Supporting information

Facile star shape tetraphenylethylene-based molecules with fused ring-terminated diarylamine as interfacial hole transporting materials for inverted perovskite solar cells

Yung-Chung Chen^{a,b*}, Ding-Zhi Lin^a, Jhong-Ci Wang^c, Jen-Shyang Ni^a, Yang-Yen Yu ^{c*}and Chih-Ping Chen^{c*}

^a Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415 jiangong Rd., Sanmin District, Kaohsiung City 80778, Taiwan
^b Photo-SMART (Photo-sensitive material advanced research and technology center), National Kaohsiung University of Science and Technology, 415, Jiangong Rd., Sanmin District, Kaohsiung City 80778, Taiwan
^c Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City, 24301, Taiwan

Corresponding authors: Yung-Chung Chen (chenyc@nkust.edu.tw), Yang-Yen Yu (<u>yyyu@mail.mcut.edu.tw</u>), Chih-Ping Chen (<u>cpchen@mail.mcut.edu.tw</u>)

Fig. S1 ¹H NMR spectrum of the **CL-1**.

Fig. S2 HRMS spectrum of the CL-1.

Fig. S3 ¹H NMR spectrum of the CL-2.

Fig. S4 HRMS spectrum of the CL-2.

Fig. S5 ¹H NMR spectrum of the CL-3.

Fig. S6 MALDI/TOF spectrum of the CL-3.

Fig. S7 Water contact angle of various HTLs spin-coated onto the ITO glass.

HTM	$J_{\rm sc}$ (mA cm ⁻²)	Voc (V)	FF (%)	η _{avg} (%)	η _{max} (%)
CL-2	18.91±1.29	0.99 ± 0.37	70.30±2.29	13.09±0.52	14.01
CL-3	17.93±0.69	0.99 ± 0.05	66.98 ± 2.44	11.84±0.49	12.46

^a Calculated from 10 devices.

Table S2 Lifetimes of perovskite thin films of MAPbI3-based perovskite devices

Sample	τ_1 (ns)	A ₁	τ_2 (ns)	A ₂	$ au_{Average}(ns)$
NiOx/PVSK	7.4	32%	53.3	68%	38.7
NiOx/CL-2PVSK	8.1	34%	49.9	66%	35.6
NiOx/CL-3PVSK	6.8	35%	48.7	65%	34.1

The lifetime was obtained by fitting the PL data measured from the perovskite films with a

biexponential decay function of the form: $\tau_{Average} = A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2}$

Table S3 FWHM and crystallite size results of the perovskite films with different HTL layers

HTL	FWHM	Crystallite size ^a (nm)		
NiOx	0.37239	21.74		
NiOx/CL-2	0.37199	21.77		
NiOx/CL-3	0.36944	21.92		

^a The crystallite size is determined by the peak of (110) at 2 θ of around 14.1° and calculated from the Debye–Scherrer equation $\tau = k\lambda/BCos\theta$ ($\tau = crystallite size$).

Table S4 EIS results of the perovskite devices based on various HTLs^a

	<u>,</u>			
Sample	Rs	Rp	CPE-T	CPE-P
NiOx	16	467	7.94E-9	0.98
NiOx/CL-3	12	265	5.44E-9	1.03
^a Equivalent circuit mo	del:	CPE-P		

HTL	θ_{Water} [°]	θ _{DIM} [°]	$\gamma_{\rm polar}[{ m mN~m}^{-1}]$	$\gamma_{dispersive}$ [mN m ⁻¹]	γ_{total}^{-1} [mN m ⁻¹]
CL-2	73.58	15.36	9.85	49.98	58.87
CL-3	72.90	14.24	10.11	49.02	59.37
NiOx	11.45	10.36	35.29	49.98	85.27
NiOx/CL-2	13.37	21.31	35.62	47.44	83.06
NiOx/CL-3	20.51	22.546	33.86	47.06	80.92

Table S5 Contact angles and surface energies of various HTLs