Electronic Supplementary Information (ESI) for:

Enhanced urea oxidization on spinel cobalt oxide nanowires via on-site electrochemical defect engineering

Ming Fang*, Wen-Bo Xu, Shun Han, Peijiang Cao, Wangying Xu, Deliang Zhu, Youming Lu, and Wenjun Liu*

Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Centre for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.

Corresponding Author

E-mail address: m.fang@ szu.edu.cn (M. Fang) liuwj@szu.edu.cn (W. Liu)

Figure S1. The 3-electrode electrochemical test setup.

Figure S2. Photograph of (a) cobalt hydroxide precursor and (b) cobalt oxide supported on NF.

Figure S3. XRD pattern of Co_3O_4 supported on (a) NF and (b) CFC with the reference of standard powder diffraction card.

Figure S4. Low-magnification SEM images of Co_3O_4 wire arrays supported on different substrates: (a) NF and (b) CFC.

Figure S5. The typical chronoamperometric curve of Co_3O_4 /NF corresponding to the cathodic treatment at a constant potential of -1.5 V vs. Hg/HgO.

Figure S6. XRD patterns of Co₃O₄-CT1, and Co₃O₄-CT3 supported on CFC.

Figure S7. (a-c) CV curves of Co_3O_4 , Co_3O_4 -CT1, and Co_3O_4 -CT3 recorded with different scanning rate at the non-faradaic region; (d) linear fitting of the current density at 0.9 V vs RHE against different scan rates.

Figure S8. CV curves of Co_3O_4 , Co_3O_4 -CT1, and Co_3O_4 -CT3 measured in pure 1 M KOH solution at the scan rate of 10 mV/s.

Figure S9. (a) O 1s spectrum of Co_3O_4 -CT1 after CV the V-t test for UOR, and (b) EPR spectra Co_3O_4 -CT1 before and after the UOR test, with Co_3O_4 as a reference.

Figure S10. SEM images of Fe-Co₃O₄ nanosheet/wire arrays supported on NF.

Figure S11. EIS spectra of Fe-Co₃O₄ and Fe-Co₃O₄-CT1.

Catalysts	Substrate	Electrolyte	j (mA cm ⁻²)	Potential (V vs. RHE)	iR- Compensation	Reference
CoFeCr LDH	Nickel foam	1.0 M KOH 0.33 M urea	10	1.31	yes	Appl. Catal. B Environ. 2020, 272,118959.
NiMoO ₃ S	Nickel foam	1.0 M KOH 0.5 M urea	10	1.34	yes	Chem. Commun., 2020, 56 , 11038
Rh-NCs/NiO-NSs	Glassy carbon	1.0 M KOH 0.33 M urea	52.05	1.5	уе	Appl. Catal. B Environ. 2020, 265 , 118567
NiSe ₂ -NiO 350	Glassy carbon	1.0 M KOH 0.33 M urea	10	1.53	no	Appl. Catal. B Environ. 2020, 276 ,119165
V ₀ -rich CoMoO ₄	Nickel foam	1.0 M KOH 0.5 M urea	288	1.63	unknown	Appl. Catal. A: General, 2020, 602 , 117670.
Ni ₃ N	Nickel foam	1.0 M KOH 0.5 M urea	100	1.40	unknown	ACS Appl. Mater. Interfaces 2019, 11, 13168
Mo-Co-S-Se	Carbon fiber cloth	1.0 M KOH 0.5 M urea	10	1.40	unknown	ACS Sustainable Chem. Eng. 2019, 7, 16577
CoS ₂ -MoS ₂	Nickel foam	1.0 M KOH 0.5 M urea	10	1.29	yes	Adv. Energy Mater. 2018, 1801775
NiMoO-Ar	Nickel foam	1.0 M KOH 0.5 M urea	10	1.38	yes	Energy Environ. Sci. 2018, 11 , 1890
			100	1.42		
r-NiMoO₄	Nickel foam	1.0 M KOH 0.5 M urea	249.5	1.62	unknown	ACS Catal. 2018, 8 , 1
Ni-MOF	Nickel foam	1.0 M KOH 0.33 M urea	10	1.37	unknown	Chem. Commun. 2017, 53 , 10906
S-MnO ₂	Graphen- nickel foam	1.0 M KOH 0.5 M urea	10	1.33	yes	Angew. Chemie Int. Ed. 2016, 55 , 3804.
Rh-Ni electrode	Nickel foil	1.0 M KOH 0.3 M urea	50	1.40	unknown	J. Power Sources 2011, 196 , 9579
C0 ₃ O ₄ -CT1	Nickel foam	1.0 M KOH 0.5 M urea	100	1.34	yes	This work

 Table S1. Comparison of the electrocatalytic performance of UOR catalysts reported

recently.

Table S2. Fitting parameters obtained by the EIS spectra in Figure 3d with the proposed 2TS equivalent circuit.

Sample	R_{s}	R ₁	T_1	P ₁	R _{ct}	T_2	P ₂	C_{dl}^{*EIS}
Co ₃ O ₄	1.664	0.3338	0.0093	0.5708	0.6152	0.2704	0.8226	187.4
Co ₃ O ₄ -CT1	1.663	0.0615	0.4301	0.5089	0.5290	0.4869	0.7725	308.4
Co ₃ O ₄ -CT3	1.706	0.0644	0.7265	0.4895	0.57207	0.5201	0.7928	358.5
Fe-Co ₃ O ₄	1.714	0.4181	0.0062	0.6150	0.9869	0.2905	0.8454	221.1
Fe-Co ₃ O ₄ -CT1	1.849	0.0931	0.0312	0.7657	0.9634	0.4036	0.8818	338.9

Note: a) C_{dl}^{*EIS} was calculated by using equation 2; b) units for R and C_{dl}^{*EIS} are ohm (Ω) and mF cm⁻², respectively.