Electronic Supplementary Information

Facile construction of highly redox active carbons with regular micropores and rod-like morphology towards high-energy supercapacitors

Mulati Mansuer,^a Ling Miao,^{*a} Dazhang Zhu,^a Hui Duan,^a Yaokang Lv,^c Liangchun Li,^a Mingxian

Liu*ab and Lihua Gan*a

^aShanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China

^bCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R.

China.

^cCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China

*Corresponding Authors

E-mail: 1310593@tongji.edu.cn (L. Miao), liumx@tongji.edu.cn (M. Liu), ganlh@tongji.edu.cn (L.

Gan)

Fig. S1 FT-IR spectrum of the benzoquinone/p-phenylenediamine precursor.

Fig. S2 XRD patterns of NNCs (A). Raman spectra of NNCs (B). XRD patterns of KHCO₃ and NNC-KH-200 (C).

Fig. S3 SEM images of precursor (A), NNC-KH-600 (B), NNC-KH-800 (C), NNC-700 (D), NNC-

KO-700 (E). TEM images of typical NNC-KH-700 (F, G).

Fig. S4 The locations of faradaic-active species (N-6, N-5 and O-I) in the carbon farmework and corresponding redox reactions in acidic solution.

Samples	$R\left(\Omega ight)$	$R_{ m s}\left(\Omega ight)$	$R_{ m ct}\left(\Omega ight)$	$ au\left(\Omega ight)$	$\sigma \left(\Omega \text{ s}^{-0.5} ight)$	C_{E}	C_{P}	C_{T}	$C_{\rm P}/C_{\rm T}$
						$(F g^{-1})$	$(F g^{-1})$	$(F g^{-1})$	(%)
NNC-KH-600	3.11	1.69	1.42	2.32	0.91	166.9	40.1	207	19.4
NNC-KH-700	1.64	0.56	1.08	0.94	0.74	284.3	80.7	365	22.1
NNC-KH-800	2.64	0.68	1.96	2.95	0.76	231.9	50.1	282	17.8
NNC-700	3.53	1.52	2.01	4.72	0.88	193.7	32.3	226	14.3
NNC-KO-700	3.65	0.76	2.89	2.57	0.80	296.2	39.8	336	11.8

Table S1. The detailed electrochemical data of the devices.^{*a*}

^{*a*}All capacitance values are measured at 1 A g^{-1} .

Fig. S5 The water contact angle (*θ*) measurement results of NNC-KH-600 (A), NNC-KH-700 (B), NNC-KH-800 (C), NNC-700 (D), NNC-KO-700 (E), commercial activate carbon (F).

Fig. S6 Electrochemical performances of the symmetric coin-typed cell based on NNC-KH-700 electrode using H₂SO₄+KBr electrolyte: GCD curves of NNC-KH-700 at different current densities from 0.2 to 20 A g^{-1} (A, B). Self-discharge curve within the potential window of 0–1.2 V (C).

Fig. S7 Electrochemical performances of the symmetric coin-typed cell based on NNC-KH-700 electrode: CV curves at different scan rates for 1 M Na₂SO₄ (A). GCD curves at various current densities for 1 M Na₂SO₄ (B). CV curves at different scan rates for 21 m LiOTf (C). GCD curves at various current densities for 21 m LiOTf (D). Nyquist plots for 1 M Na₂SO₄ (E) and for 21 m LiOTf (F). Nyquist plot and equivalent series resistance for EMIMBF₄ (G). Capacitances *vs* current densities (H). Rate performance (I). Images of powered up LED using EMIMBF₄ electrolyte (J).

Samples	N/O Content (wt.%)	Specific Surface Area (m ² g ⁻¹)	Electrolyte	Specific Capacitance (F g ⁻¹)	Energy Density (W h kg ⁻¹)	References	
			H ₂ SO ₄ +KBr	365	18.25	This work	
NNC VH 7 00	11 46/10 11	1840	1 M Na ₂ SO ₄	248	24.4		
NNC-KH-700	11.40/10.11		21 m LiOTf	180	30.1		
			EMIMBF ₄	179	89.5		
TCNQ-CTF-800	8.13/-	3663	EMIMBF ₄	100	42.8	1	
Ta-NCa ₈₅₀	7.26/8.24	706	1 M H ₂ SO ₄	362	_	2	
NO-PC	2.2/4.8 at.%	3794	6 M KOH	269	18.9	3	
a-CNS/EG-10	5.3/-	1532	PVA/KOH	234	6.3	4	
HMC-800	4.74/5.53	1306	1 M LiPF ₆	126	29	5	
N1-GDY	3.7/2.65	-	7 M KOH	250	8.66	6	
C-silkworm	2.15/12.58 at.%	2258	1 M Na ₂ SO ₄	167	23.17	7	
CNS-800	4.9/-	1122	KOH/PVA	190	_	8	
N/S-HPCM	5.13/- at.%	927	1 M Na ₂ SO ₄	127	17.6	9	
CBC3	6.2/10.4 at.%	3534	6 M KOH	297	18	10	

 Table S2. Performance comparisons of reported carbon-based devices.

References

- Y. Li, S. Zheng, X. Liu, P. Li, L. Sun, R. Yang, S. Wang, Z. S. Wu, X. Bao and W. Q. Deng, Conductive microporous covalent triazine-based framework for high-performance electrochemical capacitive energy storage, *Angew. Chem. Int. Ed.*, 2018, 57, 7992–7996.
- Y. Li, L. Liu, Y. Wu, T. Wu, H. Wu, Q. Cai, Y. Xu, B. Zeng, C. Yuan and L. Dai, Facile synthesis of nitrogen-doped carbon materials with hierarchical porous structures for high-performance supercapacitors in both acidic and alkaline electrolytes, *J. Mater. Chem. A*, 2019, 7, 13154–13163.
- Y. Zhao, M. Wei, Z. Zhu, J. Zhang, L. Xiao and L. Hou, Facile preparation of N-O codoped hierarchically porous carbon from alginate particles for high performance supercapacitor, J. *Colloid Interface Sci.*, 2020, 563, 414–425.
- Y. Liu, X. Qiu, X. Liu, Y. Liu and L.-Z. Fan, 3D porous binary-heteroatom doped carbon nanosheet/electrochemically exfoliated graphene hybrids for high performance flexible solid-state supercapacitors, *J. Mater. Chem. A.*, 2018, 6, 8750–8756.
- W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang and F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors, *Energy Environ. Sci.*, 2014, 7, 379–386.
- H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu, Y. Yi, H. Liu, Y. Li and Y. Li, N-doped graphdiyne for high-performance electrochemical electrodes, *Nano Energy*, 2018, 44, 144–154.
- S. Lei, L. Chen, W. Zhou, P. Deng, Y. Liu, L. Fei, W. Lu, Y. Xiao and B. Cheng, Tetra-heteroatom self-doped carbon nanosheets derived from silkworm excrement for high-performance supercapacitors, *J. Power Sources*, 2018, **379**, 74–83.
- 8. T. Wei, X. Wei, L. Yang, H. Xiao, Y. Gao and H. Li, A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from

camellia petals for energy storage, J. Power Sources, 2016, 331, 373-381.

- L. Sun, Y. Zhou, L. Li, H. Zhou, X. Liu, Q. Zhang, B. Gao, Z. Meng, D. Zhou and Y. Ma, Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors, *Appl. Surf. Sci.*, 2019, 467–468, 382–390.
- 10. D. Qiu, M. Li, C. Kang, J. Wei, F. Wang and R. Yang, Cucurbit[6]uril-derived sub-4 nm poresdominated hierarchical porous carbon for supercapacitors: operating voltage expansion and pore size matching, *Small*, 2020, **16**, 2002718.