiang University

Contact address: Hangzhou 310027, PR China

## Calculation

For MO@CC electrodes, the areal ( $C_s$ , mF cm<sup>-2</sup>) and gravimetric ( $C_m$ , F g<sup>-1</sup>) capacitances are calculated from the corresponding CV curves at different scan rates according to following equations (1) and (2), respectively,

$$C_s = \frac{\int i dV}{S \times v \times \Delta V} \tag{1}$$

$$C_m = \frac{\int i dV}{m \times v \times \Delta V} \tag{2}$$

where  $\int i dV$  is the area of CV curve,  $\Delta V$  is the potential window (V), v is the scan rate (mV s<sup>-1</sup>), S is the working area (1 cm<sup>2</sup>), and m is the mass density (Table S1, mg cm<sup>-2</sup>).

For supercapacitors, the areal capacitance (*C*, mF cm<sup>-2</sup>), energy density (*E*,  $\mu$ Wh cm<sup>-3</sup>) and power density (*P*, mW cm<sup>-3</sup>) are calculated from GCD curves at different current densities according to equations (3)–(5),

$$C = \frac{I \times \Delta t}{S \times \Delta V} \tag{3}$$

$$E = \frac{C \times \Delta V^2}{2 \times d} \tag{4}$$

$$P = \frac{E}{\Delta t} \tag{5}$$

where *I* is the charge/discharge current (mA), *S* is the working area of electrodes (*ca*.  $l \ cm^2$ ),  $\Delta V$  is the potential window (V) during the discharge process (excluding IR drop), *d* is the thickness of the device (0.2 cm), and  $\Delta t$  is the discharge time (s).

For the electro-kinetic study, the power law equation (6) can be used to determine a and b values by taking the current vs. voltage response of the electrode active material at various scan rates,<sup>1</sup>

$$i = av^b \tag{6}$$

where *i* and *v* are the peak current and the scan rate for the CV measurements, respectively. For a redox reaction limited by a semi-infinite diffusion, b = 0.5; for a capacitive process that corresponds to fast faradic surface controlled energy storage behaviour, b = 1.

The total current *i* measured at a specific voltage can be separated into two segments which are capacitive  $(k_I v)$  and diffusive contribution  $(k_2 v^{0.5})$ , using the following equation (7),<sup>2</sup>

$$i = k_1 v + k_2 v^{0.5} (7).$$

| Samples                                | Mass loading of Fe <sub>2</sub> O <sub>3</sub> (mg cm <sup>-2</sup> ) |
|----------------------------------------|-----------------------------------------------------------------------|
| 0.3-Fe <sub>2</sub> O <sub>3</sub> @CC | 1.18                                                                  |
| 0.6-Fe <sub>2</sub> O <sub>3</sub> @CC | 1.89                                                                  |
| 0.9-Fe <sub>2</sub> O <sub>3</sub> @CC | 3.33                                                                  |
| 1.2-Fe <sub>2</sub> O <sub>3</sub> @CC | 4.70                                                                  |

**Table S1.** Mass loading of  $Fe_2O_3$  for *x*- $Fe_2O_3@CC$  (*x* = 0.3, 0.6, 0.9 and 1.2 mmol).

| Material                                                 | Electrolyte                         | Potential | Scan rate/<br>Current    | Capacity                    | Ref. |
|----------------------------------------------------------|-------------------------------------|-----------|--------------------------|-----------------------------|------|
| Fe <sub>2</sub> O <sub>3</sub> nanoneedles<br>on Ni NTAs | 1 M Na <sub>2</sub> SO <sub>4</sub> | -0.8-0 V  | $10 \text{ mV s}^{-1}$   | $418.0 \mathrm{~F~g}^{-1}$  | 3    |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> /PPy            | 1 M Na <sub>2</sub> SO <sub>4</sub> | -0.8-0 V  | $0.5 \text{ mA cm}^{-2}$ | $382.4 \text{ mF cm}^{-2}$  | 4    |
| α-Fe <sub>2</sub> O <sub>3</sub> @PANI<br>nanowires      | 1 M Na <sub>2</sub> SO <sub>4</sub> | -0.8-0 V  | $0.5 \text{ mA cm}^{-2}$ | $103.0 \text{ mF cm}^{-2}$  | 5    |
| Fe <sub>2</sub> O <sub>3</sub> nanocrystals              | 1 M Na <sub>2</sub> SO <sub>4</sub> | -0.2-1 V  | $2 \text{ mA cm}^{-2}$   | $1660 \text{ mF cm}^{-2}$   | 6    |
| GF/H-Fe <sub>2</sub> O <sub>3</sub><br>nanoplates        | 3 М КОН                             | -1-0 V    | $1 \text{ mA cm}^{-2}$   | $694.0 \text{ mF cm}^{-2}$  | 7    |
| Ti-doped<br>Fe <sub>2</sub> O <sub>3</sub> @PEDOT        | 5 M LiCl                            | -0.8-0 V  | $1 \text{ mA cm}^{-2}$   | $1150.0 \text{ mF cm}^{-2}$ | 8    |
| Fe <sub>2</sub> O <sub>3</sub> /graphene                 | 1 M KOH                             | -1.050.3V | $2 \text{ Ag}^{-1}$      | 908.0 F $g^{-1}$            | 9    |
| Fe <sub>2</sub> O <sub>3</sub> nanotubes                 | 5 M LiCl                            | -0.8-0V   | $1 \text{ mA cm}^{-2}$   | $180.4 \text{ mF cm}^{-2}$  | 10   |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> nanorods        | 3 M LiCl                            | -0.8-0 V  | $0.5 \text{ mA cm}^{-2}$ | $382.7 \text{ mF cm}^{-2}$  | 11   |
| α-Fe <sub>2</sub> O <sub>3</sub> @NiO                    | 1 M LiOH                            | -0.2-0.8V | $1 \text{ mA cm}^{-2}$   | $557.0 \text{ mF cm}^{-2}$  | 12   |
| 0.3-Fe <sub>2</sub> O <sub>3</sub> @CC                   |                                     |           |                          | 1754.9 mF cm <sup>-2</sup>  |      |
| 0.6-Fe <sub>2</sub> O <sub>3</sub> @CC                   | 6М КОН                              | -1.0-0 V  | $2 \text{ mV s}^{-1}$    | 1762.7 mF cm <sup>-2</sup>  | This |
| 0.9-Fe <sub>2</sub> O <sub>3</sub> @CC                   |                                     |           |                          | $4175.7 \text{ mF cm}^{-2}$ | work |
| 1.2-Fe <sub>2</sub> O <sub>3</sub> @CC                   |                                     |           |                          | 3339.0 mF cm <sup>-2</sup>  |      |

**Table S2.** Comparison in the electrochemical performance of the Fe<sub>2</sub>O<sub>3</sub>-based electrodes in aqueous electrolytes.

Abbreviations in Table S2

**NTAs**: nanotube arrays, **PPy**: polypyrrole, **PANI**: polyaniline, **GF**: graphene foam, **H**: hydrogenated, **PEDOT**: 3,4-ethylenedioxythiophene.

## REFERENCES

- Z. H. Huang, Y. Song, D. Y. Feng, Z. Sun, X. Q. Sun and X. X. Liu, High mass loading MnO<sub>2</sub> with hierarchical nanostructures for supercapacitors, *ACS Nano*, 2018, 12, 3557–3567.
- 2 J. B. Cook, H. S. Kim, T. C. Lin, C. H. Lai, B. Dunn and S. H. Tolbert, Pseudocapacitive charge storage in thick composite MoS<sub>2</sub> nanocrystal-based electrodes, *Adv. Energy Mater.*, 2017, 7, 1601283–1601295.
- 3 Y. Li, J. Xu, T. Feng, Q. F. Yao, J. P. Xie and H. Xia, Fe<sub>2</sub>O<sub>3</sub> nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors, *Adv. Funct. Mater.*, 2017, 27, 1606728–1606738.
- 4 L. B. Wang, H. L. Yang, X. X. Liu, R. Zeng, M. Li, Y. H. Huang and X. L. Hu, Constructing hierarchical tectorum-like alpha-Fe<sub>2</sub>O<sub>3</sub>/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors, *Angew. Chem. Int. Ed.*, 2017, 56, 1105–1110.
- X. F. Lu, X. Y. Chen, W. Zhou, Y. X. Tong and G. R. Li, α-Fe<sub>2</sub>O<sub>3</sub>@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors, *ACS Appl. Mater. Interfaces*, 2015, 7, 14843–14850.
- 6 S. M. Peng, L. Yu, B. Lan, M. Sun, G. Cheng, S. H. Liao, H. Cao and Y. L. Deng, Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals, *Nanotechnology*, 2016, 27, 505404–505416.
- 7 K. Chi, Z. Y. Zhang, Q. Y. Lv, C. Y. Xie, J. Xiao, F. Xiao and S. Wang, Well-ordered oxygen-deficient CoMoO<sub>4</sub> and Fe<sub>2</sub>O<sub>3</sub> nanoplate arrays on 3D graphene foam: Toward flexible asymmetric supercapacitors with enhanced capacitive properties, *ACS Appl. Mater. Interfaces*, 2017, **9**, 6044-6053.
- Y. X. Zeng, Y. Han, Y. T. Zhao, Y. Zeng, M. H. Yu, Y. J. Liu, H. L. Tang, Y. X.
  Tong and X. H. Lu, Advanced Ti-doped Fe<sub>2</sub>O<sub>3</sub>@PEDOT core/shell anode for

high-energy asymmetric supercapacitors, *Adv. Energy Mater.*, 2015, **5**, 1402176–1402183.

- 9 H. W. Wang, Z. J. Xu, H. Yi, H. G. Wei, Z. H. Guo and X. F. Wang, One-step preparation of single-crystalline Fe<sub>2</sub>O<sub>3</sub> particles/graphene composite hydrogels as high performance anode materials for supercapacitors, *Nano Energy*, 2014, 7, 86–96.
- P. H. Yang, Y. Ding, Z. Y. Lin, Z. W. Chen, Y. Z. Li, P. F. Qiang, M. Ebrahimi, W. J. Mai, C. P. Wong and Z. L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO<sub>2</sub> nanowires and Fe<sub>2</sub>O<sub>3</sub> nanotubes, *Nano Lett.*, 2014, 14, 731-736.
- 11 X. H. Lu, Y. X. Zeng, M. H. Yu, T. Zhai, C. L. Liang, S. L. Xie, M. S. Balogun and Y. X. Tong, Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors, *Adv. Mater.*, 2014, 26, 3148–3155.
- 12 Y. Jiao, Y. Liu, B. Yin, S. W. Zhang, F. Y. Qu and X. Wu, Hybrid α-Fe<sub>2</sub>O<sub>3</sub>@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts, *Nano Energy*, 2014, **10**, 90–98.



**Figure S1.** FESEM images (left) and XRD patterns (right) of MOs/CC. (a)  $Fe_2O_3@CC$  obtained using  $Fe_2(SO_4)_3$ ; (b) ZnO@CC obtained using ZnSO<sub>4</sub>; Mn<sub>3</sub>O<sub>4</sub>@CC obtained using (c) MnCl<sub>2</sub> and (d) MnSO<sub>4</sub>, respectively; Co<sub>3</sub>O<sub>4</sub>@CC samples obtained using (e) Co(NO<sub>3</sub>)<sub>2</sub> and (f) CoCl<sub>2</sub>, respectively; CuO@CC obtained using (g) Cu(NO<sub>3</sub>)<sub>2</sub>, (h) CuCl<sub>2</sub> and (i) CuSO<sub>4</sub>, respectively; NiO@CC obtained using (j) Ni(NO<sub>3</sub>)<sub>2</sub>, (k) NiCl<sub>2</sub> and (l) NiSO<sub>4</sub>, respectively.



Figure S2. FESEM image of blank carbon cloth substrate.



Figure S3. (a) FESEM image and (b) XRD pattern of the Fe<sub>2</sub>O<sub>3</sub>@CC obtained using 2.5

g NaNO<sub>3</sub> and 0.3 mmol FeCl<sub>3</sub>.



**Figure S4.** FESEM images of the 0.9-Fe<sub>2</sub>O<sub>3</sub>@CC electrode.



Figure S5. Full scan XPS spectrum of the 0.9-Fe<sub>2</sub>O<sub>3</sub>@CC electrode.



Figure S6. (a, d and g) CV curves at virous scan rates, (b, e and h) GCD curves at different current densities and (c, f and i) coulombic efficiencies of the 0.3-Fe<sub>2</sub>O<sub>3</sub>@CC, 0.6-Fe<sub>2</sub>O<sub>3</sub>@CC and 1.2-Fe<sub>2</sub>O<sub>3</sub>@CC, respectively.



Figure S7. CV curves of the 0.3-Fe<sub>2</sub>O<sub>3</sub>@CC electrode at scan rates of 2 and 5 mV s<sup>-1</sup>.

The circled region shows the redox peaks.



**Figure S8.** The Nyquist plots of the 0.9-Fe<sub>2</sub>O<sub>3</sub>@CC electrode. The inset is the enlarged plots at high frequency.



**Figure S9.** The GCD curve of the 0.9-Fe<sub>2</sub>O<sub>3</sub>@CC electrode at a current density of 7.5 mA cm<sup>-2</sup>. The areal capacitance is 4583.5 mF cm<sup>-2</sup>. The coulombic efficiency is ca. 96%.



**Figure S10.** Areal capacitances of the untreated CC, the blank CC-1 and the blank CC-2 electrodes within -1-0 V in 6M KOH electrolyte.



Figure S11. (a) CV and (b) GCD curves of the  $Mn_3O_4@CC$  electrode at different scan rates and current densities, respectively. (c) the Nyquist plots; the inset is the enlarged plots at high frequency. (d) Areal specific capacitance at different scan rates.