Supporting information

Porous rGO/ZnSe/CoSe₂ dispersed in PEDOT:PSS as Efficient Counter Electrode for Dye-Sensitized Solar Cells

Tapa Arnauld Robert^a, Wanchun Xiang^{*a, b}, Abdelaal. S. A. Ahmed^{a, c}, Senwei Wu^a, Bin Li^a, Qiufen Liu^a, Chawut Machar Jacob Chuti^{a, d}, Xiujian Zhao^{*a}

^a State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Luoshi Road, Wuhan 430070, P. R. China.

Email : xiangwanchun@whut.edu.cn (W. Xiang), opluse@whut.edu.cn (X. Zhao).

^b Key Laboratory for Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.

^c Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.

^d Chemistry Department, College of Education, University of Bahr el Ghazal, Wau 10739 West Bahr al Ghazal, Republic of South Sudan.

Fig. S 1 FESEM Cross sectional images of: (a) Pt; (b) PEDOT:PSS; and (c) 3% wt rGO/ZnSe/CoSe₂-PEDOT:PSS composite.

Fig. S 2 (a) N2 adsorption-desorption isotherms, and (b) pore-size distributions of rGO/ZnSe/CoSe2 composite.

BET	BJH Desorption cumulative	BJH Desorption cumulative	BJH Desorption average
	surface area of pores	volume of pores	pore diameter (4V/A)
169.30 m ² . g ⁻¹	20.10 m ² . g ⁻¹	$0.07 \text{ cm}^3 \text{ g}^{-1}$	14.70 nm

Table S 1 BET parameters for rGO/ZnSe/CoSe₂ composite.

Fig. S 3 (a) SAED pattern; and (b, c, d, e, f, g) corresponding EDS mapping of porous rGO/ZnSe/CoSe₂.

Fig. S 4 XPS spectra of porous rGO/ZnSe/CoSe₂: (a) Survey XPS spectra; (b) Zn 2p XPS spectra; (c) Co 2p XPS spectra; (d) C 1s XPS spectra and (e) Se 3d and Co 3p XPS spectra.

Fig. S 5 Raman spectra of ZIF-8, ZIF-67, rGO, and rGO/ZnSe/CoSe₂.

Fig. S 6 XRD patterns of : (a) ZIF-8, ZIF-67 and rGO; (b) rGO/ZIF-8@ZIF-67 and rGO/ZnSe/CoSe₂.

Fig. S 7 (a) CV curves of 3% wt rGO/ZnSe/CoSe₂–PEDOT:PSS CE at different scan rates; (b) Corresponding relationship between peak current densities and the square root of scan rates of 3% wt rGO/ZnSe/CoSe₂–PEDOT:PSS CE; (c) 20 times consecutive CV curves of 3% wt rGO/ZnSe/CoSe₂–PEDOT:PSS CE at the 50 mV.s⁻¹ scan rate in iodine based electrolyte; (d) Corresponding ΔE_{pp} values for the 20 times consecutive CV curves of 3% wt rGO/ZnSe/CoSe₂–PEDOT:PSS CE.

Fig. S 8 Equivalent circuit models for : (a) Pt and rGO/ZnSe/CoSe₂ symmetric cells; (b) PEDOT:PSS and rGO/ZnSe/CoSe₂–PEDOT:PSS: PSS composites based symmetric cells.