Supporting Information

Organocatalytic Asymmetric Friedel-Crafts Alkylation/ Hemiketalization/Lactonization Cascade Reactions: Highly Enantioselective Synthesis of Furo[2,3-*b*]benzofuranones

Kunhua Xu,^a Wenming Chen,^b Xu Chen,^a Biao Wang,^a Jun Huang^{*c} and Xu Tian^{*a}

^aKey Laboratory of Molecular Target & Clinical Pharmacologyand the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China. Email: xtian@gzhmu.edu.cn

^bDepartment of Pharmaceutical Production Center, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P. R. China.

^cSino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China E-mail: 2007990004@gzhmu.edu.cn.

Table of Contents

1.	General Information	S3
2.	General Procedure for the Asymmetric Synthesis of 3	S3
3.	Synthesis of 5	S16
4.	References	S17
5.	Crystal Data of 3j	S18
6.	¹ H NMR, ¹³ C NMR, and ¹⁹ F NMR Spectra	S20
7.	HPLC Chromatography	S49

1. General information

Catalytic reactions were carried out in Sealing tubes under an air atmosphere with dry toluene. All the 3-ylidene oxindole (1) ^[1] and 2-naphthol (2) ^[2] have been synthesized following procedures reported in the literature. Other chemical reagent was obtained from commercial sources and was used without further purification. The ¹H and ¹³C NMR spectra were recorded on JEOL at 400 MHz for ¹H or at 100 MHz for ¹³C, respectively. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signals of the solvent (CDCl₃ 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). Mass spectra and high-resolution mass spectra were measured on a Thermo-DFS mass spectrometer. Optical rotation data were examined in CHCl₃ solution at 25 °C and λ = 589 nm. For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel 60 GF₂₅₄, 0.25 mm) were used, Silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China) were used for general chromatography, using UV light as the visualizing agent. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

2. General Procedure for the Asymmetric Synthesis of 3.

The reaction was carried out with 3-ylideneoxidole **1** (0.1 mmol), 2-naphthol **2** (0.15 mmol) and catalyst **F** (3.2 mg, 5 mol %) in toluene (0.4 mL) at 0 °C for 48 h. The reaction mixture was direct purified by flash column chromatography on a silica gel (Petroleum Ether/EtOAc) to afford the desired product **3**.

Boc NH O Sa

tert-butyl (2-((7a*R*,10*S*,10a*S*)-9-oxo-7a-phenyl-7a,9,10,10a-tetrahydrofuro[2,3-*b*]n aphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3a)

The reaction was carried out following the general procedure to furnish the crude product. The reaction was carried out following the general procedure to furnish the crude product.

The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in

85% yield as white solid. The enantiomeric excess was determined to be 90% ee by HPLC analysis on a Daicel Chiralpak IA column: 95/5 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 215$ nm, $t_{minor} = 12.5$ min, $t_{major} = 15.0$ min; [α]_D²⁵ = -155.0 (c = 0.55, CHCl₃), m.p. 90 – 92 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.8 Hz, 2H), 7.82 (d, J = 8.0 Hz, 1H), 7.63 – 7.60 (m, 2H), 7.54 (br s, 1H), 7.52 – 7.48 (m, 3H), 7.46 – 7.39 (m, 2H), 7.37 – 7.32 (m, 2H), 7.24 (d, J = 8.0 Hz, 1H), 7.0 (t, J = 7.6 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 4.90 (d, J = 2.4 Hz, 1H), 4.69 (d, J = 2.4 Hz, 1H), 1.43 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 154.9, 153.8, 137.8, 137.3, 131.8, 130.7, 130.2, 129.6, 129.5, 129.2, 129.1, 128.4, 126.3, 125.5, 125.2, 124.5, 121.9, 118.4, 117.7, 112.3, 80.8, 55.5, 48.5, 28.4 ppm. HR-MS (ESI) *m/z* calcd for C₃₁H₂₇NO₅ [M+Na]⁺ 516.17814, found 516.17844.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-9-oxo-7a-(*o*-tolyl)-7a,9,10,10a-tetrahydrofuro[2,3-*b*] naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3b)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in 63% yield as white solid. The enantiomeric excess was determined to be 90% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, λ = 215 nm, t_{major} = 6.2 min, t_{minor} = 7.4 min; $[\alpha]_D^{25}$ = -76.0 (c = 0.37, CHCl₃), m.p. 88 – 90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.93 (m, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.65 (br s, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.46 – 7.40 (m, 2H), 7.36 – 7.30 (m, 4H), 7.28 – 7.24 (m, 2H), 6.86 (t, J = 7.6 Hz, 1H), 6.49 (d, J = 7.6 Hz, 1H), 4.93 (s, 1H), 4.76 (d, J = 1.2 Hz, 1H), 2.29 (s, 3H), 1.44 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 154.4, 153.9, 137.3, 136.3, 134.9, 132.6, 132.2, 130.8, 130.4, 129.6, 129.4, 129.0, 128.4, 127.0, 126.6, 126.3, 126.1, 125.8, 125.0, 124.5, 121.8, 118.4, 112.5, 80.8, 54.1, 47.5, 28.4, 20.5 ppm. HR-MS (ESI) m/z calcd for C₃₂H₂₉NO₅ [M+Na]⁺ 530.19379, found 530.19358.

Boc NH O Sc Me

tert-butyl (2-((7a*R*,10*S*,10a*S*)-9-oxo-7a-(*m*-tolyl)-7a,9,10,10a-tetrahydrofuro[2,3*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3c)

Boc NH of the reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in 61% yield as white solid. The enantiomeric excess was determined to be

88% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 254$ nm, $t_{minor} = 4.9$ min, $t_{major} = 6.1$ min, $[\alpha]_D^{25} = -118.0$ (c = 0.55, CHCl₃), m.p. 85 – 87 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.91 (m, 2H), 7.81 (d, J = 8.0 Hz, 1H), 7.54 (br s, 1H), 7.47 – 7.42 (m, 2H), 7.40 – 7.36 (m, 4H), 7.35 – 7.30 (m, 3H), 7.23 (d, J = 8.0 Hz, 1H), 7.00 (t, J = 7.2 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 4.88 (d, J = 2.4 Hz, 1H), 4.67 (d, J = 2.8 Hz, 1H), 2.40 (s, 3H), 1.42 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 154.9, 153.8, 139.0, 137.7, 137.3, 131.7, 130.9, 130.7, 129.6, 129.5, 129.1, 129.0, 128.4, 126.4, 126.1, 125.2, 124.5, 122.6, 121.9, 118.4, 117.8, 112.3, 80.8, 55.4, 48.4, 28.4, 21.6 ppm. HR-MS (ESI) *m*/*z* calcd for C₃₂H₂₉NO₅ [M+Na]⁺ 530.19379, found 530.19365.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-9-oxo-7a-(*p*-tolyl)-7a,9,10,10a-tetrahydrofuro[2,3-*b*] naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3d)

The reaction was carried out following the general procedure to furnish the crude $_{34}$ The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in 63% yield as white solid. The enantiomeric excess was determined to be 86% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 215$ nm, $t_{minor} = 8.5$ min, $t_{major} = 9.7$ min, $[\alpha]_D^{25} = -96.0$ (c = 0.53, CHCl₃), m.p. 126 – 128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.90 (m, 2H), 7.81 (d, J = 8.0 Hz, 1H), 7.55 (br s, 1H), 7.50 – 7.47 (m, 2H), 7.45 – 7.38 (m, 2H), 7.37 – 7.33 (m, 1H), 7.30 (t, J = 9.2 Hz, 3H), 7.23 (d, J = 8.4 Hz, 1H), 7.01 (td, J = 8.0, 0.8 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 4.87 (d, J = 2.8 Hz, 1H), 4.67 (d, J = 2.8 Hz, 1H), 2.44 (s, 3H), 1.42 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 154.9, 153.8, 140.2, 137.2, 134.9, 131.7, 130.6, 129.72, 129.65, 129.5, 129.1, 128.4, 126.4, 125.4, 125.2, 124.4, 121.9, 118.5, 118.0, 112.3, 80.7, 55.4, 48.5, 28.3, 21.4 ppm. HR-MS (ESI) m/z calcd for C₃₂H₂₉NO₅ [M+Na]⁺ 530.19379, found 530.19358.

Boc NH O Se OMe

tert-butyl (2-((7a*R*,10*S*,10a*S*)-7a-(4-methoxyphenyl)-9-oxo-7a,9,10,10a-tetrahyd rofuro[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3e)

The reaction was carried out following the general procedure to furnish the crude $_{3e}$ $_{OMe}$ The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 20:1) in 73% yield as white solid. The enantiomeric excess was determined to be 93% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 hexane/i-PrOH, flow rate 1.00 mL/min, $\lambda = 215$ nm, $t_{minor} = 11.0$ min, $t_{major} = 14.7$ min; $[\alpha]_D^{25} = -85.0$ (c = 0.5, CHCl₃), m.p. 130 – 132 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.90 (m, 2H), 7.82 (d, J = 7.6 Hz, 1H), 7.57 (br s, 1H), 7.53 (dd, J = 6.4, 2.4 Hz, 2H), 7.47 – 7.39 (m, 2H), 7.37 – 7.33 (m, 1H), 7.31 (d, J = 8.8 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.03 (dd, J = 7.2, 1.2 Hz, 1H), 6.99 (dd, J = 6.8, 2.0 Hz, 2H), 6.82 (d, J = 7.6 Hz, 1H), 4.87 (d, J = 2.8 Hz, 1H), 4.68 (d, J = 2.4Hz, 1H), 3.87 (s, 3H), 1.43 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 160.9, 154.8, 153.9, 137.2, 131.7, 130.6, 129.8, 129.6, 129.5, 129.1, 128.3, 127.0, 126.4, 125.3, 124.4, 121.9, 118.4, 118.0, 114.3, 112.3, 80.8, 55.6, 55.3, 48.5, 28.3 ppm. HR-MS (ESI) *m*/*z* calcd for C₃₂H₂₉NO₆ [M+Na]⁺ 546.18871, found 546.18845.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-7a-(2-fluorophenyl)-9-oxo-7a,9,10,10a-tetrahydrofur o[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3f)

The reaction was carried out following the general procedure to furnish the crude product.

The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in 80% yield as white solid. The enantiomeric excess was determined to be 90% ee by HPLC analysis on a Daicel Chiralpak IA column: 90/10 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, λ = 254 nm, $t_{\text{minor}} = 7.7$ min, $t_{\text{major}} = 9.1$ min; $[\alpha]_D^{25} = -74.0$ (c = 0.52, CHCl₃), m.p. 93 – 95 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.90 (m, 2H), 7.81 (d, J = 8.0 Hz, 1H), 7.74 (td, J = 7.6, 1.6 Hz, 1H), 7.56 – 7.47 (m, 2H), 7.46 – 7.39 (m, 2H), 7.36 – 7.32 (m, 1H), 7.31 – 7.28 (m, 2H), 7.24 – 7.21 (m, 1H), 6.99 (t, J = 7.2 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 5.09 (s, 1H), 4.71 (d, J = 2.8 Hz, 1H), 1.43 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ ¹³C NMR (101 MHz,) δ 175.3, 160.3 (d, $J_{CF} = 250.7$ Hz), 154.4, 153.8, 137.3, 132.4 (d, $J_{CF} = 8.5$ Hz), 131.7, 130.7, 129.6, 129.5, 129.1, 128.3, 127.6 (d, $J_{CF} = 2.5$ Hz), 125.8, 125.3, 125.1, 125.0, 124.6 (d, $J_{CF} = 3.9$ Hz), 124.4, 121.9, 118.5, 116.9 (d, $J_{CF} = 20.7$ Hz), 115.5 (d, $J_{CF} = 1.7$ Hz), 112.2, 80.8, 54.2, 47.7, 28.4 ppm.¹⁹F NMR (376 MHz, CDCl₃) δ -112.431 ppm. HR-MS (ESI) *m*/*z* calcd for C₃₁H₂₆FNO₅ [M+Na]⁺ 534.16872, found 534.16898.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-7a-(4-fluorophenyl)-9-oxo-7a,9,10,10a-tetrahydrofu ro[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3g)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in 84% yield as white solid. The enantiomeric excess was determined to be 91% ee by HPLC analysis on a Daicel Chiralpak IA column: 80/20 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 215$ nm, $t_{minor} = 12.8$ min, $t_{major} = 15.6$ min; $[\alpha]_D^{25} = -129.0$ (c = 0.5, CHCl₃), m.p. 88 – 89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.62 – 7.58 (m, 2H), 7.49 (br s, 1H), 7.48 – 7.41 (m, 2H), 7.39 – 7.35 (m, 1H), 7.31 (d, J = 8.8 Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H), 7.20 – 7.15 (m, 2H), 7.01 (td, J = 7.6, 0.8 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 4.84 (d, J = 2.8 Hz, 1H), 4.66 (d, J = 2.8 Hz, 1H), 1.40 (s, 9H) ppm. ¹³C NMR (100 MHz,CDCl₃) δ 175.7, 163.8 (d, $J_{CF} = 250.0$ Hz), 154.7, 153.9, 137.3, 133.9 (d, $J_{CF} = 3.3$ Hz), 131.7, 130.7, 129.6, 129.4 (d, $J_{CF} = 23.4$ Hz), 128.2, 127.7 (d, $J_{CF} = 8.6$ Hz), 126.2, 125.3, 124.6, 121.9, 118.3, 117.3, 116.3, 116.1, 112.2, 80.8, 55.5, 48.4, 28.4 ppm. ¹⁹F NMR (376 MHz,CDCl₃) δ -110.712 ppm. HR-MS (ESI) *m*/z calcd for C₃₁H₂₆FNO₅ [M+Na]⁺ 534.16872, found 534.16845.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-7a-(2-chlorophenyl)-9-oxo-7a,9,10,10a-tetrahydrofur o[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3h)

The reaction was carried out following the general procedure to furnish the crude product.

The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in 64% yield as white solid. The enantiomeric excess was determined to be 91% ee by HPLC analysis on a Daicel Chiralpak IC column: 95/5 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, λ = 254 nm, t_{major} = 8.5 min, t_{minor} = 9.3 min; $[\alpha]_D^{25}$ = -59.0 (c = 0.53, CHCl₃), m.p. 97 – 98 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.83 – 7.79 (m, 2H), 7.63 (br s, 1H), 7.58 (dd, J = 8.0, 1.2 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.45 – 7.41 (m, 1H), 7.40 – 7.29 (m, 4H), 6.90 (t, J = 8.0 Hz, 1H), 6.58 (d, J = 8.0 Hz, 1H), 5.26 (d, J = 1.6 Hz, 1H), 4.77 (d, J = 2.0 Hz, 1H), 1.45 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 154.8, 153.8, 137.3, 134.2, 132.9, 131.8, 131.71, 131.68, 130.8, 129.6, 129.5, 129.1, 128.4, 128.3, 127.3, 125.7, 125.0, 124.4, 121.9, 118.5, 116.9, 112.4, 80.8, 53.4, 47.2, 28.4 ppm. HR-MS (ESI) *m/z* calcd for C₃₁H₂₆ClNO₅ [M+Na]⁺ 550.13917, found 550.13946

tert-butyl (2-((7a*R*,10*S*,10a*S*)-7a-(4-chlorophenyl)-9-oxo-7a,9,10,10a-tetrahydrofu ro[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3i)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum

Ether/Ethyl Acetate = 40:1) in 76% yield as white solid. The enantiomeric excess was determined to be 93% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 215$ nm, $t_{minor} = 8.6$ min, $t_{major} = 9.9$ min; $[\alpha]_D^{25} = -57.0$ (c = 0.5, CHCl₃), m.p. 92 – 94 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 7.2 Hz, 1H), 7.47 (dd, J = 6.8, 2.0 Hz, 2H), 7.41 – 7.35 (m, 4H), 7.34 – 7.26 (m, 2H), 7.23 (d, J = 9.2 Hz, 1H), 7.14 (d, J = 8.0 Hz, 1H), 6.97 (t, J = 7.6 Hz, 1H), 6.70 (d, J = 8.0 Hz, 1H), 4.78 (d, J = 2.0 Hz, 1H), 4.59 (d, J = 2.8 Hz, 1H), 1.34 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 153.5, 152.6, 136.0, 135.23, 135.16, 130.7, 129.5, 128.3, 128.2, 127.3, 125.9, 125.0, 124.2, 123.4, 120.7, 117.0, 116.0, 111.0, 79.7, 54.2, 47.2, 27.2 ppm. HR-MS (ESI) m/z calcd for C₃₁H₂₆ClNO₅ [M+Na]⁺ 550.13917, found 550.13931.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-7a-(4-bromophenyl)-9-oxo-7a,9,10,10a-tetrahydrof uro[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3j)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in 88% yield as white solid. The enantiomeric excess was determined to be 92% ee by HPLC analysis on a Daicel Chiralpak IA column: 95/5 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 215$ nm, $t_{minor} = 20.7$ min, $t_{major} = 22.1$ min; $[\alpha]_D^{25} = -33.0$ (c = 0.5, CHCl₃), m.p. 90 – 92 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.8 Hz, 2H), 7.81 (d, J = 7.6 Hz, 1H), 7.62 (dd, J = 6.8, 2.0 Hz, 2H), 7.49 – 7.45 (m, 3H), 7.44 – 7.35 (m, 3H), 7.31 (d, J = 8.8 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.05 (td, J = 7.6, 0.8 Hz, 1H), 6.79 (d, J = 7.6 Hz, 1H), 4.84 (d, J = 2.8 Hz, 1H), 4.66 (d, J = 2.8 Hz, 1H), 1.41 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 154.7, 153.8, 137.2, 137.0, 132.3, 131.9, 130.7, 129.6, 129.5, 129.3, 128.5, 127.3, 126.2, 125.5, 124.6, 121.9, 118.3, 117.2, 112.2, 80.9, 55.4, 48.5, 28.3 ppm. HR-MS (ESI) *m/z* calcd for C₃₁H₂₆BrNO₅ [M+Na]⁺ 594.08866, found 594.08910.

tert-butyl (2-((7aR,10S,10aS)-7a-(4-nitrophenyl)-9-oxo-7a,9,10,10a-tetrahydrofu ro[2,3-b]naphtho[1,2-d]furan-10-yl)phenyl)carbamate (3k)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum

Ether/Ethyl Acetate = 30:1) in 91% yield as white solid. The enantiomeric excess was determined to be 94% ee by HPLC analysis on a Daicel Chiralpak IA column: 90/10 n-hexane/i-PrOH, flow rate 1.00 mL/min, $\lambda = 215$ nm, $t_{\text{minor}} = 20.1$ min, $t_{\text{maior}} = 23.9$ min; $[\alpha]_D^{25} = -44.0$ (c = 0.5, CHCl₃), m.p. 105 - 106 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.36 – 8.33 (dd, J = 10.8, 2.4 Hz, 2H), 7.96 – 7.93 (m, 2H), 7.82 – 7.79 (m, 3H), 7.48 - 7.43 (m, 2H), 7.39 (t, J = 8.0 Hz, 2H), 7.33 (d, J = 9.2 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 4.88 (d, J = 2.8 Hz, 1H), 4.67 (d, J = 3.2 Hz, 1H), 1.41 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 154.6, 153.8, 149.1, 144.5, 137.2, 132.2, 130.8, 129.6, 129.53, 129.49, 128.7, 126.9, 125.6, 124.8, 124.3, 121.9, 118.0, 116.3, 112.1, 81.0, 55.6, 48.6, 28.3 ppm. HR-MS (ESI) m/z calcd for C₃₁H₂₆N₂O₇ [M+Na]⁺ 561.16322, found 561.15395.

tert-butyl (2-((7aR,10S,10aS)-9-oxo-7a-(4-(trifluoromethyl)phenyl)-7a,9,10,10a-t etrahydrofuro[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (31)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 30:1) in 71% yield as white solid. The enantiomeric excess was determined to be 92% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 n-hexane/i-PrOH, flow rate 1.00 mL/min, $\lambda = 254$ nm, $t_{\text{minor}} = 6.9$ min, $t_{\text{maior}} = 12.7$ min; $[\alpha]_{\text{D}}^{25} = -125.0$ (c = 0.5, CHCl₃), m.p. 140 - 141 ^oC. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 9.2 Hz, 2H), 7.73 (d, J = 8.0 Hz, 1H), 7.67 (dd, J = 11.2, 8.8 Hz, 4H), 7.40 - 7.28 (m, 4H), 7.25 (d, J = 8.8 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 6.96 (t, J = 7.6 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 4.80 (d, J = 2.4 Hz, 1H), 4.59 (d, J = 2.8 Hz, 1H), 1.33 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 154.7, 153.8, 141.7, 137.2, 132.4 (q, J = 32.7 Hz), 132.0, 130.7, 129.5, 129.4, 128.6, 126.1, 125.5, 124.7, 123.8 (q, *J* = 272.5 Hz), 121.9, 118.1, 116.8, 112.1, 80.9, 55.5, 48.5, 28.3 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.669 ppm. HR-MS (ESI) m/z calcd for C₃₂H₂₆F₃NO₅ [M+Na]⁺ 584.16553, found 584.16492.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-7a-(naphthalen-2-yl)-9-oxo-7a,9,10,10a-tetrahydr ofuro[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3m)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum

Ether/Ethyl Acetate = 30:1) in 92% yield as white solid. The enantiomeric excess was determined to be 90% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 215$ nm, $t_{major} = 8.7$ min, $t_{minor} = 14.4$ min; $[\alpha]_D^{25} = -89.0$ (c = 0.56, CHCl₃), m.p. 100 – 102 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.99 – 7.89 (m, 5H), 7.81 (d, J = 8.0 Hz, 1H), 7.64 – 7.52 (m, 4H), 7.49 – 7.41 (m, 2H), 7.36 (d, J = 8.8 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.26 – 7.25 (m, 2H), 6.89 (t, J = 7.6 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 5.00 (d, J = 2.4 Hz, 1H), 4.73 (d, J = 2.4 Hz, 1H), 1.42 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 154.9, 153.9, 137.2, 134.9, 134.0, 132.9, 131.8, 130.7, 129.7, 129.5, 129.4, 129.1, 128.9, 128.4, 127.9, 127.5, 127.1, 126.3, 125.4, 125.1, 124.5, 122.6, 122.0, 118.5, 117.9, 112.3, 80.8, 55.4, 48.5, 28.3 ppm. HR-MS (ESI) m/z calcd for C₃₅H₂₉NO₅ [M+Na]⁺ 566.19379, found 566.19430.

tert-butyl (2-((7aS,10S,10aS)-7a-methyl-9-oxo-7a,9,10,10a-tetrahydrofuro[2,3-*b*]nap htho[1,2-*d*]furan-10-yl)phenyl)carbamate (3n)

The reaction was carried out following the general procedure to furnish the crude product.

³ⁿ The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 30:1) in 60% yield as white solid. The enantiomeric excess was determined to be 83% ee by HPLC analysis on a Daicel Chiralpak AD column: 95/5 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, λ = 254 nm, t_{minor} = 11.1 min, t_{major} = 21.3 min; $[\alpha]_D{}^{25}$ = -118.0 (c = 0.5, CHCl₃), m.p. 150 – 152 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.81 (m, 3H), 7.47 – 7.35 (m, 5H), 7.29 (d, J =7.6 Hz, 1H), 7.20 (d, J = 8.8 Hz, 2H), 4.64 (d, J = 3.6 Hz, 1H), 4.46 (d, J = 3.6 Hz, 1H), 2.12 (s, 3H), 1.43 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 154.4, 154.0, 137.2, 131.4, 130.4, 129.7, 129.38, 129.36, 128.2, 126.6, 125.6, 124.3, 122.1, 119.0, 117.9, 112.2, 80.9, 52.2, 49.6, 28.4, 24.8 ppm. HR-MS (ESI) *m/z* calcd for C₂₆H₂₅NO₅ [M+Na]⁺ 454.16249, found 454.16281.

tert-butyl (4-methoxy-2-((7a*R*,10*S*,10a*S*)-9-oxo-7a-phenyl-7a,9,10,10a-tetrahydrof uro[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (30)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl

Acetate = 20:1) in 90% yield as white solid. The enantiomeric excess was determined to be 90% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 n-hexane/*i*-PrOH, flow rate 1.00 mL/min, λ = 215 nm, t_{major} = 9.1 min, t_{minor} = 11.7 min; $[\alpha]_D^{25}$ = -172.0 (c = 0.5, CHCl₃), m.p. 103 – 105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.90 (m, 2H), 7.67 – 7.65 (m, 2H), 7.58 (d, J = 7.2 Hz, 1H), 7.52 – 7.49 (m, 3H), 7.46 (d, J = 7.2 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 7.32 – 7.30 (m, 2H), 7.09 (br s, 1H), 6.87 (dd, J = 8.8, 2.8 Hz, 1H), 6.25 (d, J = 2.4 Hz, 1H), 4.85 (d, J = 1.6 Hz, 1H), 4.69 (d, J = 2.4 Hz, 1H), 3.33 (s, 3H), 1.39 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 157.5, 154.8, 154.4, 138.1, 131.8, 130.7, 130.2, 129.7, 129.6, 129.5, 129.2, 128.7, 128.4, 125.7, 124.5, 122.0, 118.3, 117.5, 115.6, 112.2, 110.9, 80.5, 56.0, 55.1, 48.5, 28.4 ppm. HR-MS (ESI) m/zcalcd for C₃₂H₂₉NO₆ [M+Na]⁺ 546.18871, found 546.18895.

tert-butyl (5-chloro-2-((7a*R*,10*S*,10a*S*)-9-oxo-7a-phenyl-7a,9,10,10a-tetrahydrofur o[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3p)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in 84% yield as white solid. The enantiomeric excess was determined to be 93% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 254$ nm, $t_{minor} = 5.1$ min, $t_{major} = 5.5$ min; $[\alpha]_D^{25} = -86.0$ (c = 0.5, CHCl₃), m.p. 113 – 114 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.92 (m, 3H), 7.73 (br s, 1H), 7.60 – 7.58 (m, 2H), 7.53 – 7.49 (m, 3H), 7.48 – 7.41 (m, 2H), 7.33 (d, J = 9.2 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 6.95 (dd, J = 8.8, 2.4 Hz, 1H), 6.67 (d, J = 8.8 Hz, 1H), 4.86 (d, J = 2.4 Hz, 1H), 4.61 (d, J = 2.8 Hz, 1H), 1.44 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 154.9, 153.4, 138.6, 137.6, 134.9, 131.9, 130.7, 130.3, 129.6, 129.5, 129.2, 128.5, 127.2, 125.5, 125.3, 124.9, 124.6, 121.7, 118.0, 117.8, 112.3, 81.3, 55.4, 48.0, 28.3 ppm. HR-MS (ESI) m/z calcd for C₃₁H₂₆ClNO₅ [M+Na]⁺ 550.13917, found 550.13945.

tert-butyl (5-bromo-2-((7a*R*,10*S*,10a*S*)-9-oxo-7a-phenyl-7a,9,10,10a-tetrahydrofu ro[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3q)

1 mmol scale reaction: The reaction was carried out with 3-ylideneoxidole **1q** (1 mmol, 427mg), 2-naphthol **2g** (1.5 mmol, 216mg) and catalyst **F** (32 mg, 5 mol %) in toluene

(4 mL) at 0 °C for 48 h following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in 89% yield as white solid. The enantiomeric excess was determined to be 94% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 254$ nm, $t_{minor} = 5.3$ min, $t_{major} = 5.8$ min; $[\alpha]_{D}^{25} = -67.0$ (c = 0.5, CHCl₃), m.p. 120 – 122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.94 – 7.92 (m, 2H), 7.72 (br s, 1H), 7.60 – 7.58 (m, 2H), 7.52 – 7.46 (m, 4H), 7.45 – 7.41 (m, 1H), 7.33 (d, J = 9.2 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.10 (dd, J = 8.4, 2.0 Hz, 1H), 6.61 (d, J = 8.8 Hz, 1H), 4.85 (d, J = 2.0 Hz, 1H), 4.60 (d, J = 2.4 Hz, 1H), 1.44 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 154.8, 153.3, 138.7, 137.4, 131.9, 130.7, 130.3, 129.6, 129.5, 129.2, 128.5, 128.0, 127.8, 127.4, 125.4, 124.6, 122.8, 121.7, 117.9, 117.8, 112.3, 81.3, 55.2, 48.0, 28.3 ppm. HR-MS (ESI) *m/z* calcd for C₃₁H₂₆BrNO₅ [M+Na]⁺ 594.08866, found 594.08910.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-3-methoxy-9-oxo-7a-phenyl-7a,9,10,10a-tetrahydrof uro[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3r)

The reaction was carried out following the general procedure, but running the reaction over 72 hours, to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 20:1) in 62% yield as white solid. The enantiomeric excess was determined to be 90% ee by HPLC analysis on a Daicel Chiralpak AD column: 95/5 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 215$ nm, $t_{minor} = 31.3$ min, $t_{major} = 35.0$ min; $[\alpha]_D^{25} = -156.0$ (c = 0.5, CHCl₃), m.p. 95 – 96 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 9.2 Hz, 2H), 7.61 – 7.59 (m, 2H), 7.53 (br s, 1H), 7.51 – 7.48 (m, 3H), 7.36 – 7.32 (m, 1H), 7.28 (d, J = 8.8 Hz, 1H), 7.24 (t, J = 1.2 Hz, 1H), 7.14 (d, J = 1.2 Hz, 2H), 6.98 (t, J = 7.2 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 4.85 (d, J = 2.8 Hz, 1H), 3.91 (s, 3H), 1.43 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 156.7, 153.9, 153.3, 137.9, 137.3, 131.8, 130.2, 130.1, 129.2, 129.1, 126.4, 125.6, 125.2, 124.9, 123.3, 112.6,

107.9, 80.8, 55.6, 55.5, 48.6, 28.4 ppm. HR-MS (ESI) *m*/*z* calcd for C₃₂H₂₉NO₆ [M+Na]⁺ 546.18871, found 546.18859.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-2-methoxy-9-oxo-7a-phenyl-7a,9,10,10a-tetrahydrof uro[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3s)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl

Acetate = 20:1) in 67% yield as white solid. The enantiomeric excess was determined to be 95% eeby HPLC analysis on a Daicel Chiralpak IA column: 95/5 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, λ = 215 nm, *t*_{minor} = 12.0 min, *t*_{major} = 15.8 min; [α]_D²⁵ = -237.0 (*c* = 0.5, CHCl₃), m.p. 85 – 87 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.8 Hz, 1H), 7.78 (d, *J* = 9.2 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.63 – 7.61 (m, 2H), 7.51 – 7.48 (m, 3H), 7.34 (td, *J* = 8.0, 1.2 Hz, 1H), 7.24 (br s, 1H), 7.16 (d, *J* = 8.8 Hz, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 7.01 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.33 (d, *J* = 2.4 Hz, 1H), 4.80 (d, *J* = 3.2 Hz, 1H), 4.64 (d, *J* = 3.6 Hz, 1H), 3.54 (s, 3H), 1.39 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 159.6, 155.6, 153.8, 138.1, 137.1, 131.2, 131.0, 130.2, 129.11, 129.10, 126.9, 126.6, 125.9, 125.5, 125.4, 117.9, 117.6, 117.5, 109.4, 99.8, 80.9, 55.5, 55.2, 48.4, 28.3 ppm. HR-MS (ESI) *m*/*z* calcd for C₃₂H₂₉NO₆ [M+Na]⁺ 546.18871, found 546.18866.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-9-oxo-3,7a-diphenyl-7a,9,10,10a-tetrahydrofuro[2,3*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3t)

The reaction was carried out following the general procedure to furnish the crude product. Boc M_{31} The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in 67% yield as white solid. The enantiomeric excess was determined to be 91% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, λ = 254 nm, t_{minor} = 8.5 min, t_{major} = 9.4 min; $[\alpha]_D^{25}$ = -198.0 (c = 0.5, CHCl₃), m.p. 120 – 122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 1.6 Hz, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.73 (dd, J = 8.4, 1.6 Hz, 1H), 7.68 – 7.66 (m, 2H), 7.64 – 7.61 (m, 2H), 7.57 (br s, 1H), 7.52 – 7.50 (m, 3H), 7.49 – 7.46 (m, 2H), 7.40 – 7.34 (m, 3H), 7.31 (d, J = 8.8 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 4.92 (d, J = 2.4 Hz, 1H), 4.71 (d, J = 2.8 Hz, 1H), 1.42 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 155.0, 153.9, 140.7, 137.7, 137.3, 137.2, 132.1, 131.0, 130.2, 129.2, 129.1, 128.7, 128.1, 127.6, 127.3, 126.3, 125.5, 125.3, 122.5, 118.4, 117.8, 112.7, 80.8, 55.4, 48.5, 28.3 ppm. HR-MS (ESI) *m/z* calcd for C₃₇H₃₁NO₅ [M+Na]⁺ 592.20944, found 592.20903.

tert-butyl (2-((7aR,10S,10aS)-9-oxo-2,7a-diphenyl-7a,9,10,10a-tetrahydrofuro[2,3b]naphtho[1,2-d]furan-10-yl)phenyl)carbamate (3u)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 40:1) in 76% yield as white solid. The enantiomeric excess was determined to be 95% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 n-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 254$ nm, $t_{major} = 12.0$ min, $t_{minor} = 23.7$ min; $[\alpha]_D^{25} = -368.0$ (c = 0.57, CHCl₃), m.p. 112 – 114 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.84 (d, J = 5.2 Hz, 1H), 7.68 (dd, J = 8.8, 2.0 Hz, 1H), 7.64 – 7.62 (m, 2H), 7.52 – 7.49 (m, 3H), 7.45 – 7.31 (m, 9H), 7.32 – 7.30 (m, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 4.90 (d, J = 2.8 Hz, 1H), 4.80 (s, 1H), 1.37 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 155.3, 153.6, 141.2, 140.4, 137.8, 137.2, 131.4, 130.2, 130.0, 129.7, 129.2, 129.1, 127.9, 127.6, 126.5, 125.5, 125.2, 124.3, 119.8, 118.8, 117.8, 112.2, 80.8, 55.4, 48.7, 28.3 ppm. HR-MS (ESI) m/z calcd for C₃₇H₃₁NO₅ [M+Na]⁺592.20944, found 592.20890.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-3-bromo-9-oxo-7a-phenyl-7a,9,10,10a-tetrahydrofur o[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3y)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 30:1) in 61% yield as white solid. The enantiomeric excess was determined to

be 92% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 254$ nm, $t_{\text{minor}} = 6.5$ min, $t_{\text{major}} = 10.4$ min; $[\alpha]_D^{25} = -149.0$ (c = 0.5, CHCl₃), m.p. 88 – 90 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 2.0 Hz, 1H), 7.75 (d, J = 9.2 Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.54 – 7.51 (m, 2H), 7.46 – 7.41 (m, 4H), 7.31 – 7.28 (m, 1H), 7.28 – 7.25 (m, 1H), 7.02 (d, J = 9.2 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.69 (d, J = 8.0 Hz, 1H), 4.77 (d, J = 2.8 Hz, 1H), 4.53 (d, J = 2.8 Hz, 1H), 1.35 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 154.0, 152.7, 136.4, 135.9, 130.6, 130.5, 130.3,

129.7, 129.1, 128.1, 128.0, 126.9, 125.2, 124.4, 124.3, 122.5, 117.7, 117.0, 116.5, 112.2, 79.8, 54.3, 47.3, 27.2 ppm. HR-MS (ESI) *m*/*z* calcd for C₃₁H₂₆BrNO₅ [M+Na]⁺ 594.08866, found 594.07169.

tert-butyl (2-((7a*R*,10*S*,10a*S*)-2-bromo-9-oxo-7a-phenyl-7a,9,10,10a-tetrahydrofur o[2,3-*b*]naphtho[1,2-*d*]furan-10-yl)phenyl)carbamate (3w)

tert-butyl (2-((3*S*,3a*S*,8a*R*)-4,6-dimethoxy-2-oxo-8a-phenyl-2,3,3a,8a-tetrahydrof uro[2,3-*b*]benzofuran-3-yl)phenyl)carbamate (3x)

The reaction was carried out following the general procedure to furnish the crude product. The title compound was isolated by column chromatography (Petroleum Ether/Ethyl Acetate = 20:1) in 85% yield as white solid. The enantiomeric excess was determined to be 96% ee by HPLC analysis on a Daicel Chiralpak IC column: 90/10 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 215$ nm, $t_{minor} = 14.8$ min, $t_{major} = 16.6$ min; $[\alpha]_D^{25} = +39.0$ (c = 0.5, CHCl₃), m.p. 92 – 94 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 1H), 7.71 (s, 1H), 7.53 – 7.50 (m, 2H), 7.42 – 7.38 (m, 3H), 7.25 – 7.21 (m, 1H), 6.87 – 6.83 (m, 1H), 6.71 (dd, J = 8.0, 1.2 Hz, 1H), 6.23 (dd, J = 5.6, 2.0 Hz, 2H), 4.50 (d, J = 2.0 Hz, 1H), 4.30 (d, J = 1.6 Hz, 1H), 3.92 (s, 3H), 3.82 (s, 3H), 1.54 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 163.4, 159.0, 156.5, 153.5, 137.4, 136.7, 130.0, 128.8, 128.6, 127.0,

126.8, 125.6, 124.2, 124.0, 118.0, 105.5, 93.4, 89.3, 80.9, 56.2, 55.9, 54.3, 48.2, 28.5 ppm. HR-MS (ESI) *m/z* calcd for C₂₉H₂₉NO₇ [M+Na]⁺ 526.18362, found 526.18307.

3. Synthesis of 5

To solution of **3q** (114.2 mg, 0.2 mmol) in toluene (4 mL) was added DIBAL-H (1.0 mol/L in hexanes) at -78 °C and stirred until completed disappearance of the starting material (monitored by TLC, 8 h). Then the reaction was quenched by saturated ammonium chloride. The mixture was extracted with ethyl acetate and the organic phase was washed with saturated ammonium chloride, dried over Na₂SO₄, filtered and evaporated. The crude product was dissolved in a CH₂Cl₂ (2 ml) solution of Et₃N (30.3 mg, 0.3 mmol) and DMAP (2.5 mg, 0.02 mmol). Then methanesulfonyl chloride (23 mg, 0.2 mmol) was added dropwise at 0 °C. The reaction mixture was stirred at rt until complete disappearance of the starting materials (monitored by TLC, 14 h). Then saturated ammonium chloride was added to quench the reaction. The mixture was extracted with EA and washed with saturated sodium chloride, the organic phase was dried over Na₂SO₄. After evaporation of the volatile, the residue was purified by silica gel column chromatography (Petroleum Ether/EtOAc = 20:1) to obtained the product 5 in 30% yield as a white solid. The enantiomeric excess was determined to be 94% ee by HPLC analysis on a Daicel Chiralpak AD column: 80/20 *n*-hexane/*i*-PrOH, flow rate 1.00 mL/min, $\lambda = 254$ nm, $t_{\text{maior}} = 4.1$ min, $t_{\text{minor}} = 5.4$ min; $[\alpha]_{D}^{25} = +304.0 \ (c = 0.5, \text{ CHCl}_3), \text{ m.p. } 148 - 150 \ ^{\circ}\text{C}. \ ^{1}\text{H NMR} \ (400 \text{ MHz}, \text{CDCl}_3) \ \delta \ 8.20 \ (\text{br s}, \ 1\text{H}), 7.91 \ (c = 0.5, \ \text{CHCl}_3), \text{ m.p. } 148 - 150 \ ^{\circ}\text{C}. \ ^{1}\text{H NMR} \ (400 \text{ MHz}, \ \text{CDCl}_3) \ \delta \ 8.20 \ (\text{br s}, \ 1\text{H}), 7.91 \ (c = 0.5, \ \text{CHCl}_3), \text{ m.p. } 148 - 150 \ ^{\circ}\text{C}. \ ^{1}\text{H NMR} \ (400 \text{ MHz}, \ \text{CDCl}_3) \ \delta \ 8.20 \ (\text{br s}, \ 1\text{H}), 7.91 \ (c = 0.5, \ \text{CHCl}_3), \text{ m.p. } 148 - 150 \ ^{\circ}\text{C}. \ ^{1}\text{H NMR} \ (400 \text{ MHz}, \ \text{CDCl}_3) \ \delta \ 8.20 \ (\text{br s}, \ 1\text{H}), 7.91 \ (c = 0.5, \ \text{CHCl}_3), \text{ m.p. } 148 - 150 \ ^{\circ}\text{C}. \ ^{1}\text{H NMR} \ (400 \text{ MHz}, \ \text{CDCl}_3) \ \delta \ 8.20 \ (\text{br s}, \ 1\text{H}), 7.91 \ (c = 0.5, \ \text{CHCl}_3), \text{ m.p. } 148 - 150 \ ^{\circ}\text{C}. \ ^{1}\text{H NMR} \ (400 \text{ MHz}, \ \text{CDCl}_3) \ \delta \ 8.20 \ (\text{br s}, \ 1\text{H}), 7.91 \ (c = 0.5, \ \text{CHCl}_3), \text{ m.p. } 148 - 150 \ ^{\circ}\text{C}. \ ^{1}\text{H NMR} \ (400 \text{ MHz}, \ \text{CDCl}_3) \ \delta \ 8.20 \ (\text{br s}, \ 1\text{H}), 7.91 \ (c = 0.5, \ \text{CHCl}_3), \text{ m.p. } 148 - 150 \ ^{\circ}\text{C}. \ ^{\circ}\text{C}. \ ^{\circ}\text{H NMR} \ (400 \text{ MHz}, \ \text{CDCl}_3) \ \delta \ 8.20 \ (\text{br s}, \ 1\text{H}), 7.91 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (\text{br s}, \ 1\text{H}), 7.91 \ (c = 0.5, \ \text{CHCl}_3), \text{ m.p. } 148 - 150 \ ^{\circ}\text{C}. \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (\text{br s}, \ 1\text{H}), 7.91 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3) \ \delta \ 8.20 \ (c = 0.5, \ \text{CHCl}_3)$ (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 7.2 Hz, 1H), 7.43 - 7.39(m, 1H), 7.33 (dd, J = 12.4, 8.4 Hz, 2H), 7.26 – 7.25 (m, 1H), 7.24 – 7.22 (m, 5H), 6.35 (s, 1H), 4.51 (s, 1H), 7.24 – 7.22 (m, 5H), 6.35 (s, 1H), 4.51 (s, 1H), 7.24 – 7.22 (m, 5H), 6.35 (s, 1H), 4.51 (s, 1H), 7.24 – 7.22 (m, 5H), 6.35 (s, 1H), 4.51 (s, 1H), 7.24 – 7.22 (m, 5H), 6.35 (s, 1H), 4.51 (s, 1H), 7.24 – 7.22 (m, 5H), 7.24 – 7.22 (m, 5H), 7.25 (m, 1H), 7.24 – 7.22 (m, 5H), 6.35 (s, 1H), 4.51 (s, 1H), 7.24 – 7.22 (m, 5H), 7.24 – 7.22 (m, 5H), 7.24 – 7.22 (m, 5H), 7.25 (m, 1H), 7.25 (m, 1H), 7.24 – 7.22 (m, 5H), 7.25 (m, 1H), 7.24 – 7.25 (m, 1H), 7.24 – 7.22 (m, 5H), 7.25 (m, 1H), 7.24 – 7.25 (m, 1H), 7.24 – 7.22 (m, 5H), 7.25 (m, 1H), 7.24 – 7.25 (m, 1H), 7.24 – 7.25 (m, 1H), 7.25 (m, 2H), 7.25 (1H), 4.21 (d, J = 5.2 Hz, 1H), 1.59 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 151.6, 139.8, 131.0, 130.0, 129.6, 128.9, 128.5, 127.7, 126.6, 125.5, 125.2, 123.7, 122.7, 121.3, 120.4, 119.1, 117.9, 112.4,

95.3, 58.9, 51.7, 28.4 ppm. HR-MS (ESI) m/z calcd for C₃₁H₂₆BrNO₄ [M+Na]⁺ 578.09374, found 578.09340.

4. References

- [1] L.-L. Zhang, J.-W. Zhang, S.-H. Xiang, Z. Guo and B. Tan, *Org. Lett.*, 2018, **20**, 6022.
- [2] Y.-H. Chen, D.-J. Cheng, J. Zhang, Y. Wang, X.-Y. Liu and B. Tan, J. Am. Chem. Soc., 2015, 137, 15062.

5. Crystal Data of 3j

Ζ

Identification code 3j Empirical formula C₃₁H₂₆BrNO₅ Formula weight 1231.04 Temperature 150.0 K 1.54178 Å Wavelength Triclinic Crystal system **P**1 Space group Unit cell dimensions a = 10.1246(4) Å $\alpha = 92.396(2)^{\circ}$. b = 10.7766(4) Å $\beta = 96.373(2)^{\circ}$. c = 14.6208(5) Å $\gamma = 104.996(2)$ °. 1527.27(10) Å³ Volume 1 1.338 Mg/m³ Density (calculated) 2.170 mm⁻¹ Absorption coefficient F(000) 638 $0.12 \times 0.11 \times 0.11 \text{ mm}^3$ Crystal size Theta range for data collection 4.259 to 72.115 °. Index ranges -12<=h<=12, -13<=k<=13, -17<=l<=9 Reflections collected 19940 Independent reflections 7654 [R(int) = 0.0327] Completeness to theta = 67.679° 98.3 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.0872 and 0.0108 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 7654 / 3 / 747

S18

Goodness-of-fit on F ²	1.125
Final R indices [I>2sigma(I)]	R1 = 0.0565, wR2 = 0.1440
R indices (all data)	R1 = 0.0584, wR2 = 0.1474
Absolute structure parameter	0.040(13)
Extinction coefficient	n/a
Largest diff. peak and hole	0.707 and -0.336 e.Å ⁻³

6. ¹H NMR, ¹³C NMR, ¹⁹F NMR Spectra

S43

FigureS1. 2D-COSY Spectrum and Structure Assignment of Compound 6.

7. HPLC Chromatography

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.717	BB	0.2760	6274.39502	351.89288	50.8810
2	15.307	BV	0.3222	6057.12207	289.36621	49.1190

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.542	MM	0.2799	1788.59106	106.49339	5.2539
2	14.987	BB	0.3181	3.22548e4	1554.18201	94.7461

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.176	VB R	0.1624	2751.32153	260.57388	49.9351
2	7.395	BB	0.2230	2758.47485	192.67719	50.0649

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.185	VB	0.1722	3280.83032	289.44366	94.8131
2	7.417	MM	0.2258	179.48282	13.24993	5.1869

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.911	MM	0.1269	925.64954	121.53663	51.5700
2	6.118	MM	0.1676	869.28821	86.46539	48.4300

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.911	MM	0.1233	92.11935	12.45011	6.0202
2	6.114	FM	0.1753	1438.05725	136.70586	93.9798

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.491	FM	0.2665	1354.94287	84.73129	50.8384
2	9.676	BB	0.2924	1310.25220	69.97993	49.1616

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.478	MM	0.2581	1220.09192	78.78511	7.0683
2	9.666	BB	0.2928	1.60414e4	855.25653	92.9317

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.081	BB	0.3335	2083.72070	97.43663	50.3213
2	14.748	BB	0.4616	2057.11011	69.83942	49.6787

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.036	BB	0.3409	263.31558	11.86439	3.2263
2	14.684	FM	0.4925	7898.15088	267.29187	96.7737

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.720	BB	0.1542	472.86539	47.48503	48.6505
2	9.043	MF	0.2014	499.09872	41.30740	51.3495

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak RetTime Type Width Height Area Area [min] [mAU*s] [min] [mAU] % # 7.739 BB 0.1523 62.84294 6.30304 1 5.0704 2 9.059 BB 0.1810 1176.55383 100.18233 94.9296

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.954	MM	0.2925	9032.99219	514.65948	48.6548
2	15.848	MM	0.4220	9532.47070	376.46310	51.3452

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.791	MM	0.2846	285.58087	16.72608	4.2898
2	15.603	BB	0.3667	6371.60938	264.79294	95.7102

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.583	BV	0.2735	501.85040	28.21617	49.1208
2	9.394	VB	0.3095	519.81628	25.53336	50.8792

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.491	MM	0.2831	2313.07520	136.15459	95.6440
2	9.310	MM	0.2932	105.34649	5.98878	4.3560

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.579	BB	0.2453	909.79633	57.89734	50.1795
2	9.906	BB	0.2923	903.28693	48.28510	49.8205

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] [mAU] # % 8.578 BB 0.2415 156.89336 10.19465 3.3726 1 2 0.2919 4495.16113 240.64717 96.6274 9.903 BB

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak RetTime	Type Widt	h Area	Height	Area
# [min]	[min] [mAU*s]	[mAU]	%
1 21.173	BB 0.45	62 4246.44043	143.95065	48.8052
2 22.852	BB 0.50	27 4454.34717	136.52254	51.1948


```
Signal 1: DAD1 A, Sig=215,4 Ref=off
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	20.676	BV	0.4346	505.26483	18.05069	3.9048
2	22.055	VB	0.4966	1.24343e4	385.18887	96.0952

Peak RetTime T	Type Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
-		-		
1 20.165 E	3B 0.5291	1977.18372	55.57030	52.5678
2 24.023 E	3B 0.5614	1784.02515	48.69760	47.4322

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	20.130	BB	0.5169	107.70631	3.07326	2.8198
2	23.929	BB	0.5606	3711.88062	101.50512	97.1802

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.874	VB R	0.2190	1889.25354	134.41695	50.0400
2	12.686	BB	0.5192	1886.23059	56.84082	49.9600

Signal 1: DAD1 B, Sig=254,4 Ref=off

rea Height Area	
U*s] [mAU] %	
.71344 14.31035 3.7717	
.96777 159.45212 96.2283	
	rea Height Area U*s] [mAU] %

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.737	BB	0.2611	7878.32666	471.07153	49.7567
2	14.419	BB	0.5073	7955.36572	244.67725	50.2433

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.708	BB	0.2603	3.17702e4	1907.70044	95.1626
2	14.350	BB	0.5020	1614.97119	50.37462	4.8374

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.189	MM	0.2821	798.01953	47.13942	51.0675
2	21.477	BB	0.5425	764.65503	21.94746	48.9325

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.116	BB	0.2563	529.87958	32.15114	8.7032
2	21.321	BB	0.5474	5558.47461	157.63200	91.2968

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.083	BB	0.2631	5492.79834	325.18536	51.1945
2	11.720	BB	0.3715	5236.48193	220.11279	48.8055

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.072	BB	0.2636	4131.11865	243.94597	95.0116
2	11.676	BB	0.3625	216.89424	9.28732	4.9884

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.150	BV	0.1395	821.45093	89.16396	52.9517
2	5.555	VB	0.1479	729.87097	76.11176	47.0483

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.110	BV	0.1284	92.30889	11.16994	3.5089
2	5.516	VB	0.1412	2538.41528	281.45657	96.4911

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.302	MM	0.1559	1429.16223	152.74222	49.7007
2	5.727	MM	0.1683	1446.37231	143.19722	50.2993

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.308	BB	0.1544	55.99766	5.61096	3.0068
2	5.758	BB	0.1643	1806.34473	169.58110	96.9932

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 31.313 BB	0.8376	3275.46558	60.88692	50.1149
2 34.912 BB	0.9380	3260.45117	54.18291	49.8851

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	31.264	BB	0.7772	296.21054	5.47500	4.9449
2	34.994	BB	0.9430	5694.05469	93.43017	95.0551

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.090	BB	0.2845	5313.74951	289.04984	49.5049
2	16.121	BB	0.6613	5420.03223	132.47444	50.4951

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.993	BB	0.2819	130.53026	7.18786	2.5850
2	15.797	BB	0.4223	4918.98730	181.42331	97.4150

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.518	BV	0.3029	5808.07422	298.67532	50.1462
2	9.459	VB	0.3436	5774.21289	261.48273	49.8538

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.468	MM	0.3670	579.11859	26.30059	4.4117
2	9.410	MM	0.3604	1.25479e4	580.34650	95.5883

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.069	BB	0.5056	1.10430e4	341.15945	49.8818
2	23.576	BB	1.1966	1.10953e4	143.73357	50.1182

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.039	BB	0.5092	3.49628e4	1075.69470	97.6250
2	23.660	BB	1.1464	850.58002	8.77862	2.3750

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.566	BB	0.1885	522.11163	42.74889	47.8403
2	10.516	MM	0.4104	569.25281	23.11877	52.1597

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.538	BB	0.1811	114.34937	9 . 87792	4.2349
2	10.408	BB	0.3425	2585.78979	116.71417	95.7651

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.321	MM	0.4285	2498.08228	97.15487	50.0372
2	19.687	MF	0.6814	2494.37134	61.00734	49.9628

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.298	BB	0.3965	215.83185	8.43613	1.9162
2	19.609	BB	0.6207	1.10476e4	278.56210	98.0838

Signal 1: DAD1 A, Sig=215,4 Ref=off

Peak RetTime Type Width Area Height Area [min] [mAU*s] % # [min] [mAU] 1 14.788 BB 0.4402 117.89622 4.16496 1.7082 2 16.563 MM 0.6362 6784.08643 177.73055 98.2918

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.103	MF	0.1037	1351.50342	217.17780	49.9534
2	5.373	MF	0.1779	1354.02271	126.83463	50.0466

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.108	BB	0.0975	1690.20386	268.19348	96.9612
2	5.382	BV	0.1648	52.97248	5.03389	3.0388