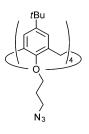
Selective azide-alkyne cycloaddition reactions of azidoalkylated calixarenes

Alexander Gorbunov, Julia Kuznetsova, Ilya Deltsov, Anastasia Molokanova, Dmitry Cheshkov, Stanislav Bezzubov, Vladimir Kovalev and Ivan Vatsouro


Supplementary Information

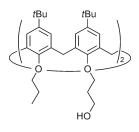
Contents

Synthesis and characterization of novel compounds	2
NMR spectra of novel compounds	
Details of X-ray diffraction measurements	
References	

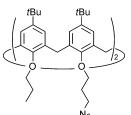

Synthesis and characterization of novel compounds

General experimental methods: NMR spectra were acquired on Bruker Avance 400 and Avance 600 instruments at 25 °C if not stated otherwise, and chemical shifts are reported as ppm referenced to solvent signals. ESI mass spectra were obtained from Sciex TripleTOF 5600+ spectrometers. Chemicals received from commercial sources were used without further purification. Calixarenes 1_2 , S1 2_2 , S2 2_3 , S3 2_4 , S4 3_2 , S5 4_2 , S5 5, S6 7, S7 8, S8 10, S7 11, S9 15_2 , S5 16_2 , S5 17_2 , S5 18_2 , S5 and complex CuI·P(OEt)₃^{S10} were prepared according to the published procedures.

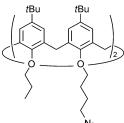
Hydroxypropylated calix[4]arene **6**. Under Ar, 9-BBN (0.4 M in hexane, 10.0 ml, 4.00 mmol) was added dropwise to a cold (0 °C) solution of allyloxycalixarene **5** (0.404 g, 0.50 mmol) in dry THF (15 ml). The reaction mixture was stirred at 0 °C for 30 min and then stirred at room temperature for 2 h. The mixture was cooled again (0 °C) and aqueous NaOH (5 M, 10.0 ml, 50.0 mmol) and H₂O₂ (30%,


2.5 ml, 20.0 mmol) were subsequently added. The mixture was heated to 40 °C and was stirred at this temperature for 12 h. After cooling, the aqueous phase was separated and washed with THF. The combined organic phases were washed with brine, the solvent was evaporated under reduced pressure. The residue was dissolved in dichloromethane, 2 M HCl was added, and the mixture was stirred intensively for several hours. The aqueous phase was separated, washed with dichloromethane, the combined organic phase was washed with water and concentrated. The residue dissolved in a minimum amount of dichloromethane, hexane was added, and the solid formed was collected, washed with hexane and dried. Yield 0.35 g (78%), white solid. M. p. > 300 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.78$ (s, 8H; ArH), 4.35 (d, 4H, ²*J*_{HH} = 12.5 Hz; ArCH₂Ar), 4.00–3.88 (m, 16H; OCH₂CH₂CH₂OH), 3.14 (d, 4H, ²*J*_{HH} = 12.5 Hz; ArCH₂Ar), 4.00–3.88 (m, 16H; OCH₂CH₂CH₂OH), 3.14 (d, 4H, ²*J*_{HH} = 12.5 Hz; ArCH₂Ar), 4.00–3.88 (m, 16H; OCH₂CH₂CH₂OH), 3.14 (OCH₂), 60.08 (CH₂OH), 33.80 (<u>C</u>(CH₃)₃), 30.85 (ArCH₂Ar) ppm. ESI-MS *m/z*: 903.5743 [M+Na]⁺ for C₅₆H₈₀NO₈ (903.5745).

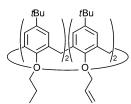
Azidopropylated calix[4]arene $I_{3.}^{S11}$ Diisopropyl azodicarboxylate (DIAD, 0.197 ml, 1.00 mmmol) was added dropwide at stirring to a cooled (0–5 °C) solution of Ph₃P (0.210 g, 0.80 mmol) in dry THF (3 ml). After a solid formed, a solution of calixarene **6** (0.088 g, 0.10 mmol) and diphenyl phosphoryl azide (DPPA, 0.215 ml, 1.00 mmol) in THF (3 ml) was added dropwise. The reaction


mixture was stirred at 0-5 C for 1 h and then allowed to stay at room temperature for 48 h. The solution was concentrated under reduced pressure and the resultant oil was treated with cold methanol. The solid formed was collected, washed with methanol and dried. Yield 0.066 g (67%), white solid. NMR spectra was in agreement with the published data.^{S11}

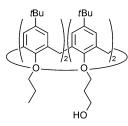
Azidobutylated calix[4]arene 14. A mixture of bromobutylated calix[4]arene 7 (0.290 g, 0.24 mmol) and NaN₃ (0.130 g, 2.00 mmol) in dry DMF (10 ml) was stirred at 75 °C for 8 h. The solvent was removed under reduced pressure, and the residue was parted between dichloromethane and aqueous HCl (2 M). The organic layer was separated, washed with water, dried with MgSO₄, and concentrated to dryness. The residue was purified by column chromatography on silica (gradient from hexane to hexane/THF (100:1)). Yield 0.120 g (48%), white solid. M. p. 143–145 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.77$ (s, 8H; ArH), 4.34 (d, 4H, ²J_{HH} = 12.5 Hz; ArCH₂Ar), 3.91–3.84 (m, 8H; OCH₂), 3.42–3.35 (m, 8H; CH₂N₃), 3.14 (d, 4H, ²J_{HH} = 12.5 Hz; ArCH₂Ar), 2.13–2.02 (m, 8H; CH₂C<u>H</u>₂CH₂), 1.76–1.66 (m, 8H; CH₂C<u>H</u>₂CH₂), 1.07 (s, 36H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 153.22$, 144.61, 133.58 (C_{Ar}), 125.02, (CH_{Ar}), 74.47 (OCH₂), 51.52 (CH₂N₃), 33.81 (<u>C</u>(CH₃)₃), 31.40 (C(<u>C</u>H₃)₃), 31.06 (ArCH₂Ar), 27.52, 25.66 (CH₂) ppm. ESI-MS *m/z*: 1059.6625 [M+Na]⁺ for C₆₀H₈₄NaN₁₂O₄ (1059.6631).


Hydroxypropylated calix[4]*arene* **9** was prepared as described for calixarene **6** from allyloxycalixarene **8** (0.406 g, 0.50 mmol), 9-BBN (0.4 M in hexane, 5.00 ml, 2.00 mmol), aqueous NaOH (5 M, 5.0 ml, 25.0 mmol) and H_2O_2 (30%, 1.25 ml, 10.0 mmol) in THF (15 ml). The product was purified by column chromatography (gradient from dichloromethane to

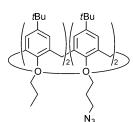
dichloromethane/ethanol (20:1)). Yield 0.31 g (74%), white solid. M. p. 126–128 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.04 (s, 4H; ArH), 6.54 (s, 4H; ArH), 4.39 (d, 4H, ²J_{HH} = 12.5 Hz; ArCH₂Ar), 4.12 (t, 4H, ³J_{HH} = 6.7 Hz; HOCH₂CH₂CH₂), 3.98 (t, 4H, ³J_{HH} = 6.1 Hz; CH₃CH₂C<u>H₂), 3.69 (m, 4H; HOCH₂), 3.25 (bs, 2H; OH), 3.13 (d, 4H, ²J_{HH} = 12.5 Hz; ArCH₂Ar), 2.25–2.17 (m, 4H; HOCH₂C<u>H₂), 1.96–1.85 (m, 4H; CH₃CH₂), 1.28 (s, 18H; C(CH₃)₃), 0.98 (t, 6H, ³J_{HH} = 7.4 Hz; CH₃), 0.86 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 154.27, 152.17, 144.75, 144.09, 135.15, 132.27 (C_{Ar}), 125.39, 124.58 (CH_{Ar}), 77.69, 71.92 (OCH₂), 60.01 (CH₂OH), 33.98, 33.61 (<u>C</u>(CH₃)₃), 32.79 (<u>C</u>H₂CH₂OH), 31.67, 31.18 (C(<u>C</u>H₃)₃), 30.81 (ArCH₂Ar), 23.16 (<u>C</u>H₂CH₃), 10.45 (CH₃) ppm. ESI-MS *m/z*: 871.5844 [M+Na]⁺ for C₅₆H₈₀NaO₆ (871.5847).</u></u>


Azidopropylated calix [4] arene 3_3 was prepared as described for calixarene 1₃ from calixarene 9 (0.134 g, 0.16 mmol), DIAD (0.157 ml, 0.80 mmol), Ph₃P (0.168 g, 0.64 mmol) and DPPA (0.172 ml, 0.80 mmol) in THF (5 ml). Yield 0.097 g (68%), white solid. M. p. 81–83 °C. ¹H NMR Ńз $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta = 6.93$ (s, 4H; ArH), 6.60 (s, 4H; ArH), 4.33 (d, 4H, ${}^{2}J_{\rm HH} = 12.5$ Hz; ArCH₂Ar), 4.00 (t, 4H, ${}^{3}J_{\rm HH} = 7.5$ Hz; OCH₂CH₂CH₂CH₂), 3.73 (t, 4H, ${}^{3}J_{\rm HH} =$ 7.6 Hz; OCH₂CH₂CH₂CH₃), 3.51 (t, 4H, ${}^{3}J_{HH} = 7.0$ Hz; CH₂N₃), 3.13 (d, 4H, ${}^{2}J_{HH} = 12.5$ Hz; ArCH₂Ar), 2.37–2.28 (m, 4H; CH₂CH₂N₃), 2.00–1.88 (m, 4H; CH₂CH₃), 1.19 (s, 18H; C(CH₃)₃), 1.00 (t, 6H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; CH₃), 0.93 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta =$ 153.61, 152.81, 144.90, 144.20, 134.56, 132.67 (CAr), 125.29, 124.70 (CHAr), 77.32, 71.88 (OCH₂), 49.04 (CH₂N₃), 33.94, 33.67 (C(CH₃)₃), 31.55, 31.26 (C(CH₃)₃), 30.98 (ArCH₂Ar),

29.64 (CH₂CH₂N₃), 23.46 (CH₂CH₃), 10.42 (CH₃) ppm. ESI-MS m/z: 921.5975 [M+Na]⁺ for C₅₆H₇₈NaN₆O₄ (921.5977).

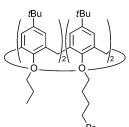

Azidobutylated calix [4] arene 3_4 was prepared as described for calixarene 1_4 from calixarene 10 (0.161 g, 0.16 mmol) and NaN₃ (0.042 g, 0.64 mmol) in DMF (10 ml). The product was purified by column chromatography on silica (gradient from hexane to hexane/THF (200:1)). Yield 0.120 g (81%), white solid. M. p. 153–155 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.84$ (s,

4H; ArH), 6.69 (s, 4H; ArH), 4.36 (d, 4H, ${}^{2}J_{HH}$ = 12.4 Hz; ArCH₂Ar), 3.93–3.87 (m, 4H; OCH₂), 3.79–3.73 (m, 4H; OCH₂), 3.36 (t, 4H, ${}^{3}J_{HH} = 6.9$ Hz; CH₂N₃), 3.11 (d, 4H, ${}^{2}J_{HH} = 12.4$ Hz; ArCH₂Ar), 2.14–2.04 (m, 4H; CH₂), 2.03–1.92 (m, 4H; CH₂), 1.76–1.66 (m, 4H; CH₂), 1.12 (s, 18H; C(CH₃)₃), 1.03–0.97 (m, 24H; C(CH₃)₃+CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 153.57, 153.27, 144.55, 144.20, 134.13, 133.24 (CAr), 125.06, 124.79 (CHAr), 77.08, 74.29 (OCH₂), 51.59 (CH₂N₃), 33.86, 33.73 (C(CH₃)₃), 31.49, 31.36 (C(CH₃)₃), 31.03 (ArCH₂Ar), 27.41, 25.66, 23.45 (CH₂), 10.41 (CH₃) ppm. ESI-MS m/z: 949.6289 [M+Na]⁺ for C₅₈H₈₂NaN₆O₄ (949.6290).

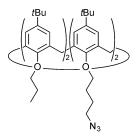

Allylated calix[4] arene 12. To a suspension of calixarene 11 (0.732 g, 1.00 mmol) in dry DMF (20 ml) NaH (60% in mineral oil, 0.240 g, 6.00 mmol) was added. The mixture was stirred for 1 h at room temperature and allyl bromide (0.520 ml, 6.00 mmol) was added. The mixture was

stirred for 24 h at room temperature and then quenched by a few drops of methanol followed by water (50 ml). The precipitate formed was collected, washed with water, dried and dissolved in dichloromethane (5 ml). Methanol (15 ml) was added and the precipitate formed was collected, with methanol and dried. Yield 0.710 g (87%), white solid. M. p. 196–198 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.79$ (m, 8H; ArH), 6.41 (ddt, ³*J*_{HH} = 17.1 Hz, ³*J*_{HH} = 10.4 Hz, ³*J*_{HH} = 6.5 Hz, 2H; C<u>H</u>=CH₂), 5.28–5.20 (m, 2H; CH=C<u>H₂), 5.19–5.13 (m, 2H; CH=C<u>H₂), 4.49–4.34</u> (m, 8H; ArCH₂Ar+OC<u>H₂</u>CH), 3.80 (t, 4H, ³*J*_{HH} = 7.8 Hz; OC<u>H₂</u>CH₂), 3.14–3.06 (m, 4H; ArCH₂Ar), 2.07–1.96 (m, 4H; CH₃C<u>H₂), 1.07 (s, 18H; C(CH₃)₃), 1.06 (s, 18H; C(CH₃)₃), 0.98 (t, 6H, ³*J*_{HH} = 7.5 Hz, CH₂C<u>H₃) ppm</u>; ¹³C NMR (100 MHz, CDCl₃): $\delta = 153.69$, 153.16, 144.47, 144.16 (C_{Ar}), 136.52 (<u>CH</u>=CH₂), 134.03, 133.98, 133.84, 133.76 (C_{Ar}), 124.89, 124.81, 124.80 (CH_{Ar}), 116.11, (CH=<u>C</u>H₂), 76.91, 76.06 (OCH₂), 33.81, 33.78 (<u>C</u>(CH₃)₃), 31.56 (ArCH₂Ar), 31.45, 31.42 (C(<u>CH</u>₃)₃), 31.30, 31.05 (ArCH₂Ar), 23.36 (<u>CH₂CH₃), 10.32 (CH₃) ppm. ESI-MS *m/z*: 830.6079 [M+NH₄]⁺ for C₅₆H₈₀NO₄ (830.6082).</u></u></u>

Hydroxypropylated calix[4]*arene* 13 was prepared as described for calixarene 6 from allyloxycalixarene 12 (0.406 g, 0.50 mmol), 9-BBN (0.4 M solution in hexane, 5.00 ml, 2.00 mmol), aqueous NaOH (5 M, 5.0 ml, 25.0 mmol) and H₂O₂ (30%, 1.25 ml 10.0 mmol) in THF (15 ml). The product was purified by column chromatography (gradient from


dichloromethane to dichloromethane/ethanol (20:1)). Yield 0.17 g (39%), white solid. M. p. 134–136 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.80-6.76$ (m, 8H; ArH), 4.43 (d, 1H, ²*J*_{HH} = 12.5 Hz; ArCH₂Ar), 4.37 (d, 3H, ²*J*_{HH} = 12.5 Hz; ArCH₂Ar), 4.04–3.87 (m, 8H; OC<u>H</u>₂CH₂C<u>H</u>₂C<u>H</u>₂), 3.83 (t, 4H, ³*J*_{HH} = 7.8 Hz; C<u>H</u>₂CH₂CH₂CH₃), 3.14 (d, 1H, ²*J*_{HH} = 12.5 Hz; ArCH₂Ar), 3.13 (d, 2H, ²*J*_{HH} = 12.5 Hz; ArCH₂Ar), 3.12 (d, 1H, ²*J*_{HH} = 12.5 Hz; ArCH₂Ar), 2.88 (bs, 2H; OH), 2.27–2.18 (m, 4H; CH₂C<u>H</u>₂CH₂), 2.00–1.85 (m, 4H; CH₂C<u>H</u>₂CH₃), 1.07 (s, 18H; C(CH₃)₃), 1.06 (s, 18H; C(CH₃)₃), 0.95 (t, 6H, ³*J*_{HH} = 7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 153.33, 153.20, 144.55, 144.22, 133.73, 133.66, 133.63, 133.59 (C_{Ar}), 125.11, 124.97, 124.87 (CH_{Ar}), 77.05, 72.33 (OCH₂), 60.33, (CH₂OH), 33.80, 33.78 (<u>C</u>(CH₃)₃), 33.01 (<u>C</u>H₂CH₂OH), 31.43, 31.41 (C(<u>C</u>H₃)₃), 30.93, 30.81 (ArCH₂Ar), 23.15 (<u>C</u>H₂CH₃), 10.25 (CH₃) ppm. ESI-MS *m/z*: 871.5842 [M+Na]⁺ for C₅₆H₈₀NaO₆ (871.5847).

Azidopropylated calix[4]arene 4_3 was prepared as described for calixarene 1_3 from calixarene 13 (0.214 g, 0.25 mmol), DPPA (0.269 ml, 1.25 mmol), Ph₃P (0.262 g, 1.00 mmol) and DIAD (0.246 ml, 1.25 mmol) in THF (7 ml). Yield 0.180 g (79%), white solid. M. p. 166–168 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.79-6.77$ (m, 8H; ArH), 4.41 (d, 1H, ² $J_{HH} = 12.5$ Hz;

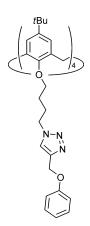

ArCH₂Ar), 4.35 (d, 2H, ${}^{2}J_{HH}$ = 12.5 Hz; ArCH₂Ar), 4.29 (d, 1H, ${}^{2}J_{HH}$ = 12.5 Hz; ArCH₂Ar), 3.99–3.88 (m, 4H; OC<u>H₂CH₂CH₂CH₂), 3.88–3.75 (m, 4H; OC<u>H₂CH₂CH₂), 3.60–3.48 (m, 4H;</u></u>

CH₂N₃), 3.16 (d, 1H, ${}^{2}J_{HH}$ = 12.5 Hz; ArCH₂Ar), 3.14 (d, 2H, ${}^{2}J_{HH}$ = 12.5 Hz; ArCH₂Ar), 3.13 (d, 1H, ${}^{2}J_{HH}$ = 12.5 Hz; ArCH₂Ar), 2.39–2.23 (m, 4H; C<u>H</u>₂CH₂N₃), 2.05–1.90 (m, 4H; C<u>H</u>₂CH₃), 1.08 (s, 18H; C(CH₃)₃), 1.07 (s, 18H; C(CH₃)₃), 1.00 (t, 6H, ${}^{3}J_{HH}$ = 7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 153.43, 153.05, 144.75, 144.32, 133.76, 133.69, 133.54, 133.47 (C_{Ar}), 125.15, 125.01, 124.85 (CH_{Ar}), 77.03, 72.02 (OCH₂), 48.97 (CH₂N₃), 33.82, 33.79 (<u>C</u>(CH₃)₃), 31.43, 31.40 (C(<u>C</u>H₃)₃), 30.97 (ArCH₂Ar), 29.66 (<u>C</u>H₂CH₂N₃), 23.35 (<u>C</u>H₂CH₃), 10.24 (CH₃) ppm. ESI-MS *m/z*: 921.5988 [M+Na]⁺ for C₅₆H₇₈NaN₆O₄ (921.5977).

Bromobutylated calix[4]arene 14. To a stirred suspension of calixarene 11 (0.293 g, 0.40 mmol) in dry DMF (15 ml) NaH (60% in mineral oil, 0.160 g, 4.00 mmol) was added. The mixture was stirred for 4 h at room temperature, and 1,4-dibromobutane (0.483 ml, 4.00 mmol) was added. The mixture was stirred for 48 h at 85 °C, cooled and then quenched by

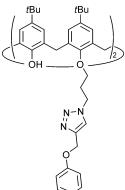
methanol (5 ml). The solvent was removed under reduced pressure, and the residue was parted between dichloromethane and aqueous HCl (2 M). The organic layer was separated, washed with water and dried. After removal of the solvent, the resulted yellow oil was dissolved in dichloromethane (5 ml). Methanol (20 ml) was added and the precipitate formed was collected, washed with cold methanol and dried. Yield 0.275 g (68%), white solid. M. p. 186–188 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.85-6.70$ (m, 8H; ArH), 4.39 (d, 1H, ²*J*_{HH} = 12.4 Hz; ArCH₂Ar), 4.36 (d, 2H, ²*J*_{HH} = 12.4 Hz; ArCH₂Ar), 4.36 (d, 2H, ²*J*_{HH} = 12.4 Hz; ArCH₂Ar), 4.34 (d, 1H, ²*J*_{HH} = 12.4 Hz; ArCH₂Ar), 3.91–3.84 (m, 4H; OCH₂), 3.84–3.76 (m, 4H; OCH₂), 3.50 (t, 4H, ³*J*_{HH} = 6.7 Hz; CH₂Br), 3.12 (d, 1H, ²*J*_{HH} = 12.4 Hz; ArCH₂Ar), 3.11 (d, 2H, ²*J*_{HH} = 12.4 Hz; ArCH₂Ar), 3.10 (d, 1H, ²*J*_{HH} = 1.24 Hz; ArCH₂Ar), 0.99 (t, 6H, ³*J*_{HH} = 7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 153.52$, 153.37, 144.48, 144.24, 133.82, 133.74, 133.64, 133.58 (CA₁), 125.03, 124.94, 124.91, 124.81 (CH_{Ar}), 76.93, 74.16 (OCH₂), 33.80, 33.79 (<u>C</u>(CH₃)₃), 33.63 (CH₂Br), 31.44, 31.42 (C(<u>CH₃</u>)₃), 31.03, 31.00 (ArCH₂Ar), 29.70, 29.06 (CH₂), 23.34 (<u>CH₂CH₃</u>), 10.37 (CH₃) ppm. ESI-MS *m*/*z*: 1003.4638 [M+H]⁺ for C₅₈H₈₃Br₂O₄ (1003.4632).

Azidobutylated calix[4]arene 4_4 was prepared as described for calixarene 1_4 from calixarene 14 (0.260 g, 0.26 mmol) and NaN₃ (0.068 g, 1.00 mmol) in DMF (10 ml). The product was purified by column chromatography on silica (gradient from hexane to hexane/THF (200:1)) followed by recrystallization from dichloromethane/methanol. Yield 0.130 g (54%), white

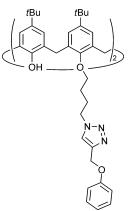

solid. M. p. 118–120 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.85-6.70$ (m, 8H; ArH), 4.43–4.29

(m, 4H; ArCH₂Ar), 3.92–3.83 (m, 4H; OCH₂), 3.83–3.74 (m, 4H; OCH₂), 3.37 (t, 4H, ${}^{3}J_{HH} = 6.9$ Hz; CH₂N₃), 3.15–3.08 (m, 4H; ArCH₂Ar), 2.14–1.93 (m, 8H; CH₂), 1.77–1.68 (m, 4H; CH₂), 1.06 (bs, 36H; C(CH₃)₃), 0.99 (t, 6H, ${}^{3}J_{HH} = 7.4$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 153.52$, 153.35, 144.48, 144.26, 133.79, 133.73, 133.62, 133.58 (C_{Ar}), 125.03, 124.94, 124.92, 124.82 (CH_{Ar}), 76.94, 74.43 (OCH₂), 51.54 (CH₂N₃), 33.80, 33.79 (<u>C</u>(CH₃)₃), 31.43, 31.42 (C(<u>CH₃)₃), 31.03 (ArCH₂Ar), 27.47, 25.70, 23.34 (CH₂), 10.31 (CH₃) ppm. ESI-MS *m/z*: 949.6289 [M+Na]⁺ for C₅₈H₈₂NaN₆O₄ (949.6290).</u>

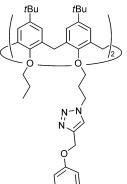
General procedure A (syntheses of triazolated calixarenes using $Cul \cdot P(OEt)_3$). A mixture of a calixarene azide, phenyl propargyl ether, $Cul \cdot P(OEt)_3$, and toluene was stirred at heating (100 °C) in an argon-flushed capped flask for 8 h. The solvent was removed under reduced pressure, and the residue was parted between dichloromethane and aqueous HCl (2 M) at vigorous stirring for 2 h. The organic layer was separated, washed with aqueous Na₂SO₃ (5%) and water, and dried with MgSO₄. The solvent was removed and the residue was dissolved in minimum amount of dichloromethane. Hexane was added, and the solid formed was collected, washed with hexane and dried.


General procedure B (syntheses of triazolated calixarenes using $CuSO_4 \cdot 5H_2O/Na$ ascorbate). To a mixture of a calixarene azide, phenyl propargyl ether, sodium ascorbate and THF a solution of $CuSO_4 \cdot 5H_2O$ in water was added. The reaction mixture was stirred at 60 °C for 8 h in an argonflushed capped flask. The solvent was removed under reduced pressure, and the residue was treated as described in *General procedure A*.

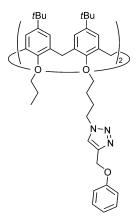
Triazolated calix[4]arene 15₃ was prepared according to General procedure A from calixarene 1₃ (0.065 g, 0.07 mmol), phenyl propargyl ether (0.042 g, 0.32 mmol) and CuI·P(OEt)₃ (0.005 g, 0.01 mmol) in toluene (5 ml). Yield 0.086 g (86%), beige solid. M. p. 98–100 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (s, 4H; ArH_{Trz}), 7.24–7.19 (m, 8H; ArH_{Ph}), 6.95–6.88 (m, 12H; ArH_{Ph}), 6.76 (s, 8H; ArH), 5.09 (s, 8H; OCH₂Trz), 4.47 (t, 8H, ³J = 7.1 Hz; OCH₂CH₂), 4.23 (d, 4H, ²J = 12.6 Hz; ArCH₂Ar), 3.89 (t, 8H, ³J = 7.1 Hz; NCH₂), 3.11 (d, 4H, ²J = 12.6 Hz; ArCH₂Ar), 2.56–2.45 (m, 8H; OCH₂CH₂), 1.05 (s, 36H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 158.13 (C_{Ar Ph}), 152.67, 145.07 (C_{Ar}), 143.93 (C_{Ar Trz}), 133.30 (C_{Ar}), 129.46 (CH_{Ar Ph}), 125.19 (CH_{Ar}), 123.46 (CH_{Ar Trz}), 121.12, 114.60 (CH_{Ar Ph}), 71.58 (OCH₂Trz), 61.63 $(O\underline{C}H_2CH_2)$, 47.55 (NCH₂), 33.79 ($\underline{C}(CH_3)_3$), 31.31 ($C(\underline{C}H_3)_3$), 30.95 (ArCH₂Ar), 30.84 (CH₂) ppm. ESI-MS *m*/*z*: 1510.8518 [M+H]⁺ for C₉₂H₁₀₉N₁₂O₈ (1510.8519).


Triazolated calix[4]arene **15**₄ was prepared according to *General procedure A* from calixarene **1**₄ (0.052 g, 0.05 mmol), phenyl propargyl ether (0.032 g, 0.24 mmol) and CuI·P(OEt)₃ (0.004 g, 0.01 mmol) in toluene (5 ml). Yield 0.068 g (87%), beige solid. M. p. 88–90 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.73 (s, 4H; ArH_{Trz}), 7.25–7.21 (m, 8H; ArH_{Ph}), 6.95–6.90 (m, 12H; ArH_{Ph}), 6.75 (s, 8H; ArH), 5.09 (s, 8H; OCH₂Trz), 4.45–4.38 (m, 8H; OCH₂CH₂), 4.24 (d, 4H, ²*J* = 12.4 Hz; ArCH₂Ar), 3.88–3.78 (m, 8H; NCH₂), 3.09 (d, 4H, ²*J* = 12.4 Hz; ArCH₂Ar), 2.02–1.91 (m, 16H; CH₂), 1.06 (s, 36H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ

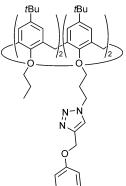
= 158.13 ($C_{Ar Ph}$), 152.98, 144.62 (C_{Ar}), 143.84 ($C_{Ar Trz}$), 133.41 (C_{Ar}), 129.45 ($CH_{Ar Ph}$), 124.97 (CH_{Ar}), 123.15 ($CH_{Ar Trz}$), 121.10, 114.57 ($CH_{Ar Ph}$), 74.09 (OCH_2Trz), 61.67 ($O\underline{C}H_2CH_2$), 50.21 (NCH_2), 33.74 ($\underline{C}(CH_3)_3$), 31.32 ($C(\underline{C}H_3)_3$), 30.99 ($ArCH_2Ar$), 27.20, 27.00 (CH_2) ppm. ESI-MS *m*/*z*: 1588.8989 [M+Na]⁺ for C₉₆H₁₁₆NaN₁₂O₈ (1588.8965).


Triazolated calix[4]arene **16**₃ was prepared according to *General procedure B* from calixarene **2**₃ (0.081 g, 0.10 mmol), phenyl propargyl ether (0.032 g, 0.24 mmol), CuSO₄·5H₂O (0.010 g, 0.04 mmol) and sodium ascorbate (0.040 g, 0.20 mmol) in the mixture of THF (5 ml) and H₂O (1 ml). Yield 0.100 g (92%), beige solid. M. p. 104–106 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.85$ (s, 2H; ArH_{Trz}), 7.47 (s, 2H; OH), 7.27–7.21 (m, 4H; ArH_{Ph}), 7.05

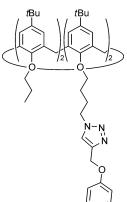
(s, 4H; ArH), 6.96–6.88 (m, 6H; ArH_{Ph}), 6.81 (s, 4H; ArH), 5.15 (s, 4H; OCH₂Trz), 4.83 (t, 4H, ${}^{3}J_{HH} = 6.8$ Hz; OCH₂CH₂), 4.16 (d, 4H, ${}^{2}J_{HH} = 13.1$ Hz; ArCH₂Ar), 3.98 (t, 4H, ${}^{3}J_{HH} = 5.7$ Hz; NCH₂), 3.30 (d, 4H, ${}^{2}J_{HH} = 13.1$ Hz; ArCH₂Ar), 2.64–2.54 (m, 4H; CH₂), 1.28 (s, 18H; C(CH₃)₃), 0.96 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 158.13$ (C_{Ar Ph}), 150.22, 149.14, 147.36 (C_{Ar}), 144.10 (C_{Ar Trz}), 141.98, 132.36 (C_{Ar}), 129.41 (CH_{Ar Ph}), 127.54 (C_{Ar}), 125.65, 125.21 (CH_{Ar}), 123.49 (CH_{Ar Trz}), 121.04, 114.65 (CH_{Ar Ph}), 72.19 (OCH₂Trz), 61.78 (OCH₂CH₂), 47.02 (NCH₂), 33.91, 33.77 (C(CH₃)₃), 31.69 (ArCH₂Ar), 31.60, 30.90 (C(CH₃)₃), 30.70 (CH₂) ppm. ESI-MS *m*/*z*: 1101.6189 [M+Na]⁺ for C₆₈H₈₂NaN₆O₆ (1101.6188).


Triazolated calix[4]*arene* **16**₄ was prepared according to *General procedure B* from calixarene **2**₄ (0.042 g, 0.05 mmol), phenyl propargyl ether (0.016 g, 0.12 mmol), CuSO₄·5H₂O (0.050 g, 0.02 mmol) and sodium ascorbate (0.020 g, 0.10 mmol) in the mixture of THF (5 ml) and H₂O (1 ml). Yield 0.038 g (68%), beige solid. M. p. 102–104 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.94$ (s, 2H; ArH_{Trz}), 7.27–7.21 (m, 4H; ArH_{Ph}), 7.07 (bs, 6H; ArH+OH), 6.97–6.90 (m, 6H; ArH_{Ph}), 6.72 (s, 4H; ArH), 5.17 (s, 4H; OCH₂Trz), 4.56–4.49 (m, 4H; OCH₂CH₂), 4.16 (d, 4H, ²J_{HH} = 13.1 Hz;

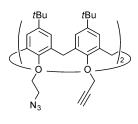
ArCH₂Ar), 3.91–3.85 (m, 4H; NCH₂), 3.30 (d, 4H, ${}^{2}J_{HH} = 13.1$ Hz; ArCH₂Ar), 2.23–2.13 (m, 4H; CH₂), 1.78–1.68 (m, 4H; CH₂), 1.30 (s, 18H; C(CH₃)₃), 0.89 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.24$ (C_{Ar Ph}), 150.27, 149.44, 147.11 (C_{Ar}), 143.90 (C_{Ar Trz}), 141.93, 132.05 (C_{Ar}), 129.47 (CH_{Ar Ph}), 127.71 (C_{Ar}), 125.53, 125.11 (CH_{Ar}), 123.80 (CH_{Ar Trz}), 121.09, 114.71 (CH_{Ar Ph}), 76.13 (OCH₂Trz), 61.83 (O<u>C</u>H₂CH₂), 49.98 (NCH₂), 33.85, 33.84 (<u>C</u>(CH₃)₃), 31.67 (C(<u>C</u>H₃)₃), 31.40 (ArCH₂Ar), 30.89 (C(<u>C</u>H₃)₃), 27.70, 26.39 (CH₂) ppm. ESI-MS *m/z*: 1129.6507 [M+Na]⁺ for C₇₀H₈₆NaN₆O₆ (1129.6501).


Triazolated calix[4]arene **17**₃ was prepared according to *General procedure A* from calixarene **3**₃ (0.045 g, 0.05 mmol), phenyl propargyl ether (0.016 g, 0.12 mmol) and CuI·P(OEt)₃ (0.004 g, 0.01 mmol) in toluene (3 ml). Yield 0.049 g (84%), white solid. M. p. 176–178 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.62$ (s, 2H; ArH_{Trz}), 7.30–7.23 (m, 4H; ArH_{Ph}), 6.99 (s, 4H; ArH), 6.98–6.92 (m, 6H; ArH_{Ph}), 6.53 (s, 4H; ArH), 5.18 (s, 4H; OCH₂Trz), 4.48

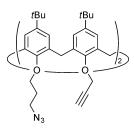
(t, 4H, ${}^{3}J_{HH} = 7.3$ Hz; OCH₂), 4.29 (d, 4H, ${}^{2}J_{HH} = 12.5$ Hz; ArCH₂Ar), 4.00 (t, 4H, ${}^{3}J_{HH} = 7.3$ Hz; OCH₂), 3.65 (t, 4H, ${}^{3}J_{HH} = 7.4$ Hz; NCH₂), 3.11 (d, 4H, ${}^{2}J_{HH} = 12.5$ Hz; ArCH₂Ar), 2.68–2.57 (m, 4H; CH₂), 1.86–1.74 (m, 4H; CH₂), 1.24 (s, 18H; C(CH₃)₃), 0.95 (t, 6H, ${}^{3}J_{HH} = 7.4$ Hz; CH₃), 0.88 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 158.21$ (C_{Ar Ph}), 153.58, 152.47, 145.24, 144.24 (C_{Ar}), 144.04 (C_{Ar Trz}), 134.83, 132.20 (C_{Ar}), 129.48 (CH_{Ar Ph}), 125.46, 124.64 (CH_{Ar}), 122.99 (CH_{Ar Trz}), 121.14, 114.68 (CH_{Ar Ph}), 77.39, 71.28, 61.90 (OCH₂), 47.81 (NCH₂), 33.98, 33.61 (<u>C</u>(CH₃)₃), 31.51, 31.17 (C(<u>C</u>H₃)₃), 31.00 (ArCH₂Ar), 30.93, 23.50 (CH₂), 10.54 (CH₃) ppm. ESI-MS *m/z*: 1185.7130 [M+Na]⁺ for C₇₄H₉₄NaN₆O₆ (1185.7127).


Triazolated calix[4]arene **17**₄ was prepared according to *General procedure A* from calixarene **3**₄ (0.046 g, 0.05 mmol), phenyl propargyl ether (0.016 g, 0.12 mmol) and CuI·P(OEt)₃ (0.004 g, 0.01 mmol) in toluene (5 ml). Yield 0.042 g (70%), white solid. M. p. 73–75 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.67 (s, 2H; ArH_{Trz}), 7.31–7.26 (m, 4H; ArH_{Ph}), 7.00–6.92 (m, 6H; ArH_{Ph}), 6.81 (s, 4H; ArH), 6.70 (s, 4H; ArH), 5.19 (s, 4H; OCH₂Trz), 4.47–4.39 (m, 4H; OCH₂), 4.32 (d, 4H, ²J_{HH} = 12.6 Hz; ArCH₂Ar), 3.96–3.86 (m, 4H; OCH₂), 3.76–3.69 (m, 4H; NCH₂), 3.11 (d, 4H, ²J_{HH} = 12.6 Hz;

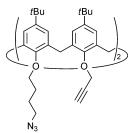
ArCH₂Ar), 2.11–1.99 (m, 8H; CH₂), 1.96–1.84 (m, 4H; CH₂), 1.10 (s, 18H; C(CH₃)₃), 1.02 (s, 18H; C(CH₃)₃), 0.95 (t, 6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 158.18$ (C_{Ar Ph}), 153.25, 153.20, 144.65, 144.29 (C_{Ar}), 144.18 (C_{Ar Trz}), 133.88, 133.25 (C_{Ar}), 129.49 (CH_{Ar Ph}), 125.06, 124.83 (CH_{Ar}), 122.57 (CH_{Ar Trz}), 121.14, 114.65 (CH_{Ar Ph}), 76.92, 73.85, 61.91 (OCH₂), 50.34 (NCH₂), 33.82, 33.72 (C(CH₃)₃), 31.42, 31.34 (C(CH₃)₃), 31.01 (ArCH₂Ar), 27.15, 27.14, 23.36 (CH₂), 10.40 (CH₃) ppm. ESI-MS *m/z*: 1213.7442 [M+Na]⁺ for C₇₆H₉₈NaN₆O₆ (1213.7440).


Triazolated calix[4]arene **18**₃ was prepared according to *General procedure A* from calixarene **4**₃ (0.045 g, 0.05 mmol), phenyl propargyl ether (0.016 g, 0.12 mmol) and CuI·P(OEt)₃ (0.004 g, 0.01 mmol) in toluene (3 ml). Yield 0.050 g (86%), white solid. M. p. 205–207 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.63$ (s, 2H; ArH_{Trz}), 7.31–7.26 (m, 4H; ArH_{Ph}), 7.01–6.92 (m, 6H; ArH_{Ph}), 6.79 (bs, 4H; ArH), 6.76 (bs, 4H; ArH), 5.19 (s, 4H; OCH₂Trz), 4.65–4.48 (m, 4H; OCH₂), 4.39 (d, 1H, ²J_{HH} = 12.5 Hz; ArCH₂Ar), 4.33 (d,

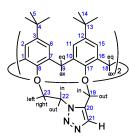
2H, ${}^{2}J_{\text{HH}} = 12.3 \text{ Hz}$; ArCH₂Ar), 4.24 (d, 1H, ${}^{2}J_{\text{HH}} = 12.4 \text{ Hz}$; ArCH₂Ar), 4.00–3.84 (m, 4H; OCH₂), 3.83–3.72 (m, 4H; NCH₂), 3.19–3.07 (m, 4H; ArCH₂Ar), 2.67–2.55 (m, 4H; CH₂), 1.99–1.83 (m, 4H; CH₂), 1.08 (s, 18H; C(CH₃)₃), 1.07 (s, 18H; C(CH₃)₃), 0.95 (t, 6H, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}$; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 158.21 (C_{\text{Ar} \text{ Ph}})$, 153.30, 152.90, 144.97, 144.42 (C_{Ar}), 144.17 (C_{Ar Trz}), 133.70, 133.59, 133.39, 133.31 (C_{Ar}), 129.49 (CH_{Ar Ph}), 125.24, 125.06, 124.86 (CH_{Ar}), 122.88 (CH_{Ar Trz}), 121.14, 114.71 (CH_{Ar Ph}), 77.00, 71.47, 61.91 (OCH₂), 47.85 (NCH₂), 33.82, 33.78 (C(CH₃)₃), 31.40, 31.36 (C(CH₃)₃), 31.02, 31.01 (ArCH₂Ar), 30.96, 23.36 (CH₂), 10.33 (CH₃) ppm. ESI-MS *m/z*: 1185.7137 [M+Na]⁺ for C₇₄H₉₄NaN₆O₆ (1185.7127).


Triazolated calix[4]arene **18**₄ was prepared according to *General procedure A* from calixarene **4**₄ (0.046 g, 0.05 mmol), phenyl propargyl ether (0.016 g, 0.12 mmol) and CuI·P(OEt)₃ (0.004 g, 0.01 mmol) in toluene (3 ml). Yield 0.036 g (60%), white solid. M. p. 143–145 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.63$ (s, 2H; ArH_{Trz}), 7.31–7.26 (m, 4H; ArH_{Ph}), 7.01–6.92 (m, 6H; ArH_{Ph}), 6.79 (bs, 4H; ArH), 6.76 (bs, 4H; ArH), 5.19 (s, 4H; OCH₂Trz), 4.65–4.48 (m, 4H; OCH₂), 4.39 (d, 1H, ²J_{HH} = 12.5 Hz; ArCH₂Ar), 4.33 (d, 2H, ²J_{HH} = 12.3 Hz; ArCH₂Ar), 4.24 (d, 1H, ²J_{HH} = 12.4 Hz; ArCH₂Ar),

4.00–3.84 (m, 4H; OCH₂), 3.83–3.72 (m, 4H; NCH₂), 3.19–3.07 (m, 4H; ArCH₂Ar), 2.67–2.55 (m, 4H; CH₂), 1.99–1.83 (m, 4H; CH₂), 1.08 (s, 18H; C(CH₃)₃), 1.07 (s, 18H; C(CH₃)₃), 0.95 (t, 6H, ${}^{3}J_{\text{HH}} = 7.5$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 158.20$ (C_{Ar Ph}), 153.42, 153.16, 144.59, 144.32 (C_{Ar}), 144.15 (C_{Ar Trz}), 133.73, 133.63, 133.51, 133.46 (C_{Ar}), 129.49 (CH_{Ar Ph}), 125.09, 124.97, 124.91, 124.81 (CH_{Ar}), 122.72 (CH_{Ar Trz}), 121.15, 114.66 (CH_{Ar Ph}), 76.87, 74.04, 61.89 (OCH₂), 50.34 (NCH₂), 33.79, 33.77 (<u>C</u>(CH₃)₃), 31.40, 31.39 (C(<u>CH₃)₃</u>), 31.03, 30.98 (ArCH₂Ar), 27.24, 27.17, 23.34 (CH₂), 10.39 (CH₃) ppm. ESI-MS *m/z*: 1213.7446 [M+Na]⁺ for C₇₆H₉₈NaN₆O₆ (1213.7440).

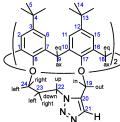

Azidoethylated/propargylated calix[4]arene 19_2 . To a stirred solution of calixarene 2_2 (0.240 g, 0.30 mmol) in dry DMF (10 ml) NaH (60% in mineral oil, 0.072 g, 1.80 mmol) was added. The mixture was stirred at room temperature for 1 h. Propargyl bromide (80% in toluene, 0.168 ml, 1.50 mmol) was added and the mixture was stirred at room temperature for

48 h. The reaction was quenched with several drops of methanol and the solvent was evaporated under reduced pressure. The residue was dissolved in dichloromethane, the solution was washed with 2 M HCl, water, and dried with MgSO₄. The solvent was removed and the residue was purified by column chromatography (gradient from hexane to hexane/ethyl acetate (10:1)). Yield 0.140 g (54%), white solid. M. p. > 300 °C (decomp.). ¹H NMR (400 MHz, CDCl₃): $\delta = 6.94$ (s, 4H; ArH), 6.67 (s, 4H; ArH), 4.85 (d, 4H, ⁴*J*_{HH} = 2.4 Hz; OCH₂CCH), 4.49 (d, 4H, ²*J*_{HH} = 12.7 Hz; ArCH₂Ar), 4.05–4.00 (m, 4H; OCH₂CH₂), 3.95–3.90 (m, 4H; CH₂N₃), 3.18 (d, 4H, ²*J*_{HH} = 12.7 Hz; ArCH₂Ar), 2.51 (t, 2H, ⁴*J*_{HH} = 2.4 Hz; CH), 1.18 (s, 18H; C(CH₃)₃), 0.98 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 152.59$, 151.75, 145.83, 145.16, 134.96, 132.81 (C_{Ar}), 125.29, 124.90 (CH_{Ar}), 81.19 (CH₂CCH), 74.60 (CH₂CCH), 72.16 (OCH₂CH₂), 60.54 (OCH₂CCH), 51.08 (CH₂N₃), 33.99, 33.74 (C(CH₃)₃), 31.49 (ArCH₂Ar), 31.44, 31.22 (C(CH₃)₃) ppm. ESI-MS *m/z*: 863.5218 [M+H]⁺ for C₅₄H₆₇N₆O₄ (863.5218).


Azidopropylated/propargylated calix[4]arene **19**₃ was prepared as descibed for compound **19**₂ from calixarene **2**₃ (0.463 g, 0.60 mmol), NaH (60% in mineral oil, 0.180 g, 4.50 mmol) and propargyl bromide (80% in toluene, 0.334 ml, 3.00 mmol) in DMF (20 ml). Yield 0.402 g (75%), white solid. M. p. 142–144 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.05 (s, 4H; ArH), 6.54

(s, 4H; ArH), 4.90 (d, 4H, ${}^{4}J_{HH} = 2.5$ Hz; OCH₂CCH), 4.46 (d, 4H, ${}^{2}J_{HH} = 12.7$ Hz; ArCH₂Ar), 3.87 (t, 4H, ${}^{3}J_{HH} = 6.7$ Hz; OCH₂), 3.67 (t, 4H, ${}^{3}J_{HH} = 6.7$ Hz; CH₂N₃), 3.18 (d, 4H, ${}^{2}J_{HH} = 12.7$ Hz; ArCH₂Ar), 2.49 (t, 2H, ${}^{4}J_{HH} = 2.5$ Hz; OCH₂CCH), 2.28 (m, 4H; OCH₂CH₂), 1.28 (s, 18H; C(CH₃)₃), 0.90 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 152.79$, 151.88, 145.92, 144.65, 135.70, 132.10 (C_{Ar}), 125.44, 124.62 (CH_{Ar}), 81.23 (CH₂CCH), 74.76 (CH₂C<u>C</u>H), 72.28, 59.94 (OCH₂), 48.91 (CH₂N₃), 34.07, 33.63 (C(CH₃)₃), 31.58 (ArCH₂Ar), 31.56, 31.14 (C(<u>C</u>H₃)₃), 29.83 (CH₂) ppm. ESI-MS *m/z*: 891.5532 [M+H]⁺ for C₅₆H₇₁N₆O₄ (891.5531).

Azidobutylated/propargylated calix[4]arene 19_4 was prepared as descibed for compound 19_2 from calixarene 2_4 (0.338 g, 0.42 mmol), NaH (60% in mineral oil, 0.102 g, 2.55 mmol) and propargyl bromide (80% in toluene, 0.237 ml, 2.12 mmol) in DMF (15 ml). The product was purified by column chromatography (dichloromethane) followed by re-crystallization from


dichloromethane/methanol. Yield 0.263 g (71%), white solid. M. p. 178–180 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.08 (s, 4H; ArH), 6.49 (s, 4H; ArH), 4.97 (d, 4H, ⁴*J*_{HH} = 2.4 Hz; OC<u>H</u>₂CCH), 4.49 (d, 4H, ²*J*_{HH} = 12.7 Hz; ArCH₂Ar), 3.79 (t, 4H, ³*J*_{HH} = 6.9 Hz; OCH₂), 3.40 (t, 4H, ³*J*_{HH} = 6.9 Hz; CH₂N₃), 3.17 (d, 4H, ²*J*_{HH} = 12.7 Hz; ArCH₂Ar), 2.44 (t, 2H, ⁴*J*_{HH} = 2.4 Hz; OCH₂CC<u>H</u>), 2.07 (m, 4H; CH₂), 1.88 (m, 4H; CH₂), 1.31 (s, 18H; C(CH₃)₃), 0.86 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 152.93, 151.97, 145.86, 144.42, 136.08, 131.95 (C_{Ar}), 125.39, 124.48 (CH_{Ar}), 81.39 (CH₂CCH), 74.79 (CH₂CCH), 74.52, 59.86 (OCH₂), 51.48 (CH₂N₃), 34.10, 33.58 (<u>C</u>(CH₃)₃), 31.72 (ArCH₂Ar), 31.62, 31.12 (C(<u>C</u>H₃)₃), 27.69, 25.93 (CH₂) ppm. ESI-MS *m/z*: 936.6104 [M+NH₄]⁺ for C₅₈H₇₈N₇O₄ (936.6110).

Doubly-bridged calix[4]arene 20_2 . A solution of calixarene 19_2 (0.020 g, 0.023 mmol) in *o*-xylene (2.3 ml) was heated in an inert atmosphere at 130 °C for 72 h and cooled. The solvent was evaporated under reduced pressure, the residue was dissolved in a minimum volume of dichloromethane and hexane was added. The precipitate formed was

collected, washed with hexane and dried. Yield 0.017 g (85%), white solid. M. p. > 300 °C. ¹H NMR (600 MHz, CDCl₃, 30 °C): δ = 7.23 (d, 2H, ⁴J = 2.2 Hz; H¹⁵), 7.19 (bs, 2H; H²¹), 6.89

(d, 2H, ${}^{4}J = 2.2$ Hz; H¹¹), 6.54 (d, 2H, ${}^{4}J = 2.3$ Hz; H²), 6.41 (d, 2H, ${}^{4}J = 2.3$ Hz; H⁶), 5.49 (bd, 2H; H¹⁹ⁱⁿ), 5.18–5.13 (m, 2H; H^{22out}), 5.11 (d, 2H, ${}^{2}J = 13.1$ Hz; H^{19out}), 4.86 (ddd, 2H, ${}^{2}J = 14.6$ Hz; ${}^{3}J = 10.7$ Hz, ${}^{3}J = 2.0$ Hz; H²²ⁱⁿ), 4.63–4.58 (m, 2H; H^{23left}), 4.46 (d, 2H, ${}^{2}J = 12.6$ Hz; H^{18ax}), 4.03–3.97 (m, 2H; H^{23right}), 3.31 (d, 2H, ${}^{2}J = 12.6$ Hz; H^{18eq}), 2.62 (d, 2H, ${}^{2}J = 13.0$ Hz; H^{9eq}), 2.27 (bs, 2H; H^{9ax}), 1.31 (s, 18H; H¹⁴), 0.78 (s, 18H; H⁵) ppm; ¹³C NMR (150 MHz, CDCl₃, 30 °C): $\delta = 150.52$ (17), 150.17 (8), 147.03 (12), 145.71 (3), 136.97 (10), <u>136.83</u> (21), 135.31 (16), <u>134.69</u> (20), 132.99 (1), 131.74 (7), 126.18 (15), 125.37 (6), 125.07 (11), 124.91 (2), 72.75 (23), 60.95 (19), 51.09 (22), 34.23 (13), 33.61 (4), 32.95 (9), 31.61 (14), 30.87 (18+5) ppm. ESI-MS *m/z*: 863.5226 [M+H]⁺ for C₅₄H₆₇N₆O₄ (863.5218).

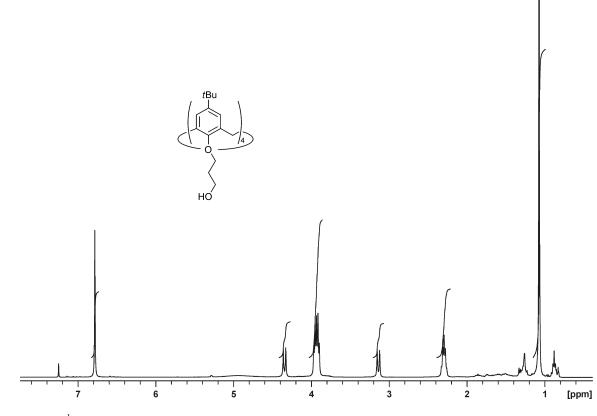
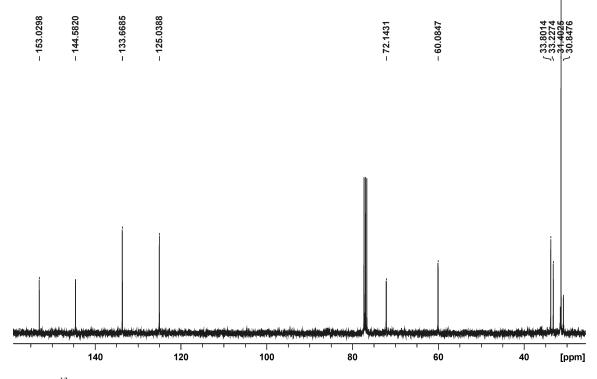
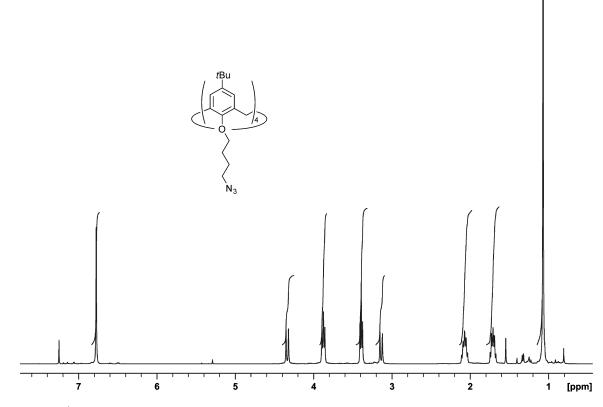
Doubly-bridged calix[4]arene **20**₃ was prepared as described for compound **20**₂ from calixarene **19**₃ (0.021 g, 0.02 mmol) in *o*-xylene (4 ml). The product was purified by column chromatography (gradient from dichloromethane to dichloromethane/ethanol (50:1)). Yield 0.016 g (75%), white solid. M. p. > 300 °C. ¹H NMR (600 MHz, CDCl₃, 30 °C): δ = 7.35

(s, 2H; H²¹), 7.21 (d, 2H, ⁴*J* = 2.2 Hz; H¹⁵), 6.97 (d, 2H, ⁴*J* = 2.2 Hz; H¹¹), 6.56 (d, 2H, ⁴*J* = 2.3 Hz; H²), 6.45 (d, 2H, ⁴*J* = 2.3 Hz; H⁶), 5.62–5.54 (m, 2H; H^{22up}), 5.53 (d, 2H, ²*J* = 13.8 Hz; H¹⁹ⁱⁿ), 4.79 (d, 2H, ²*J* = 13.8 Hz; H^{19out}), 4.57–4.51 (m, 2H; H^{22down}), 4.38 (d, 2H, ²*J* = 12.4 Hz; H^{18ax}), 3.85–3.80 (m, 2H; H^{24left}), 3.76–3.69 (m, 2H; H^{24right}), 3.25 (d, 2H, ²*J* = 12.4 Hz; H^{18eq}), 3.11–3.04 (m, 2H; H^{23left}), 2.73–2.64 (m, 2H; H^{23right}), 2.61 (d, 2H, ²*J* = 12.9 Hz; H⁹), 2.60 (d, 2H, ²*J* = 12.9 Hz; H⁹), 1.31 (s, 18H; H¹⁴), 0.79 (s, 18H; H⁵) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 152.40 (*17*), 149.81 (*8*), 146.87 (*12*), 145.15 (*3*), 136.18 (*10*), 135.00 (*16*), <u>134.73</u> (*21*), <u>134.22</u> (*20*), 132.24 (*7*), 132.09 (*1*), 126.13 (*15*), 125.15 (*6*), 124.94 (*11*), 124.82 (*2*), 67.84 (*24*), 62.98 (*19*), 42.80 (*22*), 34.18 (*13*), 33.60 (*4*), 31.61 (*14*), 30.95 (*9*), 30.93 (*5*), 30.84 (*18*), 28.12 (*23*) ppm. ESI-MS *m/z* 891.5530 [M+H]⁺ for C₅₆H₇₁N₆O₄ (891.5531).

Doubly-bridged calix[4]arene **20**₄ was prepared as described for compound **20**₂ from calixarene **19**₄ (0.092 g, 0.10 mmol) in *o*-xylene (10 ml). The product was purified by column chromatography (gradient from dichloromethane to dichloromethane/ethanol (50:1)). Yield 0.066 g (72%), white solid. M. p. 221–223 °C. ¹H NMR (600 MHz, CDCl₃, 30 °C): $\delta =$

7.67 (s, 2H; H²¹), 7.14 (d, 2H, ⁴J = 2.4 Hz; H¹⁵), 7.10 (d, 2H, ⁴J = 2.4 Hz; H¹¹), 6.64 (d, 2H, ⁴J = 2.4 Hz; H²), 6.61 (d, 2H, ⁴J = 2.4 Hz; H⁶), 4.73 (d, 2H, ²J = 12.1 Hz; H¹⁹ⁱⁿ), 4.73–4.69 (m, 2H; H^{22up}), 4.67 (d, 2H, ²J = 12.1 Hz; H^{19out}), 4.49–4.43 (m, 2H; H^{22down}), 4.29 (d, 2H, ²J = 12.3 Hz; H^{18ax}), 4.20 (d, 2H, ²J = 12.3 Hz; H^{9ax}), 3.65–3.59 (m, 2H; H^{25left}), 3.50–3.45 (m, 2H; H^{25right}),

3.25 (d, 2H, ${}^{2}J = 12.3$ Hz; H^{9eq}), 3.24–3.19 (m, 2H; H²³ⁱⁿ), 3.19 (d, 2H, ${}^{2}J = 12.3$ Hz; H^{18eq}), 1.93–1.83 (m, 2H; H^{23out}), 1.62–1.48 (m, 4H; H²⁴), 1.31 (s, 18H; H¹⁴), 0.86 (s, 18H; H⁵) ppm; 13 C NMR (150 MHz, CDCl₃): $\delta = 154.55$ (8), 150.27 (17), 145.77 (12), 145.46 (3), 135.43 (10), <u>134.24</u> (21), 134.01 (16), <u>132.76</u> (20), 132.28 (7), 131.99 (1), 125.76 (15), 125.73 (2), 125.49 (11), 124.50 (6), 73.81 (25), 64.56 (19), 49.36 (22), 34.06 (13), 33.76 (4), 31.65 (14), 31.25 (9), 31.06 (5), 29.56 (18), 28.37 (23), 26.14 (24) ppm. ESI-MS *m/z* 919.5842 [M+H]⁺ for C₅₈H₇₅N₆O₄ (919.5844).

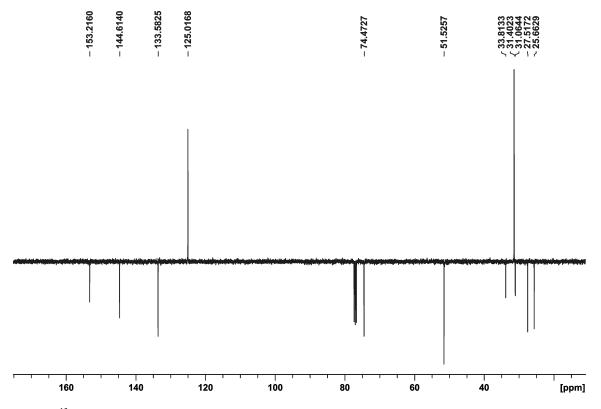

Figure S1. ¹H NMR spectrum of calixarene 6 (400 MHz, CDCl₃).

Figure S2. ¹³C NMR spectrum of calixarene **6** (100 MHz, CDCl₃).

Figure S3. ¹H NMR spectrum of calixarene $\mathbf{1}_4$ (400 MHz, CDCl₃).

Figure S4. ¹³C NMR spectrum (APT) of calixarene $\mathbf{1}_4$ (100 MHz, CDCl₃).

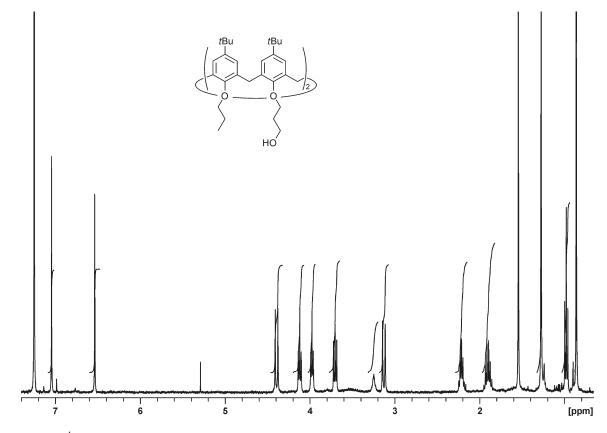
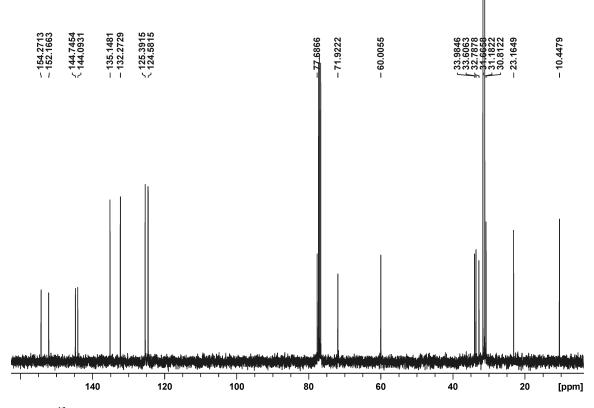
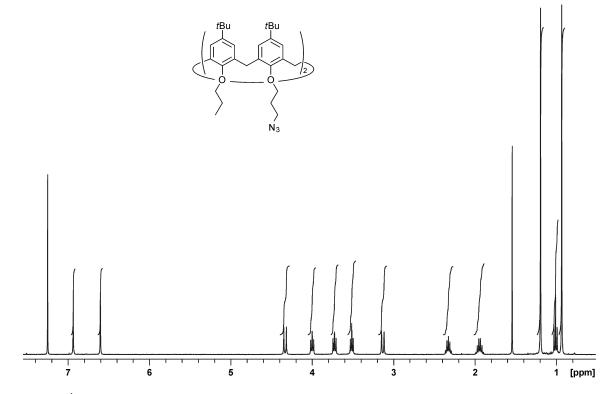
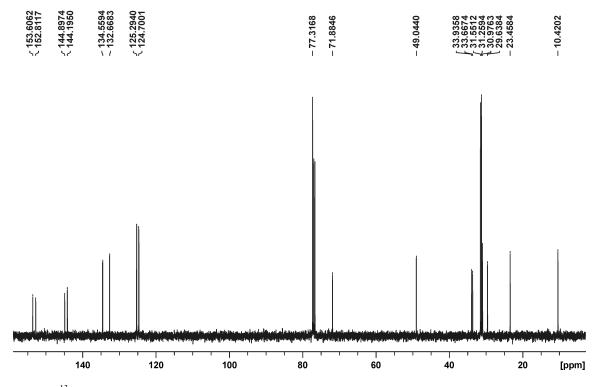


Figure S5. ¹H NMR spectrum of calixarene 9 (400 MHz, CDCl₃).

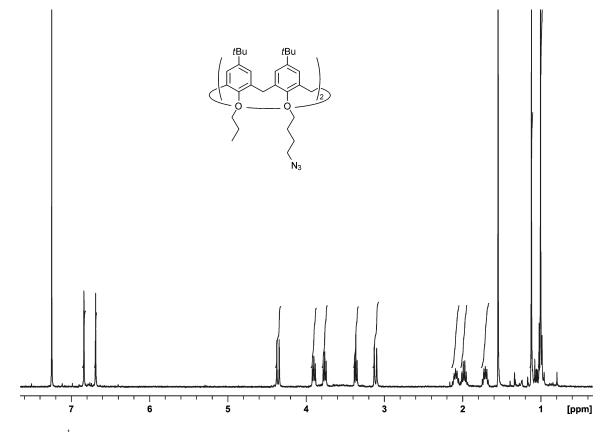

Figure S6. ¹³C NMR spectrum of calixarene 9 (100 MHz, CDCl₃).

Figure S7. ¹H NMR spectrum of calixarene 3_3 (400 MHz, CDCl₃).

Figure S8. 13 C NMR spectrum of calixarene **3**₃ (100 MHz, CDCl₃).

Figure S9. ¹H NMR spectrum of calixarene 3_4 (400 MHz, CDCl₃).

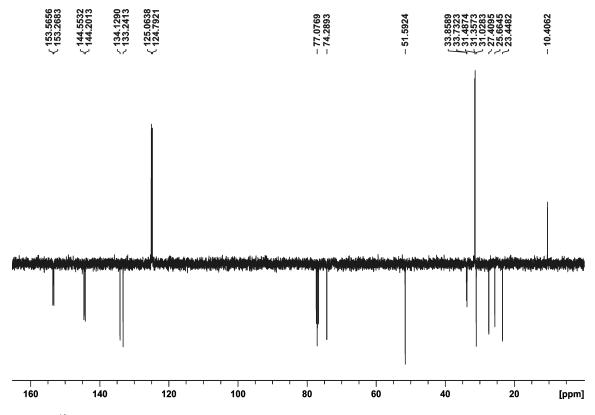


Figure S10. ¹³C NMR spectrum (APT) of calixarene 3₄ (100 MHz, CDCl₃).

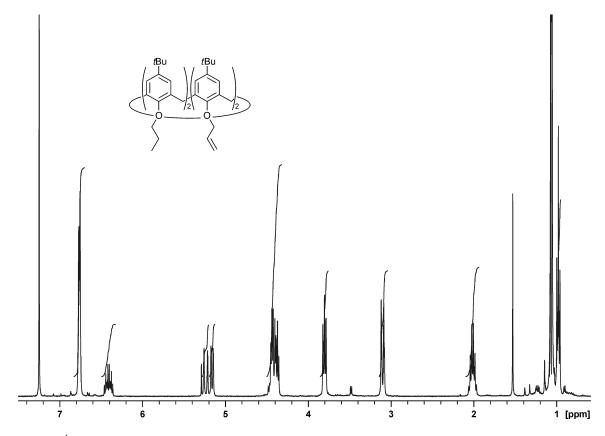


Figure S11. ¹H NMR spectrum of calixarene 12 (400 MHz, CDCl₃).

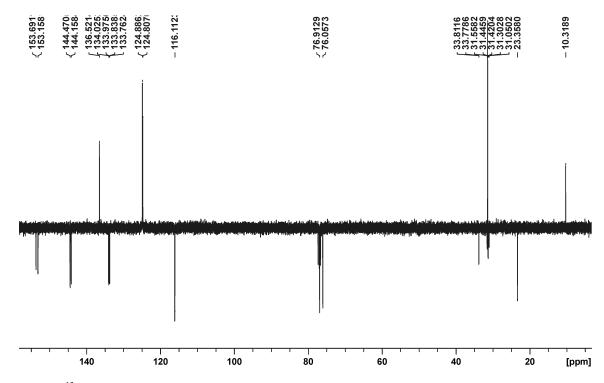


Figure S12. ¹³C NMR spectrum (APT) of calixarene 12 (100 MHz, CDCl₃).

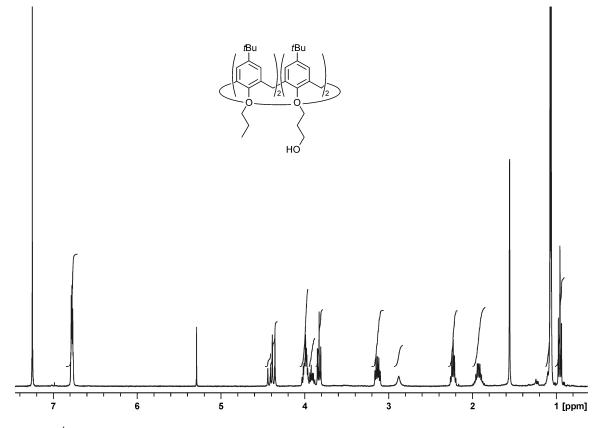


Figure S13. ¹H NMR spectrum of calixarene 13 (400 MHz, CDCl₃).

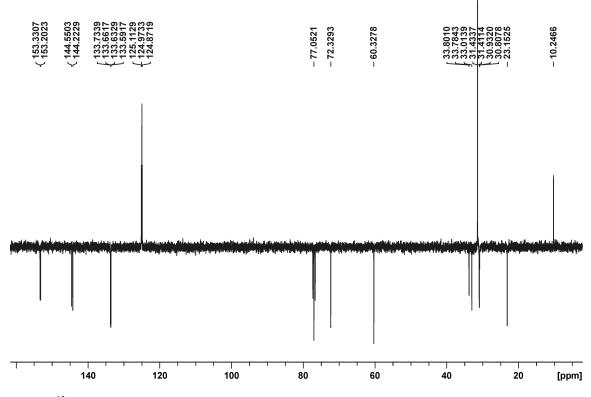


Figure S14. ¹³C NMR spectrum (APT) of calixarene 13 (100 MHz, CDCl₃).

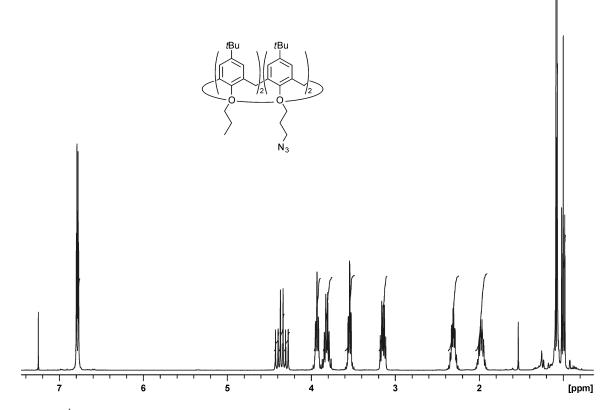


Figure S15. ¹H NMR spectrum of calixarene 4₃ (400 MHz, CDCl₃).

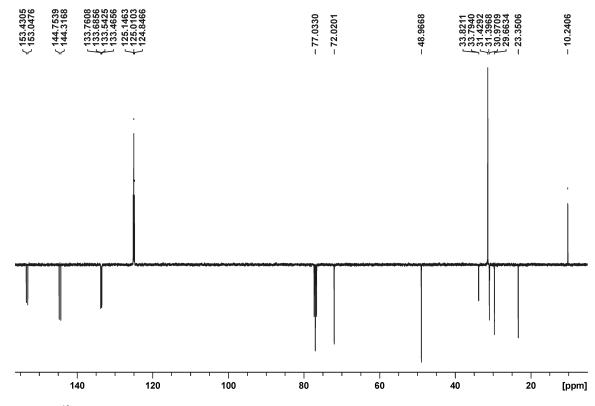


Figure S16. ¹³C NMR spectrum (APT) of calixarene 4₃ (100 MHz, CDCl₃).

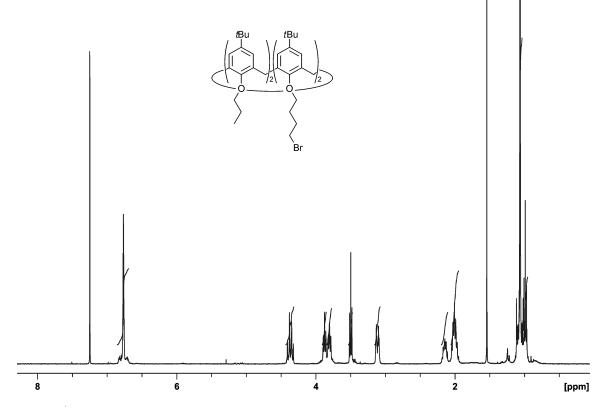


Figure S17. ¹H NMR spectrum of calixarene 14 (400 MHz, CDCl₃).

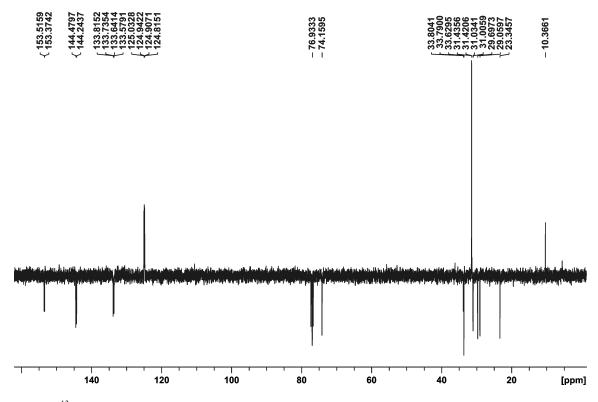


Figure S18. ¹³C NMR spectrum (APT) of calixarene 14 (100 MHz, CDCl₃).

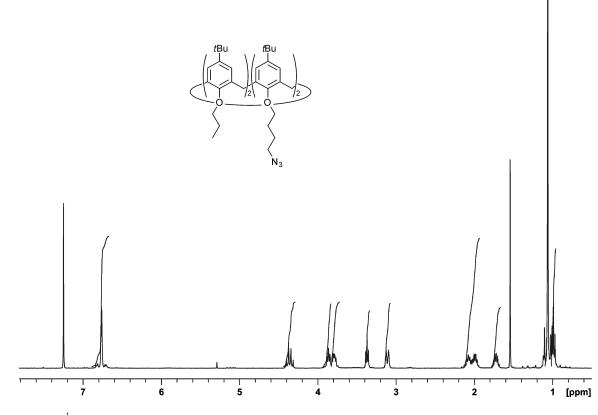


Figure S19. ¹H NMR spectrum of calixarene 4₄ (400 MHz, CDCl₃).

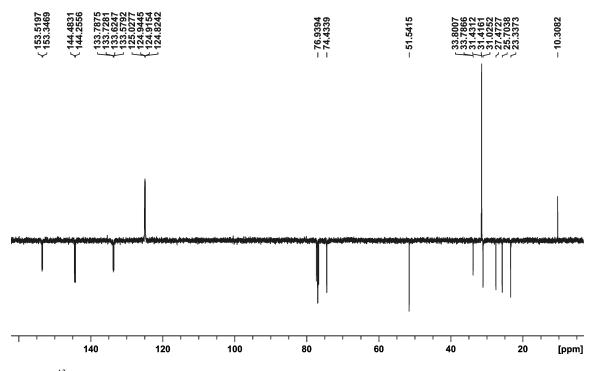


Figure S20. ¹³C NMR spectrum (APT) of calixarene 4₄ (100 MHz, CDCl₃).

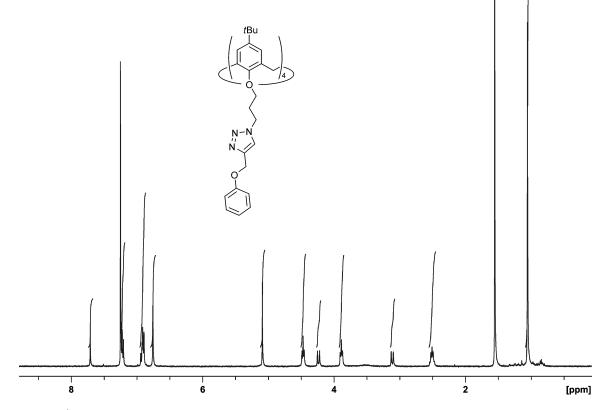


Figure S21. ¹H NMR spectrum of calixarene 15_3 (400 MHz, CDCl₃).

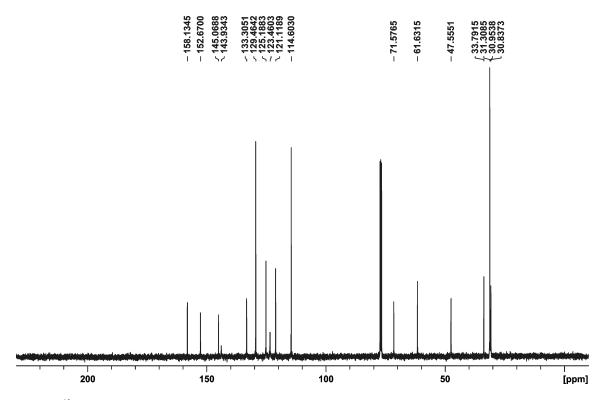


Figure S22. ¹³C NMR spectrum of calixarene 15₃ (100 MHz, CDCl₃).

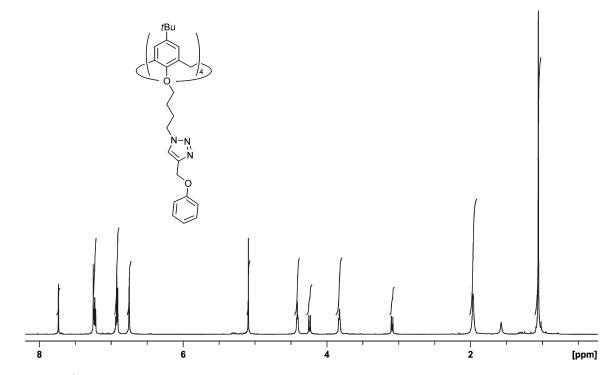


Figure S23. ¹H NMR spectrum of calixarene 15₄ (400 MHz, CDCl₃).

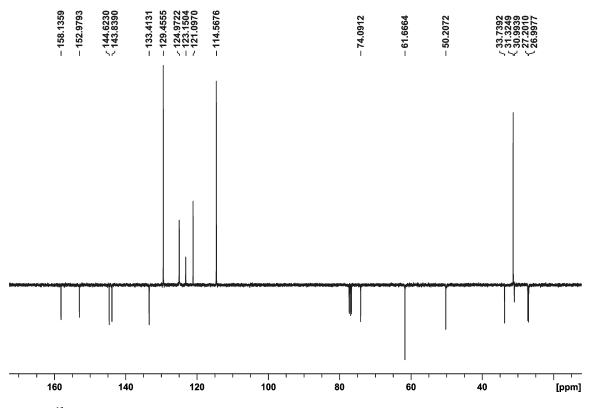


Figure S24. ¹³C NMR spectrum (APT) of calixarene 15₄ (100 MHz, CDCl₃).

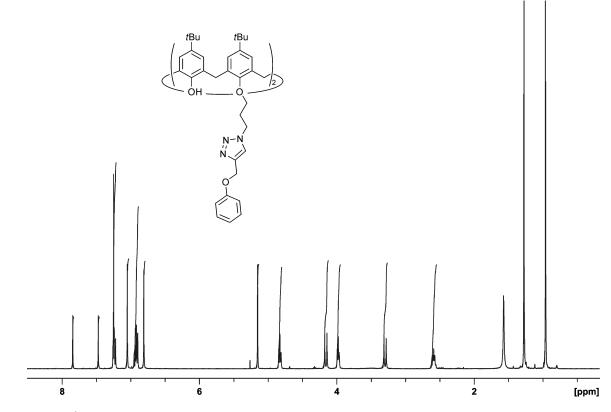


Figure S25. ¹H NMR spectrum of calixarene 16₃ (400 MHz, CDCl₃).

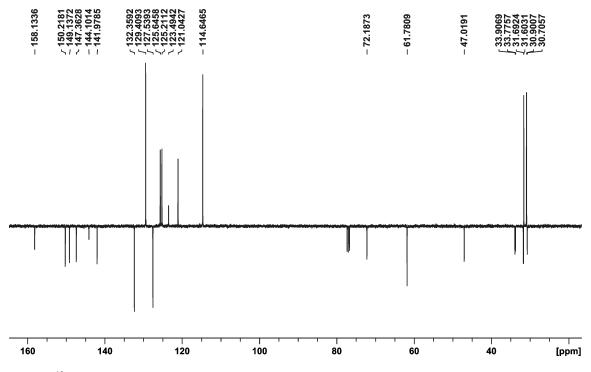


Figure S26. ¹³C NMR spectrum (APT) of calixarene 16₃ (100 MHz, CDCl₃).

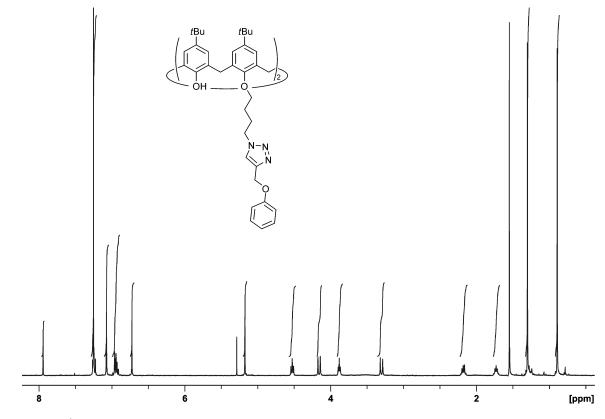


Figure S27. ¹H NMR spectrum of calixarene 16_4 (400 MHz, CDCl₃).

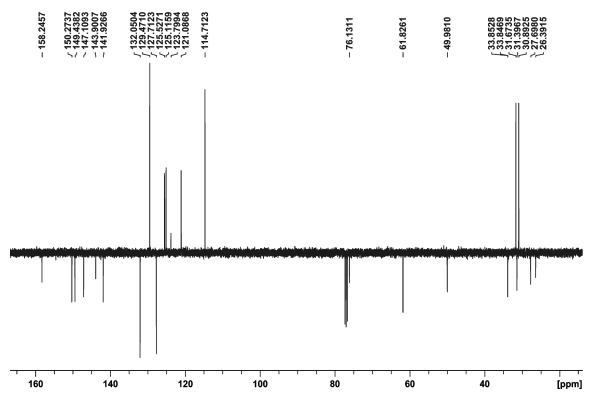


Figure S28. ¹³C NMR spectrum (APT) of calixarene 16₄ (100 MHz, CDCl₃).

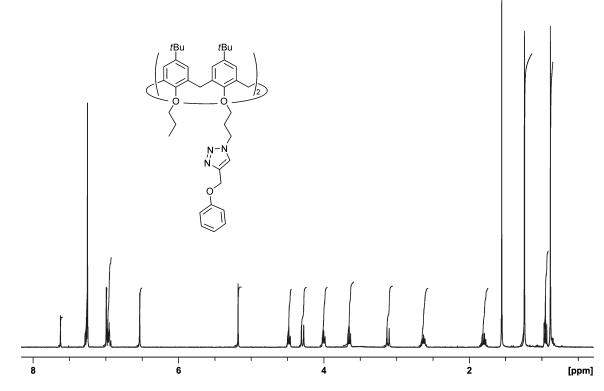


Figure S29. ¹H NMR spectrum of calixarene 17₃ (400 MHz, CDCl₃).

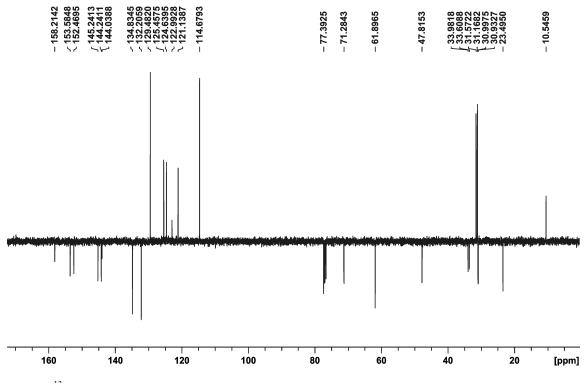


Figure S30. ¹³C NMR spectrum (APT) of calixarene 17₃ (100 MHz, CDCl₃).

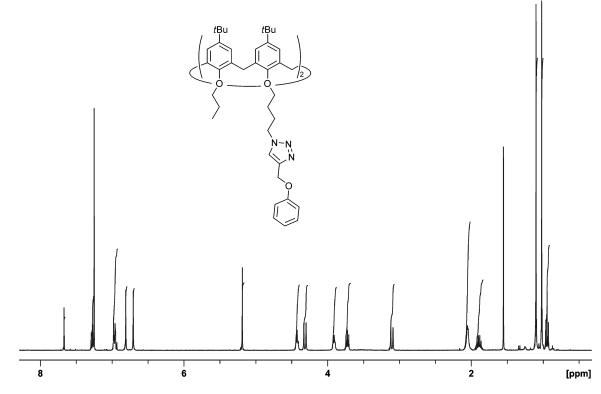


Figure S31. ¹H NMR spectrum of calixarene 17₄ (400 MHz, CDCl₃).

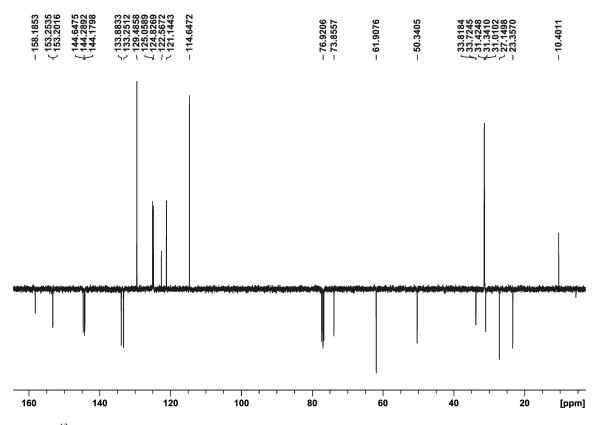


Figure S32. ¹³C NMR spectrum (APT) of calixarene 17₄ (100 MHz, CDCl₃).

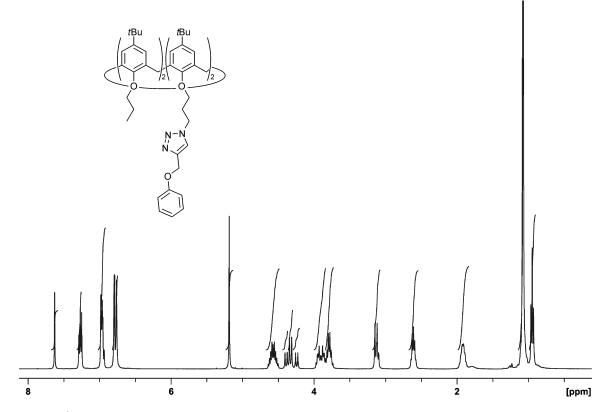


Figure S33. ¹H NMR spectrum of calixarene 18₃ (400 MHz, CDCl₃).

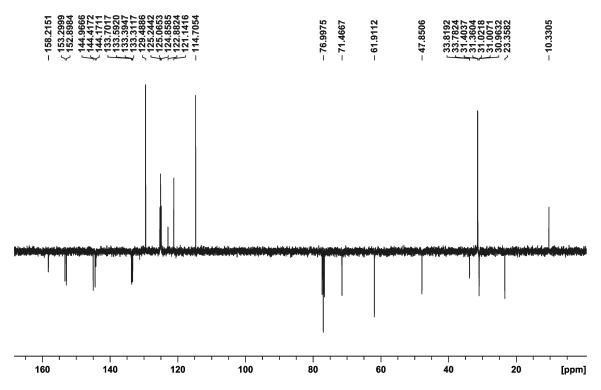


Figure S34. ¹³C NMR spectrum (APT) of calixarene 18₃ (100 MHz, CDCl₃).

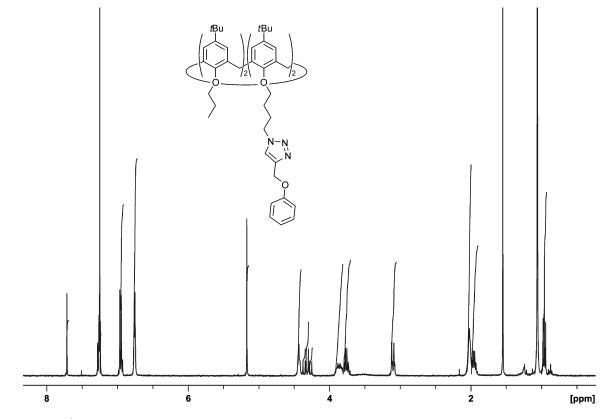


Figure S35. ¹H NMR spectrum of calixarene 18₄ (400 MHz, CDCl₃).

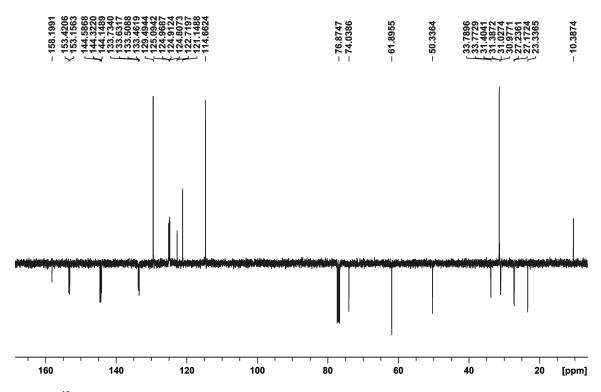


Figure S36. ¹³C NMR spectrum (APT) of calixarene 18₄ (100 MHz, CDCl₃).

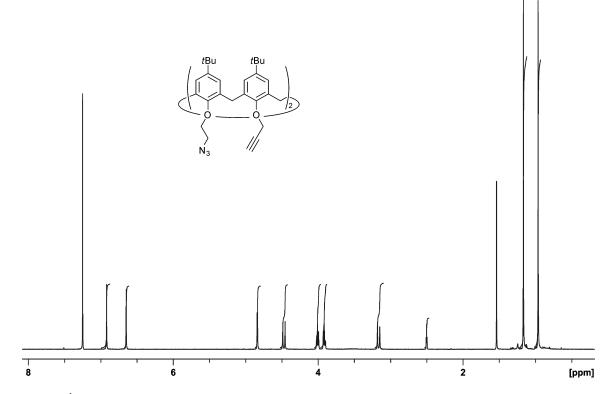


Figure S37. ¹H NMR spectrum of calixarene **19**₂ (400 MHz, CDCl₃).

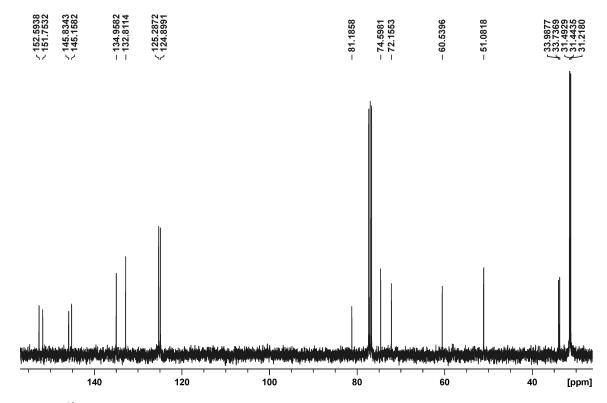


Figure S38. ¹³C NMR spectrum of calixarene **19**₂ (100 MHz, CDCl₃).

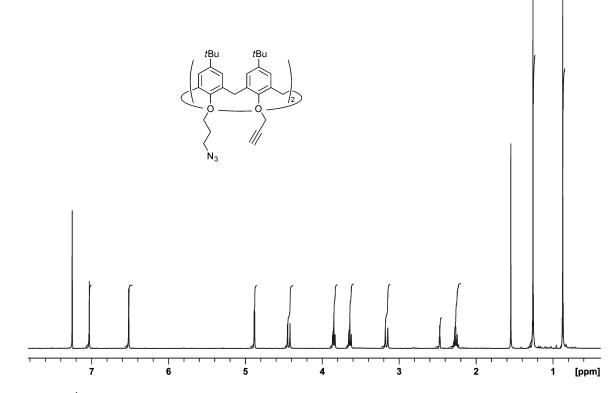


Figure S39. ¹H NMR spectrum of calixarene **19**₃ (400 MHz, CDCl₃).

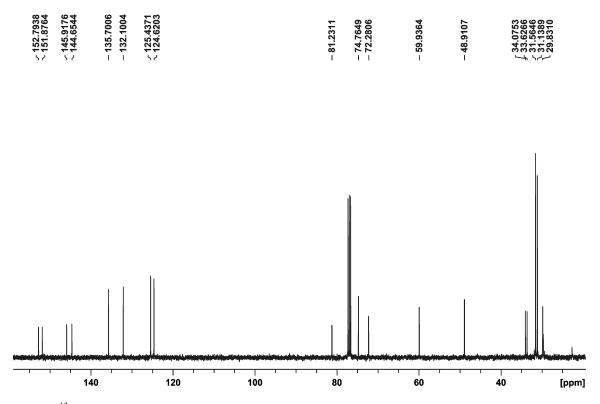


Figure S40. ¹³C NMR spectrum of calixarene **19**₃ (100 MHz, CDCl₃).

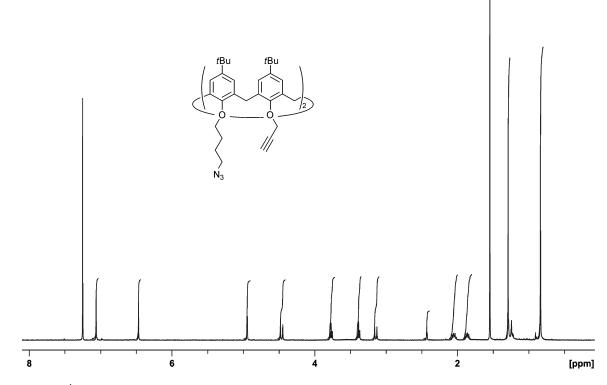


Figure S41. ¹H NMR spectrum of calixarene **19**₄ (400 MHz, CDCl₃).

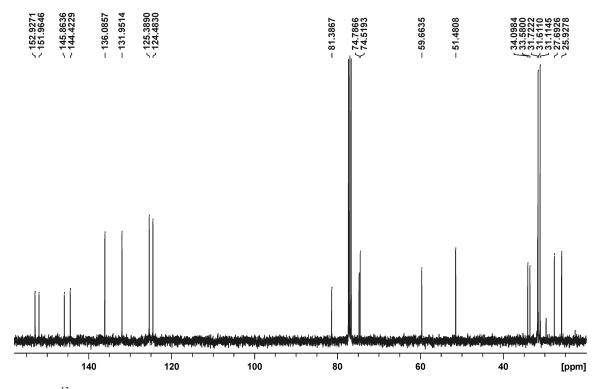


Figure S42. ¹³C NMR spectrum of calixarene **19**₄ (100 MHz, CDCl₃).

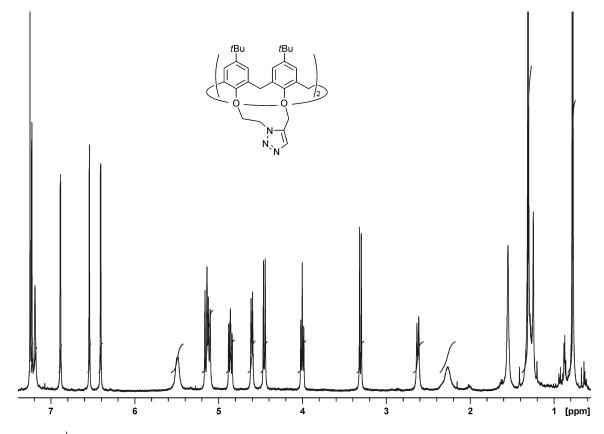
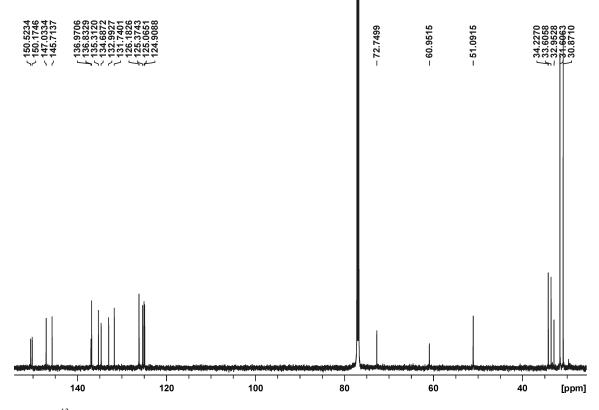
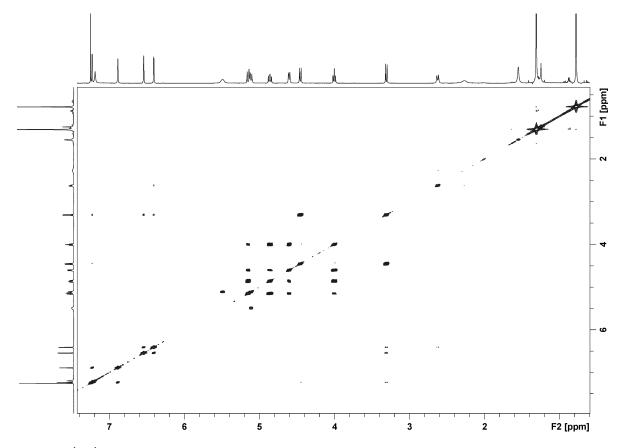
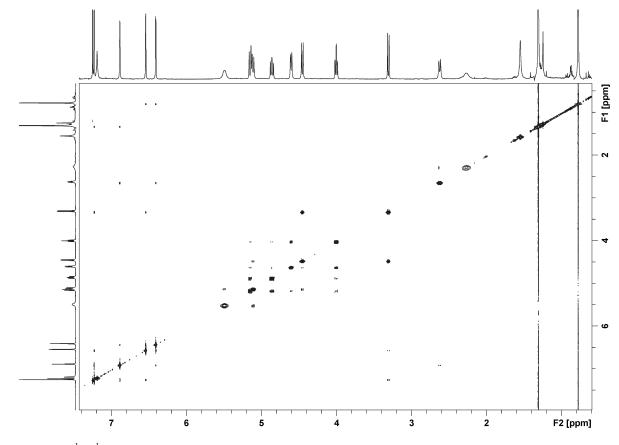
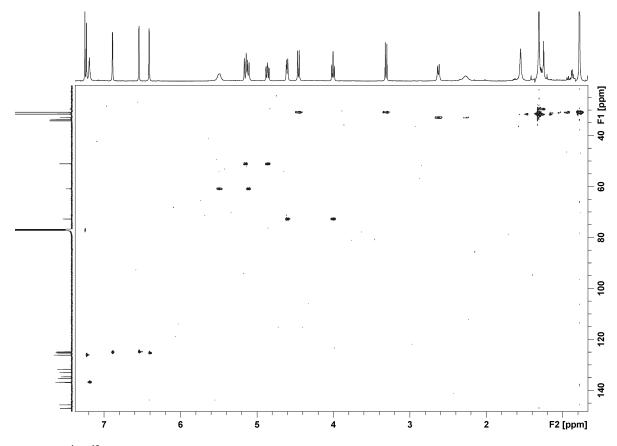


Figure S43. ¹H NMR spectrum of calixarene 20₂ (600 MHz, CDCl₃, 30 °C).


Figure S44. ¹³C NMR spectrum of calixarene 20₂ (150 MHz, CDCl₃, 30 °C).

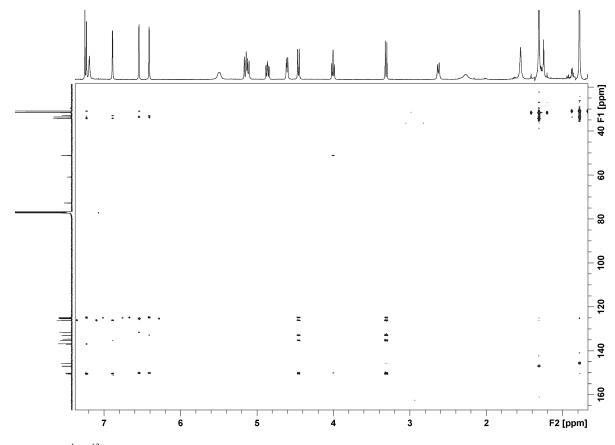

Figure S45. ¹H–¹H COSY spectrum of calixarene **20**₂ (600 MHz, CDCl₃, 30 °C).

Figure S46. ¹H–¹H NOESY spectrum of calixarene **20**₂ (600 MHz, CDCl₃, 30 °C).

Figure S47. ¹H–¹³C HSQC spectrum of calixarene **20**₂ (600 MHz, CDCl₃, 30 °C).

Figure S48. ¹H–¹³C HMBC spectrum of calixarene **20**₂ (600 MHz, CDCl₃, 30 °C).

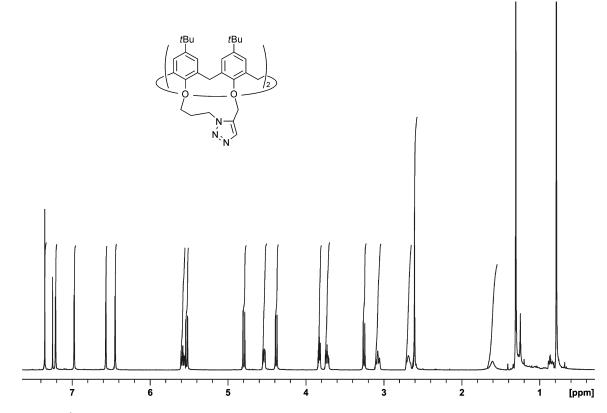


Figure S49. ¹H NMR spectrum of calixarene 20₃ (600 MHz, CDCl₃, 30 °C).

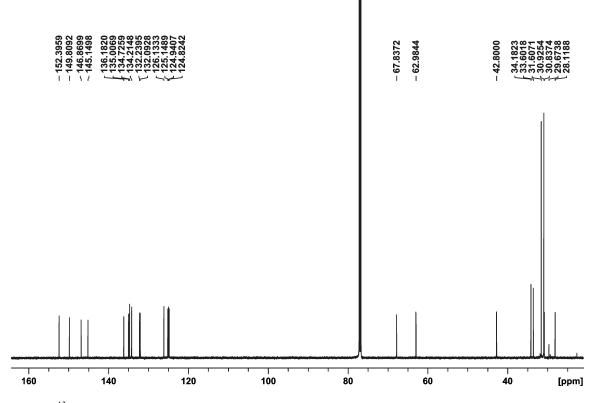
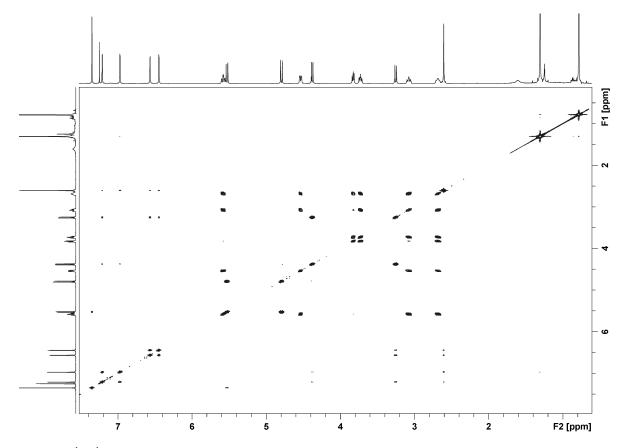
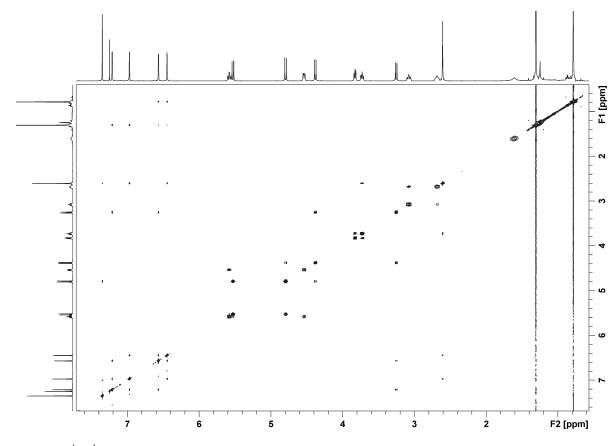




Figure S50. ¹³C NMR spectrum of calixarene 20₃ (150 MHz, CDCl₃, 30 °C).

Figure S51. ¹H–¹H COSY spectrum of calixarene **20**₃ (600 MHz, CDCl₃, 30 °C).

Figure S52. ¹H–¹H NOESY spectrum of calixarene **20**₃ (600 MHz, CDCl₃, 30 °C).

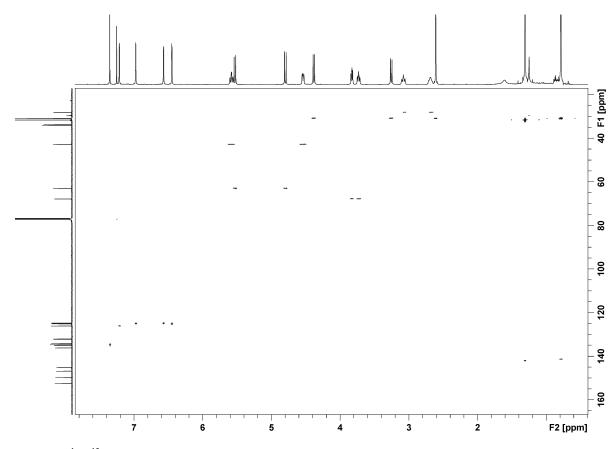
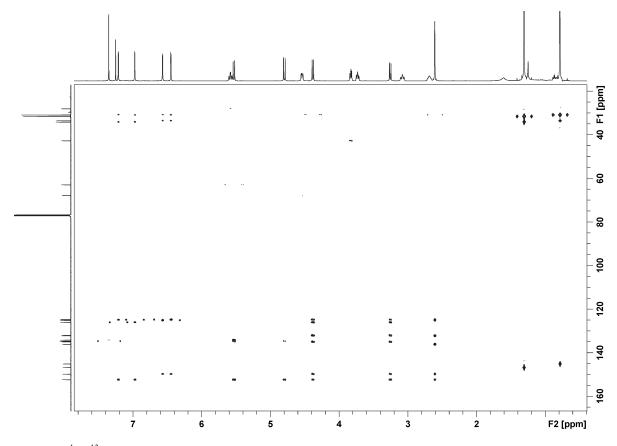



Figure S53. ¹H–¹³C HSQC spectrum of calixarene 20₃ (600 MHz, CDCl₃, 30 °C).

Figure S54. ¹H–¹³C HMBC spectrum of calixarene **20**₃ (600 MHz, CDCl₃, 30 °C).

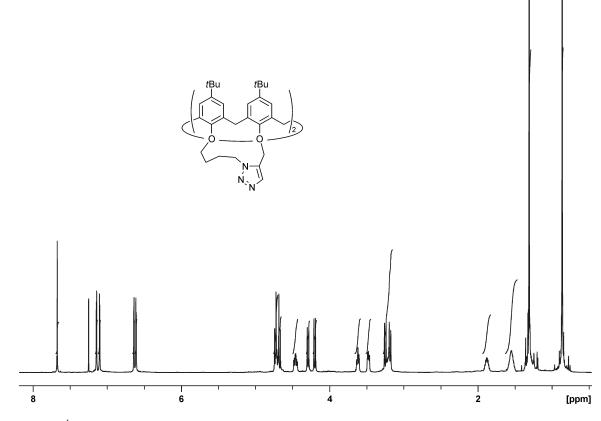


Figure S55. ¹H NMR spectrum of calixarene **20**₄ (600 MHz, CDCl₃, 30 °C).

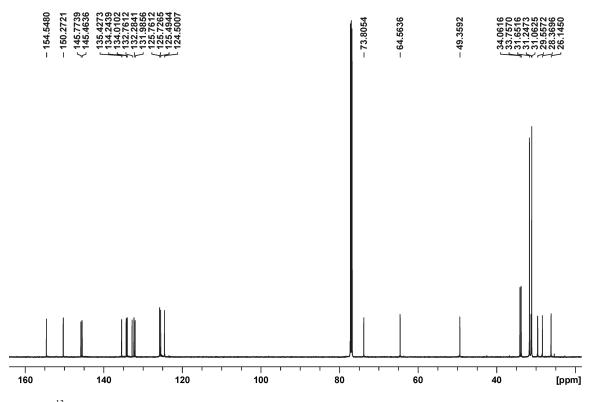
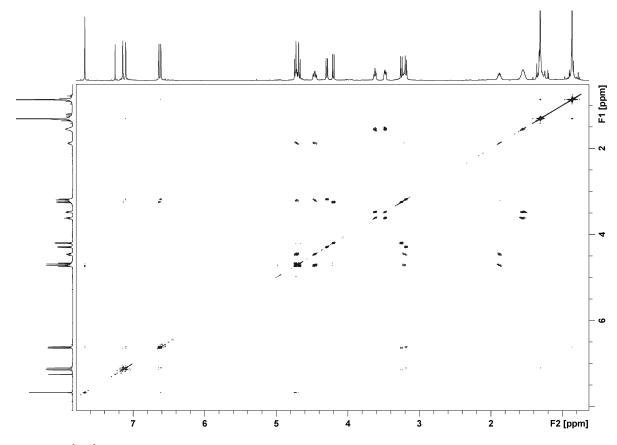
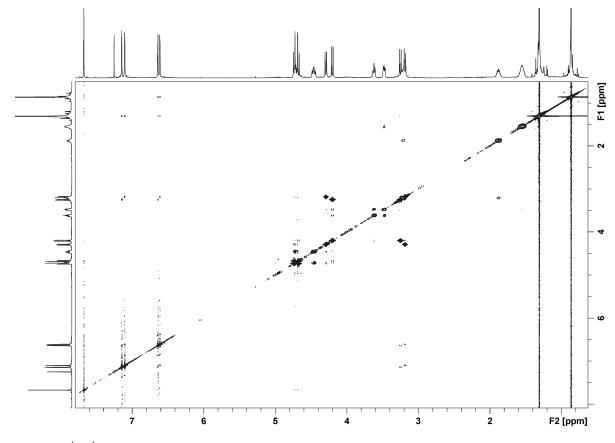




Figure S56. ¹³C NMR spectrum of calixarene 20₄ (150 MHz, CDCl₃, 30 °C).

Figure S57. ¹H–¹H COSY spectrum of calixarene **20**₄ (600 MHz, CDCl₃, 30 °C).

Figure S58. ¹H–¹H NOESY spectrum of calixarene **20**₄ (600 MHz, CDCl₃, 30 °C).

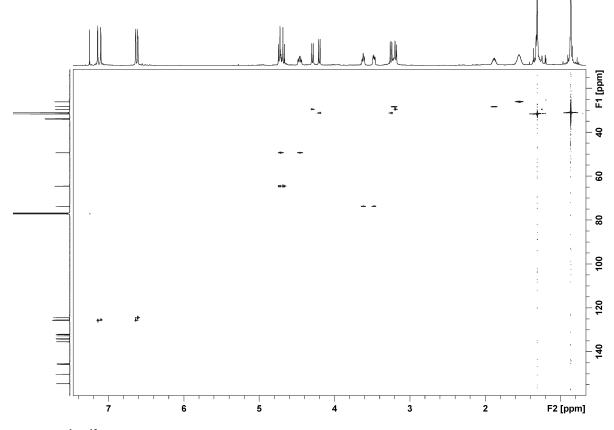
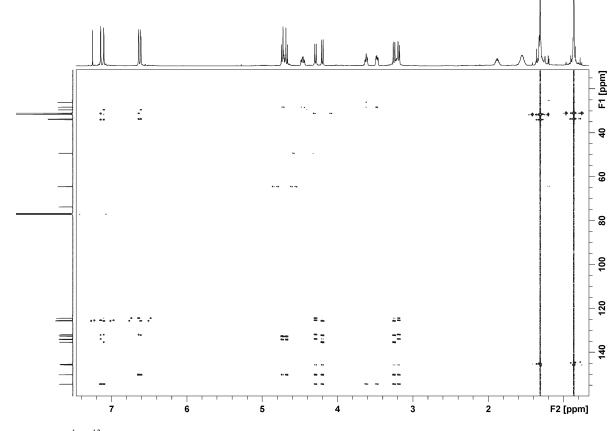



Figure S59. $^{1}H-^{13}C$ HSQC spectrum of calixarene 20₄ (600 MHz, CDCl₃, 30 °C).

Figure S60. ¹H–¹³C HMBC spectrum of calixarene **20**₄ (600 MHz, CDCl₃, 30 °C).

Details of X-ray diffraction measurements

Crystallographic data were collected at 100 and 150 K on a Bruker SMART APEX II diffractometer equipped with a PHOTON II CMOS detector using graphite monochromatized Mo–K α radiation ($\lambda = 0.71073$ Å) using a ω -scan mode. Absorption correction based on measurements of equivalent reflections was applied.^{S12} The structures were solved by direct methods and refined by full matrix least-squares on F^2 with anisotropic thermal parameters for all non-hydrogen atoms using Olex2 package.^{S13} Hydrogen atoms were placed in calculated positions and refined using a riding model. Crystallographic details are presented in the table below.

Compound	2_4	202	20 ₃	204
Formula	$C_{52}H_{70}N_6O_4$	C ₅₄ H ₆₆ N ₆ O ₄ ·2CH ₃ OH	$\begin{array}{c} C_{56}H_{70}N_6O_4{\cdot}0.25CH_3OH{\cdot}\\ 0.65H_2O\end{array}$	$C_{58}H_{74}N_6O_4\cdot 2C_7H_8$
M_{w}	843.14	927.21	914.40	1103.50
Temperature (K)	150(2)	150(2)	150(2)	100(2)
Size (mm)	$0.41 \times 0.33 \times 0.20$	$0.32 \times 0.24 \times 0.08$	$0.21\times0.17\times0.13$	$0.90 \times 0.40 \times 0.04$
Cryst. system	triclinic	monoclinic	triclinic	triclinic
Space group	P-1	$P2_1/n$	P-1	P-1
<i>a</i> (Å)	12.8923(3)	11.0508(3)	12.9522(10)	10.4623(12)
b (Å)	14.3755(3)	35.7303(11)	18.5010(13)	24.710(3)
<i>c</i> (Å)	15.8793(3)	12.8339(4)	23.7564(15)	24.745(2)
α (°)	91.9790(10)	90	75.737(2)	97.703(4)
β (°)	110.3990(10)	91.2770(10)	83.236(2)	90.024(4)
γ (°)	111.0270(10)	90	87.838(3)	93.981(4)
V (Å ³)	2531.52(10)	5066.2(3)	5478.6(7)	6323.7(12)
Ζ	2	4	4	4
$\rho_{\rm cald}$ (g·cm ⁻³)	1.106	1.216	1.109	1.159
Abs coeff (mm^{-1})	0.070	0.079	0.071	0.072
<i>F</i> (000)	912	2000	1972	2384
θ range (deg)	$1.82 < \theta < 25.05$	$2.17 < \theta < 25.03$	$1.73 < \theta < 25.05$	$1.66 < \theta < 25.03$
no. of collected/ /unique rflns	38488 / 8892	42339 / 8934	54607 / 19314	63769 / 21438
Completeness to θ (%)	99.2	99.8	99.5	95.7
no. of data/	8892/	8934/	19314/	21438/
/restraints/	/68/	/32/	/33/	/0/
/params	/579	/624	/1250	/1425
Goodness of fit on F^2	1.062	1.027	1.037	1.063
Final R indices	R1 = 0.0871,	R1 = 0.0631,	R1 = 0.0708,	R1 = 0.1649,
$(I > 2\sigma(I))$	wR2 = 0.2339	wR2 = 0.1403	wR2 = 0.1760	wR2 = 0.3513
R indices	R1 = 0.0999,	R1 = 0.0902,	R1 = 0.0985,	R1 = 0.2715,
(all data)	wR2 = 0.2467	wR2 = 0.1546	wR2 = 0.1921	wR2 = 0.3931
Largest diff peak/hole (e/Å ³)	1.19 / -1.02	0.65 / -0.57	0.72 / -0.69	0.61 / -0.43

References

- S1. S. Barboso, A. G. Carrera, S. E. Matthews, F. Arnaud-Neu, V. Böhmer, J.-F. Dozol, H. Rouquette and M.-J. Schwing-Weill, Calix[4]arenes with CMPO functions at the narrow rim. Synthesis and extraction properties, *J. Chem. Soc.*, *Perkin Trans.* 2, 1999, 719–723.
- S2. Z.-G. Luo, Y. Zhao, F. Xu, C. Ma, X.-M. Xu and X.-M. Zhang, Synthesis and thermal properties of novel calix[4]arene derivatives containing 1,2,3-triazole moiety *via* K₂CO₃catalyzed 1,3-dipolar cycloaddition reaction, *Chinese Chem. Lett.*, 2014, 25, 1346–1348.
- S3. R. Hosseinzadeh, E. Domehri, M. Tajbakhsh and A. Bekhradnia, New fluorescent sensor based on a calix[4]arene bearing two triazole–coumarin units for copper ions: application for Cu²⁺ detection in human blood serum, *J. Incl. Phenom. Macrocyclic Chem.*, 2019, 93, 245–252.
- S4. D. Tian, H. Yan and H. Li, A selective fluorescent probe of Hg²⁺ based on triazole-linked 8-oxyquinoline calix[4]arene by click chemistry, *Supramol. Chem.*, 2010, 22, 249–255.
- S5. A. Gorbunov, J. Kuznetsova, K. Puchnin, V. Kovalev and I. Vatsouro, Triazolated calix[4]arenes from 2-azidoethylated precursors: is there a difference in the way the triazoles are attached to narrow rims? *New J. Chem.*, 2019, **43**, 4562–4580.
- C. D. Gutsche, B. Dhawan, J. A. Levine, K. H. No and L. J. Bauer, Calixarenes. 9. Conformational isomers of the ethers and esters of calix[4]arenes, *Tetrahedron*, 1983, 39, 409–426.
- S7. R. Pomecko, Z. Asfari, V. Hubscher-Bruder, M. Bochenska and F. Arnaud-Neu, Anion recognition by phosphonium calix[4]arenes: synthesis and physico-chemical studies, *Supramol. Chem.*, 2010, 22, 275–288.
- S8. I. Bitter, A. Grün, B. Ágai and L. Tôke, An easy access to tetra-O-alkylated calix[4]arenes of cone conformation, *Tetrahedron*, 1995, **51**, 7835–7840.
- S9. V. I. Boyko, A. A. Podoprigorina, A. V. Yakovenko, V. V. Pirozhenko and V. I. Kalchenko, Alkylation of narrow rim calix[4]arenes in a DMSO-NaOH medium, *J. Incl. Phenom. Macrocyclic Chem.*, 2004, **50**, 193–197.
- S10. Y. Nishizawa, Studies on organophosphorus compounds. II. On phosphite cuprous halide complex compounds, *Bull. Chem. Soc. Jpn.* 1961, **34**, 1170–1178.
- S11. A. Tikad, H. Fu, C. M. Sevrain, S. Laurent, J.-F. Nierengarten and S. P. Vincent, Mechanistic insight into heptosyltransferase inhibition by using Kdo multivalent glycoclusters, *Chem. – Eur. J.*, 2016, 22, 13147–13155.
- S12. G. M. Sheldrick, A short history of SHELX, Acta Crystallogr., 2008, A64, 112-122.
- S13. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *OLEX2*: a complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, 2009, 42, 339–341.