Supporting Information

Optical-switchable energy transfer controlled by multiple-responsive turn-on fluorescence via metal-ligand and host-guest interactions in diarylethene-based [2]pseudo-rotaxane polymers

Ravinder Singh,^a Chi-Chong Xiao,^a Chong-Lun Wei,^a Feng-Cheng Ho,^a Trang Manh Khang,^a Chinmayananda Gouda,^a Tung-Kung Wu,^{b,c} Yaw-Kuen Li,^{b,c} Kung-Hwa Wei^{a,c} and Hong-Cheu Lin*^{a,c}

^a Department of Materials Science & Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.

^b Department of Biological Science & Technology, National Chiao Tung University, Hsinchu 300, Taiwan.

^c Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300,

Taiwan.

*E-mail: linhc@mail.nctu.edu.tw

List of contents:

1. Figs. S1 & S2		page S3
2. Figs. S3 & S4		page S4
3. Figs. S5 & S6		page S5
4. Figs. S7 & S8		page S6
5. Figs. S9 & S10		page S7
6. Figs. S11 & S12		page S8
7. Figs. S13 & S14		page S9
8. Figs. S15 & S16		page S10
9. NMR (¹ H & ¹³ C) (Fig	gs. S17 to S26)	page S11-S20
10. HRMS (ESI data) (Figs. S27 to S32)	page S21-S26
11. EA data (Figs. S33	to \$35)	page S27-S29

Fig. S1 Job's plot of metal-ligand complex $Zn^{2+}-TC_2$ (1:2). ($\lambda ex = 300 \text{ nm}$ for PL exp.)

Fig. S2 Reversible absorption behavior between DS(O) and DS(C) at λ = 425 nm.

Fig. S3 ¹H-NMR (300 MHz, CDCl₃/CD₃CN (1/1, v/v), 298K) of DS guest (6 mg in CHCl₃/CH₃CN (1/1, v/v)) before and after UV-irradiation (at λ = 355 nm for 15 min).

Fig. S4 (a) Spectral overlaps of the emission of $Zn^{2+}-TC_2$ host and absorption of DS(C) guest in CHCl₃/CH₃CN (1/1, v/v), (λ_{ex} = 300 nm for PL exp.), (b) PL excitation spectrum of supramolecular polymer $Zn^{2+}-TC_2/DS(C)$ in CHCl₃/CH₃CN (1/1, v/v) solution (1 mM) for emission at 545 nm.

Fig. S6 Time-resolved fluorescence measurement of $Zn^{2+}-TC_2$ host emissions (at $\lambda_{max} = 417$ nm) in supramolecular polymer $Zn^{2+}-TC_2/DS(O \& C)$ in CHCl₃/CH₃CN (1/1, v/v) before and after UV-irradiation.

Fig. S7 ¹H-NMR spectra (300 MHz, CDCl₃/CD₃CN (1/1, v/v), 298K) of supramolecular polymer **Zn²⁺-TC₂/DS(O)** at various concentrations: (a) 5; (b) 10; (c) 15; (d) 20; (e) 25; (f) 30; (g) 50; (h) 70; (i) 90 mM.

Fig. S8 Two-dimensional diffusion-ordered NMR (DOSY) spectra (500 MHz, $CDCl_3/CD_3CN$ (1/1,

v/v), 298K) of supramolecular polymer $Zn^{2+}-TC_2/DS(O)$ at concentration 10 mM.

Fig. S9 Two-dimensional diffusion-ordered NMR (DOSY) spectra (500 MHz, $CDCl_3/CD_3CN$ (1/1, v/v), 298K) of supramolecular polymer $Zn^{2+}-TC_2/DS(C)$ at concentration 10 mM.

Fig. S10 Rotating-frame nuclear overhauser effect NMR (ROESY) spectra (500 MHz, $CDCI_3/CD_3CN$ (1/1, v/v), 298K) of supramolecular polymer $Zn^{2+}-TC_2/DS(O)$ at concentration 10 mM.

Fig. S11 Morphological SEM images of (a) metal-coordinated $Zn^{2+}-TC_2$ host along with supramolecular polymers (b) $Zn^{2+}-TC_2/DS(O)$ and (c) $Zn^{2+}-TC_2/DS(C)$ prepared from CHCl₃/CH₃CN (1/1, v/v) solutions (1 mM).

Fig. S7 PL spectra of dis-metaled component $TC_2/DS(C)$ in CHCl₃/CH₃CN (1/1, v/v) solutions (1 mM) after chelation with various metal ions (i.e., 0.5 equiv.). (λ ex = 300 nm.)

polymer **Zn²⁺-TC₂/DS(O)** in CHCl₃/CH₃CN (1:1, v/v, 298 K).

Fig. S14 (a) Pictorial demonstration of the dis-assembly/re-assembly in supramolecular polymer $Zn^{2+}-TC_2/DS(O)$ (1:1) by means of interaction with base/acid in $CHCl_3/CH_3CN$ (1/1, v/v). (b) PL spectral changes of $Zn^{2+}-TC_2/DS(O)$ upon the addition of TEA (0 to 100 µL) and TFA (0 to 100 µL) in $CHCl_3/CH_3CN$ (1/1, v/v). Insets: photoimages of $Zn^{2+}-TC_2/DS(O)$ with acid/base in $CHCl_3/CH_3CN$ (1/1, v/v). (λ ex = 300 nm for PL exp.)

supramolecular polymer Zn²⁺-TC₂/DS(O) (1:1) by means of interaction of Cyclen/Zn²⁺ in CHCl₃/CH₃CN (1/1, v/v). (b) UV/Vis spectral changes of Zn²⁺-TC₂/DS(O) upon the addition of cyclen (0 to 100 µL) and Zn(OTf)₂ in CHCl₃/CH₃CN (1/1, v/v). (c) PL spectral changes of Zn²⁺-TC₂/DS(O) upon the addition of cyclen (0 to 100 µL) and Zn(OTf)₂ in CHCl₃/CH₃CN (1/1, v/v). Insets: photoimages of Zn²⁺-TC₂/DS(O) in the absence and presence of cyclen (0 and 100 µL). (λ ex = 300 nm for PL exp.)

Fig. S16 Temperature dependent PL spectra of supramolecular polymer $Zn^{2+}-TC_2/DS(C)$ in CHCl₃/CH₃CN (1/1, v/v) solution (1 mM) within the temperature range of 40-60 °C. (λ ex = 300 nm.)

Fig. S17.1 ¹H-NMR of intermediate 1.

Fig. S17.2 ¹³C-NMR of intermediate 1.

Fig. S18.1 ¹H-NMR of intermediate 2.

Fig. S18.2 ¹³C-NMR of intermediate 2.

Fig. S19.1 ¹H-NMR of intermediate **3**.

Fig. S19.2 ¹³C-NMR of intermediate 3.

Fig. S20.1 ¹H-NMR of intermediate 4.

Fig. S21.1 ¹H-NMR of intermediate **TC**.

Fig. S21.2 ¹³C-NMR of intermediate TC.

Fig. S22.1 ¹H-NMR of intermediate 5.

Fig. S22.2 ¹³C-NMR of intermediate 5.

Fig. S23.1 ¹H-NMR of intermediate 6.

Fig. S23.2 ¹³C-NMR of intermediate 6.

Fig. S24.1 ¹H-NMR of intermediate 7.

Fig. S24.2 ¹³C-NMR of intermediate 7.

Fig. S25.1 ¹H-NMR of intermediate 8.

Fig. S25.2 ¹³C-NMR of intermediate 8.

Fig. S26.1 ¹H-NMR of intermediate DS.

Fig. S26.2 ¹³C-NMR of intermediate DS.

Fig. S27 HRMS (ESI) data of intermediate 1.

Fig. S28 HRMS (ESI) data of intermediate 2.

Fig. S29 HRMS (ESI) data of intermediate 3.

Fig. S30 HRMS (ESI) data of intermediate 4.

Fig. S31 HRMS (ESI) data of intermediate TC.

Fig. S32 HRMS (ESI) data of intermediate 8.

國立中興大學研發處貴重儀器使用中心 元素分析儀服務報告書

說明:

本實驗數據為檢測結果,不得用於商業廣告、認證及法律証據使用。(This result is for academic use only, not to be used for any judicial or commercial advertising purpose.)
儀器負責人: 鄭政峯 教授 檢測技術員: 陳宜絹。

2. 战奋只贝八, 别以牵 教仪 微风仪侧贝, 床且朝。

(Instrument Director : Prof. Jen-Fon Jen Operator : I-Chuan Chen)

樣品資訊:

Web NO	SEA0001002017040171		
Department :	交大材料所		DATE
Supervisor :	林宏洲	收件日:	2017.07.21
User name :	蕭智中	分析日:	2017.08.04 (NCH)
			2017.08.04 (O)
			2017.08.04 (S)

分析結果:

Sample code	Weight(mg)	N %	C %	H%	0%	5%	Repeat	Charge
2011	2.023		57.70	8.08	34.22			\$ 2 000
20H	2.075		57.79	8.11	34.10		1	\$ 3,000
推測值			57.74	8.08	34.18			
T	2.285		56.31	6.20	28.15	9.34		£ 2.000
losy	2.309		56.33	6.19	28.08	9.40	1	\$ 3,000
推測值			56.29	6.20	28.12	9.39		
C- CUO	2.403		62.79	6.79	30.24		1	¢ 2 000
су-сно	2.414		63.05	6.75	30.20		1	\$ 3,000
推測值			63.01	6.77	30.22			
C. OU	2.678		62.80	7.14	30.06			£ 2 000
Су-ОН	2.691		62.73	7.17	30.10		1	\$ 3,000
推測值			62.75	7.16	30.09			

備註:

使用儀器: Elementar vario CUBE(CHN-OS Rapid, German), Accuracy: 0.1%, Precision: 0.2%

	標準品	N %	C %	H%	0%	S %
*	Acetanilid	10.36	71.09	6.71	100.00	
*	Benzoic acid				26.20	
*	Sulfanilic acid	8.09	41.60	4.07		18.50
	Daily standard	10.40	71.13	6.73		
	Daily standard				26.21	
	Daily standard	8.11	41.62	4.11		18.43

Fig. S33 Elementary analysis (EA) data of intermediates 1, 2, 3, and 4.

國立中興大學研發處貴重儀器使用中心

元素分析儀服務報告書

說明:

本實驗數據為檢測結果,不得用於商業廣告、認證及法律証據使用。(This result is for academic use only, not to be used for any judicial or commercial advertising purpose.)
儀器負責人: 鄭政峯 教授 檢測技術員: 陳宜絹。

(Instrument Director : Prof. Jen-Fon Jen Operator : I-Chuan Chen)

樣品資訊:

Web NO	SEA0001002017040230		
Department :	交大材料所		DATE
Supervisor :	林宏洲	收件日:	2017.08.10
User name :	蕭智中	分析日:	2017.08.14 (NCH)
			2017.08.14 (O)
			2017.08.14 (S)

分析結果:

Sample code	Weight(mg)	N %	C %	H%	0%	5%	Repeat	Charge
D	2.410		74.66	6.88	5.59	12.87		¢ 2 000
Diary-amine	2.423		74.66	6.90	5.59	12.85	1	\$ 3,000
推測值			74.65	6.87	5.62	12.86		

備註:

使用儀器: Elementar vario CUBE(CHN-OS Rapid, German), Accuracy: 0.1%, Precision: 0.2%

標準品	N %	C %	H %	0%	5%
Acetanilid	10.36	71.09	6.71		
Benzoic acid				26.20	
Sulfanilic acid	8.09	41.60	4.07		18.50
Daily standard	10.40	71.13	6.73		
Daily standard	-			26.21	
Daily standard	8.11	41.62	4.11		18.43
	標準品 Acetanilid Benzoic acid Sulfanilic acid Daily standard Daily standard Daily standard	標準品 N% Acetanilid 10.36 Benzoic acid Sulfanilic acid 8.09 Daily standard 10.40 Daily standard Daily standard 8.11	標準品 N% C% Acetanilid 10.36 71.09 Benzoic acid 8.09 41.60 Daily standard 10.40 71.13 Daily standard 8.11 41.62	標準品 N% C% H% Acetanilid 10.36 71.09 6.71 Benzoic acid Sulfanilic acid 8.09 41.60 4.07 Daily standard 10.40 71.13 6.73 Daily standard 8.11 41.62 4.11	標準品 N% C% H% O% Acetanilid 10.36 71.09 6.71 Benzoic acid 26.20 Sulfanilic acid 8.09 41.60 4.07 Daily standard 10.40 71.13 6.73 Daily standard 26.21 Daily standard 8.11 41.62 4.11

Fig. S34 Elementary analysis (EA) data of intermediate 8.

國立中興大學研發處貴重儀器使用中心 元素分析儀服務報告書

說明:

2.儀器負責人: 鄭政峯 教授 檢測技術員: 陳宜絹。

(Instrument Director : Prof. Jen-Fon Jen Operator : I-Chuan Chen)

樣品資訊:

Web NO	SEA0001002017040129		
Department :	交大材料所		DATE
Supervisor :	林宏洲	收件日:	2017.05.03
User name :	蕭智中	分析日:	2017.05.04 (NCH)
			2017.05.05 (O)
			2017.05.12 (S)

分析結果:

Sample code	Weight(mg)	N %	C %	H%	0%	S%	Repeat	Charge
D' I	2.019	3.55	47.10	4.60		8.11		¢ 2.000
Diary-salt	2.025	3.53	47.08	4.61		8.12	1	\$ 3,000
推測值		3.54	47.09	4.59		8.11		
<u> </u>	2.345	5.92	67.64	6.13	20.31			¢ 2 000
Cy-tpy	2.339	5.94	67.64	6.10	20.32		1	\$ 3,000
推測值		5.92	67.69	6.11	20.29			

備註:

使用儀器: Elementar vario CUBE(CHN-OS Rapid, German), Accuracy: 0.1%, Precision: 0.2%

	標準品	N %	C %	H%	0%	5%
*	Acetanilid	10.36	71.09	6.71		
*	Benzoic acid				26.20	
*	Sulfanilic acid	8.09	41.60	4.07		18.50
	Daily standard	10.40	71.13	6.73		
	Daily standard	-			26.21	
	Daily standard	8.11	41.62	4.11		18.43

Fig. S35 Elementary analysis (EA) data of intermediates DS and TC.