Supporting Information

Iron catalyzed ketoalkylation and ketoalkylation/etherification of

styrenes initiated by selective C-C bond cleavage

Meng-Ting Suo, Shuo Yang, Jun-Cheng Yang, Ze-Yu Liu, Jun-Jie Zhang, and Li-Na Guo*

Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material

Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed

Matter, Xi'an Jiaotong University, Xi'an 710049, China.

Email: guoln81@xjtu.edu.cn

Table of Contents

General Information	S2
Starting Materials	S2
Optimization of Reaction Conditions	S3
General Procedure for the Alkyl-Heck-type Coupling of Cyclopentyl Silyl Peroxide	S3
1a with Styrene 2a	
Table S1. Optimization of the Reaction of Cyclopentyl Silyl Peroxide 1a with	S4
Styrene 2a	
General Procedure for the Oxyalkylation of 4-Methoxystyrene 2b with Cyclopentyl	S7
Silyl Peroxide 1a and Methanol	
Table S2. Optimization of the Reaction of Cyclopentyl Silyl Peroxide 1a with 4-	S8
Methoxystyrene 2b and Methanol	
Representative Procedure for the Alkyl-Heck-type Couplings of Cycloalkyl Silyl	S9
Peroxides 1 with Olefins 2	
Representative Procedure for the Oxyalkylation of Olefins 2 with Cycloalkyl Silyl	S10
Peroxides 1 and Nucleophiles	
Larger Scale for the Reaction of Cyclopentyl Silyl Peroxide 1a with Styrene 2a	S11
Larger Scale for the Reaction of Cyclopentyl Silyl Peroxide 1a with 4-	S12
Methoxystyrene 2b and Methanol	
Investigation of the Reaction Mechanism	S13
Characterization of Products 3, 4 and 5	S14
References	S37
¹ H NMR and ¹³ C NMR Spectra of Products 3 , 4 , 5 and 6a	S38

General Information

All reactions were conducted in 10mL oven-dried reaction tube under an atmosphere of nitrogen. Reactions were monitored by thin layer chromatography (TLC) and visualized using UV light or a basic DNP solution. Column chromatography was carried out on silica gel. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance III-400 and Advance III-600 in solvents as indicated. Chemical shift are reported in parts per million from tetramethylsilane (TMS) with the solvent resonance as internal standard (CDCl₃: ¹H NMR: $\delta = 7.26$; ¹³C NMR: $\delta = 77.0$). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). IR spectra were recorded on a Bruker Tensor 27 spectrometer and only major peaks are reported in cm⁻¹. High-resolution mass spectrometry (HRMS) spectra were obtained on a WATERS I-Class VION IMS Q-Tof. Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification.

Starting Materials

All of cycloalkyl silyl peroxides **1** were prepared from the corresponding cycloalkyl alcohols according to the literature.^{1,2} All of the NMR spectra of known compounds were in full accordance with the data in the literature.

Optimization of Reaction Conditions

General Procedure for the Alkyl-Heck-type Coupling of Cyclopentyl Silyl Peroxide 1a with Styrene 2a

An 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with $Fe(OTf)_2$ (5 mol %). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl silyl peroxide **1a** (1.0 equiv.), styrene **2a** in solvent (See Table S1) was added by syringe under nitrogen. The tube was then sealed and the mixture was stirred at specified temperature for 12 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether = 1:50) to give the product **3a** as colorless oil. The results are summarized as following.

Table S1. Optimization of the reaction of cyclopentyl silyl peroxide 1a with styrene $2\mathbf{a}^a$

Solvent

Ph_OOTMS + Ph	Fe(OTf)₂ (5 mol %) ► Solvent	Ph
1a 2a	rt,12 h	3a
Entry	Solvent	Yield (%) ^b
1	DMF	trace
2	DMAc	35
3	CH ₃ CN	41
4	DMSO	trace
5	THF	29
6	DME	30
7	MTBE	30
8	1,4-dioxane	59
9	DCE	8
10	Cyclohexane	28

^{*a*}Reaction conditions: 5 mol % of Fe(OTf)₂, **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), solvent (1.0 mL), room temperature, for 12 h, under N_2 .^{*b*}Yields of isolated product of **3a**.

Catalyst

Ph、OOTMS		0
+ Ph	Catalyst (5 mol %)	$\overset{\downarrow}{\downarrow}$ \land \land \land
	1,4-dioxane	Ph' V V VPh
1a 2a	rt,12 h	3a
Entry	Catalyst	Yield $(\%)^b$
1	Fe(OTf) ₂	59
2	Fe(OTs) ₂	trace
3	FeBr ₂	trace
4	$Fe(OAc)_2$	trace
5	FeSO ₄ •7H ₂ O	trace
6	Fe(OTf) ₃	56
7	FeCl ₃	trace
8	Fe(NO ₃) ₃ •9H ₂ O	trace
9	Cu(OTf)	51
10	Cu(OTf) ₂	25
11	CuCl	trace
12	CuI	trace
13	NiCl ₂ •glyme	n.r.
14	CoCl ₂	n.r.

^{*a*}Reaction conditions: 5 mol % of catalyst, **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), 1,4-dioxane (1.0 mL), room temperature, for 12 h, under N_2 . ^{*b*}Yields of isolated product of **3a**.

Concentration

	Fe(OTf) ₂ (5 mol %)	
L + FII X	1,4-dioxane (x mL)	Ph Ph
1a 2a	rt,12 h	3a
Entry	Solvent/mL	Yield (%) ^{b}
1	1.0	59
2	2.0	77
3	5.0	73

^{*a*}Reaction conditions: 5 mol % of Fe(OTf)₂, **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), 1,4-dioxane (\mathbf{x} mL), room temperature, for 12 h, under N₂.^{*b*}Yields of isolated product of **3a**.

Ratio of 1a:2a

	S	Fe(OTf) ₂ (5 mol %)	O II
+	Ph i 🚿	1,4-dioxane	Ph
1a	2a	rt,12 h	3a
Entry		1a:2a	Yield (%) ^b
1		1:1	57
2		1:1.5	77
3		1:2	81
4		1:3	84

^{*a*}Reaction conditions: 5 mol % of Fe(OTf)₂, **1a** (0.2 mmol, 1.0 equiv.), **1a**:**2a** = 1:x, 1,4-dioxane (2.0 mL), room temperature, for 12 h, under N₂. ^{*b*}Yields of isolated product of **3a**.

Additives

	S DL	Fe(OTf) ₂ (5 mol %)	0
↓/ + 1a	Pn ≺ 2a	Additives 1,4-dioxane, rt,12 h	Ph Ph 3a
Entry		Additives	Yield (%) ^b
1		-	77
2		TsOH	54
3		DABCO	n.r.
4		K ₂ CO ₃	n.r.

^aReaction conditions: 5 mol % of Fe(OTf)₂, 1a (0.2 mmol, 1.0 equiv.), 2a (0.3 mmol, 1.5 equiv.), 1,4-dioxane (2.0 mL), additives

(0.4 mmol, 2.0 equiv.), room temperature, for 12 h, under N_2 .^bYields of isolated product of **3a**.

Temperature

	S Dh	Fe(OTf) ₂ (5 mol %)	
↓/ + 1a	2a	1,4-dioxane (x mL) Temperature ,12 h	Ph Ph 3a
Entry		Temperature	Yield (%) ^{<i>b</i>}
1		r.t.	77
2		40	84
3		60	79
4		90	70

^{*a*}Reaction conditions: 5 mol % of Fe(OTf)₂, **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), 1,4-dioxane (2.0 mL), temperature, for 12 h, under N₂.^{*b*}Yields of isolated product of **3a**.

General Procedure for the Oxyalkylation of 4-Methoxystyrene 2b with

Cyclopentyl Silyl Peroxide 1a and Methanol

An 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with 5 mol % of Fe(OTf)₂. Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl silyl peroxide **1a** (0.20 mmol, 1.0 equiv.), 4-methoxystyrene **2b** (0.30 mmol, 1.5 equiv.), methanol (See Table S2) in 1,4dioxane (2.0 mL) was added by syringe under nitrogen. The tube was then sealed and the mixture was stirred at 40 °C for 12 h. After that, the resulting mixture was quenched with H₂O and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether = 1:50) to give the product **5a** as colorless oil. The results are summarized as following.

Table S2. Optimization of the reaction of cyclopentyl silyl peroxide 1a with 4-Methoxystyrene 2b and methanolRatio of methanol^a

Ph_OOTMS + MeO 1a 2b	Fe(OTf) ₂ (5 mol %) MeOH (x equiv) 1,4-dioxane, 40°C,12 h	Ph H^{3}
		5a OMe
Entry	Nucleophile (equiv.)	5a Yield (%) ^{b/c}
Entry 1	Nucleophile (equiv.)	5a <u>Yield (%)^{b/c}</u> 12/70
Entry 1 2	Nucleophile (equiv.) 1.5 3.0	5a <u>Yield (%)^{b/c}</u> 12/70 9/74
Entry 1 2 3	Nucleophile (equiv.) 1.5 3.0 5.0	5a OMe Yield (%) ^{b/c} 12/70 9/74 trace/86

^{*a*}Reaction conditions: 5 mol % of Fe(OTf)₂, **1a** (0.2 mmol, 1.0 equiv.), **2b** (0.3 mmol, 1.5 equiv.), 1,4-dioxane (2.0 mL), MeOH (**x** equiv.), 40°C, for 12 h, under N₂. ^{*b*}Yields of isolated product of **3b**. ^{*c*}Yields of isolated product of **5a**.

Representative Procedure for the Alkyl-Heck-type Couplings of Cycloalkyl Silyl Peroxides 1 with Olefins 2

An 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with $Fe(OTf)_2$ (5 mol %). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cycloalkyl silyl peroxide **1** (0.20 mmol, 1.0 equiv.), olefins **2** (0.30 mmol, 1.5 equiv.) in 1,4-dioxane (2 mL) was added by syringe under nitrogen. The tube was then sealed and the mixture was stirred at 40 °C for 12 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether = 1:50) to give the product **3** or **4** in yields listed in Schemes 1 and 2.

Representative Procedure for the Oxyalkylation of Olefins 2 with

Cycloalkyl Silyl Peroxides 1 and Nucleophiles

An 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with 5 mol % of Fe(OTf)₂. Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cycloalkyl silyl peroxides **1** (0.20 mmol, 1.0 equiv.), olefins **2** (0.30 mmol, 1.5 equiv.), nucleophiles (1.0 mmol, 5.0 equiv.) in 1,4-dioxane (2.0 mL) was added by syringe under nitrogen. The tube was then sealed and the mixture was stirred at 40 °C for 12 h. After that, the resulting mixture was quenched with H₂O and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether = 1:50) to give the product **5** in yields listed in Scheme 3.

Larger Scale for the Reaction of Cyclopentyl Silyl Peroxide 1a with Styrene 2a

An 100 mL oven-dried sealed tube equipped with a magnetic stirring bar was charged with Fe(OTf)₂ (5 mol %). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl silyl peroxide **1a** (2 mmol, 1.0 equiv, 0.50 g), styrene **2a** (3 mmol, 1.5 equiv, 0.31 g) in 1,4-dioxane (20 mL) was added by syringe under nitrogen. The tube was then sealed and the mixture was stirred at 40°C for 24 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 30 mL). The combined organic phase was washed with brine (30 mL), dried over Na₂SO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether = 1:50) to obtain the product **3a** (0.42 g, 79%).

Larger Scale for the Reaction of Cyclopentyl Silyl Peroxide 1a with 4-

Methoxystyrene 2b and Methanol

An 100 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with $Fe(OTf)_2$ (5 mol %). Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl silyl peroxide **1a** (2 mmol, 1.0 equiv, 0.50 g), 4-methoxystyrene **2b** (3 mmol, 1.5 equiv, 0.40 g), methanol (10 mmol, 5.0 equiv, 0.32 g) in 1,4-dioxane (20 mL) was added by syringe under nitrogen. The tube was then sealed and the mixture was stirred at 40 °C for 24 h. After that, the resulting mixture was quenched with H₂O and extracted with CH₂Cl₂ (3 x 30 mL). The combined organic phase was washed with brine (30 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether = 1:50) to obtain the product **5a** (0.50 g, 77%).

Investigation of the Reaction Mechanism

When 2.0 equiv of TEMPO was added to the reaction of **1a** with **2a** under the standard conditions, no desired product **3a** was observed and the corresponding TEMPO-adduct **6a** was obtained in 71 % yield. These results indicate that a radical intermediate might be involved in this transformation.

1-Phenyl-5-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentan-1-one (6a): (known compound)^{1b,2}; Colorless oil; (71%, 45.0 mg); $R_f = 0.3$ (EtOAc/petroleum ether = 1:30); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 3.78 (t, J = 6.4 Hz, 2H), 3.01 (t, J = 7.4 Hz, 2H), 1.88 – 1.80 (m, 2H), 1.66 – 1.59 (m, 2H), 1.50 – 1.40 (m, 5H), 1.32 – 1.28 (m, 1H), 1.15 (s, 6H), 1.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.3, 137.0, 132.8, 128.5, 128.0, 76.4, 59.6, 39.5, 38.6, 33.0, 28.4, 21.4, 20.1, 17.1 ppm.

Moreover, when 2.0 equiv or 4.0 equiv of BHT was added to the reaction of **1a** with **2a**, both of them led to a decreased yield of **3a**. These results also support a radical pathway for this transformation.

Characterization of Products 3

1,7-Diphenylhept-6-en-1-one (3a): (known compound)^b, Colorless oil; (84%, 44.5 mg); E/Z > 99:1; R_f = 0.45 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.54 – 7.49 (m, 1H), 7.44 – 7.40 (m, 2H), 7.33 – 7.22 (m, 4H), 7.19 – 7.13 (m, 1H), 6.38 (d, *J* = 15.8 Hz, 1H), 6.20 (dt, *J* = 16.0, 6.8 Hz, 1H), 2.97 (t, *J* = 7.3 Hz, 2H), 2.28 – 2.20 (m, 2H), 1.83 – 1.75 (m, 2H), 1.59 – 1.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.3, 137.7, 137.0, 132.9, 130.4, 130.1, 128.5, 128.4, 128.0, 126.8, 125.9, 38.4, 32.8, 29.0, 23.9 ppm.

7-(4-Methoxyphenyl)-1-phenylhept-6-en-1-one (3b): Colorless oil; (76%, 44.7 mg); E/Z > 99:1; R_f = 0.41 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 6.35 (d, J = 16.0 Hz, 1H), 6.08 (dt, J = 15.6, 7.2Hz, 1H), 3.80 (s, 3H), 3.00 (t, J = 7.2 Hz, 2H), 2.23 – 2.28 (m, 2H), 1.85 – 1.78 (m, 2H), 1.61 – 1.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.4, 158.6, 137.0, 132.9, 130.6, 129.5, 128.5, 128.3, 128.0, 127.0, 113.9, 55.2, 38.4, 32.8, 29.1, 23.9 ppm; IR (neat): v_{max} 2923, 2853, 1725, 1682, 1603, 1508, 1453, 967, 741, 691 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₂NaO₂ [M+Na]⁺, 317.1512, found 317.1510.

1-Phenyl-7-(*p*-tolyl)hept-6-en-1-one (3c): (known compound)^b, Faint yellow oil; (85%, 47.3 mg); E/Z > 99:1; R_f = 0.30 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.94 (m, 2H), 7.59 – 7.53 (m, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.11 (t, J = 6.0 Hz, 2H), 6.38 (d, J = 16.0 Hz, 1H), 6.18 (dt, J =

15.6, 6.8 Hz, 1H), 3.01 (t, J = 7.2 Hz, 2H), 2.33 (s, 3H), 2.32 – 2.52 (m, 2H), 1.86 – 1.78 (m, 2H), 1.61 – 1.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.3$, 137.0, 136.5, 135.0, 132.9, 130.0, 129.4, 129.1, 128.5, 128.0, 125.8, 38.4, 32.8, 29.1, 23.9, 21.1 ppm.

7-(4-(*tert***-Butyl)phenyl)-1-phenylhept-6-en-1-one (3d):** Yellow oil; (76%, 48.7 mg); E/Z > 99:1; R_f = 0.34 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.94 (m, 2H), 7.56 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.33 – 7.28 (m, 4H), 6.40 (d, J = 16.0 Hz, 1H), 6.20 (dt, J = 15.6, 6.8 Hz, 1H), 3.01 (t, J = 7.2 Hz, 2H), 2.29 – 2.23 (m, 2H), 1.85 – 1.76 (m, 2H), 1.62 – 1.54 (m, 2H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.3, 149.8, 137.0, 135.0, 132.9, 129.8, 129.7, 128.5, 128.0, 125.6, 125.3, 38.4, 34.4, 32.8, 31.3, 29.1, 23.9 ppm; IR (neat): v_{max} 2957, 2866, 1685, 1595, 1510, 1453, 1404, 839, 745, 693 cm⁻¹; HRMS (ESI) calcd for C₂₃H₂₈NaO [M+Na]⁺, 343.2032, found 343.2030.

7-([1,1'-Biphenyl]-4-yl)-1-phenylhept-6-en-1-one (3e): White soild; (82%, 55.8 mg); mp: 99 – 102 °C; E/Z > 99:1; R_f = 0.25 (EtOAc/petroleum ether = 1:25); ¹H NMR (600 MHz, CDCl₃) δ 8.01 – 7.93 (m, 2H), 7.62 – 7.58 (m, 2H), 7.58 – 7.53 (m, 3H), 7.47 (t, J = 7.8 Hz, 2H), 7.45 – 7.40 (m, 4H), 7.34 (t, J = 7.8 Hz, 1H), 6.45 (d, J = 15.6 Hz, 1H), 6.28 (dt, J = 15.6, 6.6 Hz, 1H), 3.02 (t, J = 7.2 Hz, 2H), 2.34 – 2.28 (m, 2H), 1.86 – 1.82 (m, 2H), 1.63 – 1.58 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.3, 140.8, 139.6, 137.0, 136.8, 132.9, 130.7, 129.7, 128.7, 128.6, 128.0, 127.2, 127.1, 126.9, 126.3, 38.4, 32.9, 29.0, 23.9 ppm; IR (neat): v_{max} 3029, 2927, 2861, 1674, 1590, 1451, 1409, 853, 753, 689 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₄NaO [M+Na]⁺ 363.1719, found 363.1717.

7-(4-Chlorophenyl)-1-phenylhept-6-en-1-one (3f): (known compound)^b, White solid; (73%, 42.8 mg); E/Z > 99:1; R_f = 0.31 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.93 (m, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.46 (t, J =8.0 Hz, 2H), 7.26 – 7.27 (m, 4H), 6.36 (d, J = 15.6 Hz, 1H), 6.28 (dt, J = 15.6, 6.6 Hz, 1H), 3.01 (t, J = 7.2 Hz, 2H), 2.30 – 2.25 (m, 2H), 1.86 – 1.78 (m, 2H), 1.63 – 1.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.2, 137.0, 136.2, 132.9, 132.3, 131.2, 129.0, 128.5, 128.0, 127.1, 38.3, 32.8, 28.9, 23.8 ppm.

7-(4-Fromophenyl)-1-phenylhept-6-en-1-one (3g): (known compound)^b, White solid; (72%, 49.4 mg); E/Z > 99:1; R_f = 0.31 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.23 – 7.20 (m, 2H), 7.19 (d, J = 8.4 Hz, 2H), 6.33 (d, J = 16.0 Hz, 1H), 6.22 (dt, J = 16.0, 6.8 Hz, 1H), 3.01 (t, J = 7.2 Hz, 2H), 2.29 – 2.23 (m, 2H), 1.84 – 1.76 (m, 2H), 1.60 – 1.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.3, 136.9, 136.6, 133.0, 131.5, 131.3, 129.0, 128.6, 128.0, 127.5, 120.4, 38.3, 32.8, 28.8, 23.8 ppm.

Methyl-4-(7-oxo-7-phenylhept-1-en-1-yl)benzoate (3h): Yellow oil; (77%, 49.6 mg); E/Z > 99:1; R_f = 0.25 (EtOAc/petroleum ether = 1:15); ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.58 – 7.52 (m, 1H), 7.45 (t, J = 8.0 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 6.38 (d, J = 16.0 Hz, 1H), 6.17 (dt, J = 16.0, 6.8 Hz, 1H), 3.00 (t, J = 7.6 Hz, 2H), 2.29 (s, 3H), 2.28 – 2.23 (m, 2H), 1.85 – 1.77 (m, 2H), 1.60 – 1.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.3$, 169.5, 149.5, 137.0, 135.6, 132.9, 130.7, 129.2, 128.6, 128.0, 126.8, 121.5, 38.4, 32.8, 29.0, 23.9, 21.1 ppm; IR (neat): v_{max} 2932, 1760, 1683, 1593, 1505, 1447, 853, 747, 693 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₂NaO₃ [M+Na]⁺ 345.1461, found 345.1460.

7-(2-Chlorophenyl)-1-phenylhept-6-en-1-one (3i): Yellow oil; (77%, 46.1 mg); E/Z > 99:1; R_f = 0.38 (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ = 7.97 (d, J = 7.6 Hz, 2H), 7.56 (t, J = 7.6 Hz, 1H), 7.50 – 7.44 (m, 3H), 7.32 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 6.78 (d, J = 15.6 Hz, 1H), 6.27 – 6.16 (m, 1H), 3.02 (t, J = 7.2 Hz, 2H), 2.35 – 2.30 (m, 2H), 1.87 – 1.79 (m, 2H), 1.64 – 1.58 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.3, 137.0, 135.8, 133.4, 132.9, 132.5, 129.6, 128.6, 128.0, 127.9, 126.7, 126.6, 126.4, 38.4, 33.0, 28.9, 23.9 ppm; IR (neat): ν_{max} 3062, 2932, 1684, 1591, 1446, 970, 802, 751, 693 cm⁻¹; HRMS (ESI) calcd for C₁₉H₁₉ClNaO [M+Na]⁺ 321.1017, found 321.1016.

7-(Naphthalen-2-yl)-1-phenylhept-6-en-1-one (3j): Yellow oil; (81%, 50.1 mg); E/Z > 99:1; R_f = 0.33 (EtOAc/petroleum ether = 1:25); ¹H NMR (600 MHz, CDCl₃) δ 7.99 – 7.95 (m, 2H), 7.78 – 7.75 (m, 3H), 7.67 (s, 1H), 7.59 – 7.53 (m, 2H), 7.48 – 7.39 (m, 4H), 6.57 (d, J = 15.6 Hz, 1H), 6.36 (dt, J = 16.2, 6.6 Hz, 1H), 3.03 (t, J = 7.2 Hz, 2H), 2.36 – 2.31 (m, 2H), 1.87 – 1.82 (m, 2H), 1.65 – 1.60 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.33, 137.01, 135.20, 133.68, 132.92, 132.65, 130.95, 130.27, 128.56, 128.04, 128.03, 127.81, 127.60, 126.09, 125.44, 125.36, 123.54, 38.42, 32.97, 29.05, 23.92 ppm; IR (neat): v_{max} 3056, 2930, 2854, 1681, 1626, 1597, 1580, 1508, 1448, 1409, 811, 659 cm⁻¹; HRMS (ESI) calcd for C₂₃H₂₂NaO [M+Na]⁺ 337.1563, found 337.1559.

1-Phenyl-7-(1-tosyl-1H-indol-3-yl)hept-6-en-1-one (3k): Faint yellow oil; (28%,

25.6 mg); E/Z > 99:1; R_f = 0.23 (EtOAc/petroleum ether = 1:15); ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.95 (m, 3H), 7.76 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 7.6 Hz, 1H), 7.56 (t, J = 7.3 Hz, 1H), 7.51 (s, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 7.25 – 7.19 (m, 3H), 6.45 (d, J = 16.4 Hz, 1H), 6.32 – 6.23 (m, 1H), 3.02 (t, J = 7.2 Hz, 2H), 2.32 (s, 3H), 2.31 – 2.27 (m, 2H), 1.87 – 1.79 (m, 2H), 1.63 – 1.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.3, 144.9, 136.9, 135.1, 132.9, 132.1, 129.8, 129.2, 128.6, 128.0, 126.8, 124.7, 123.3, 122.8, 120.9, 120.5, 120.3, 113.7, 38.4, 33.3, 29.0, 23.8, 21.5 ppm; IR (neat): ν_{max} 3394, 2925, 2315, 1686, 1521, 756, 685 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₇NNaO₃S [M+Na]⁺480.1604, found 480.1609.

1,7-Diphenyloct-6-en-1-one (*l*-**31**) and **1,7-diphenyloct-7-en-1-one** (*t*-**31**): (known compound)^b, Yellow oil; (98%, 54.5 mg); *l/t* = 67:33; R_f = 0.43 (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.92 (m, 3H), 7.58 – 7.54 (m, 1.5H), 7.48 – 7.45 (m, 3H), 7.43 – 7.35 (m, 3H), 7.35 – 7.28 (m, 3H), 7.25 – 7.20 (m, 1.5H), 5.83 – 5.76 (m, 1H), 5.27 (d, *J* = 1.2 Hz, 0.5H), 5.06 (d, *J* = 1.2 Hz, 0.5H), 3.01 (t, *J* = 7.6 Hz, 2H), 2.95 (t, *J* = 7.2 Hz, 1H), 2.53 (t, *J* = 7.2 Hz, 1H), 2.30 – 2.24 (m, 2H), 2.05 (s, 3H), 1.87 – 1.81 (m, 2H), 1.79 – 1.71 (m, 1H), 1.61 – 1.51 (m, 3H), 1.48 – 1.40 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.42, 200.35, 148.46, 143.87, 141.27, 137.01, 134.95, 132.89, 132.86, 128.54, 128.52, 128.22, 128.11, 128.07, 128.02, 127.25, 126.47, 126.09, 125.58, 112.23, 38.46, 35.13, 29.28, 28.93, 28.60, 27.99, 24.08, 15.81 ppm.

7-(4-Nitrophenyl)-1-phenyloct-6-en-1-one (*l*-3m) and 7-(4-Nitrophenyl)-1-phenyloct-7-en-1-one (*t*-3m): Yellow oil; (76%, 49.0 mg); l/t = 90:10; $R_f = 0.42$

(EtOAc/petroleum ether = 1:15); *I*-3m: ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.14 (m, 2H), 7.97 – 7.93 (m, 2H), 7.58 – 7.53 (m, 1H), 7.52 – 7.43 (m, 4H), 6.01 – 5.90 (m, 1H), 3.02 (t, *J* = 7.2 Hz, 2H), 2.33 – 2.27 (m, 2H), 2.07 (s, 3H), 1.87 – 1.77 (m, 2H), 1.65 – 1.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.1, 150.3, 146.2, 137.0, 133.6, 133.0, 132.3, 128.6, 128.0, 126.1, 123.5, 38.3, 29.0, 28.9, 24.0, 15.6 ppm; IR (neat): v_{max} 3448, 2315, 1627, 1382, 746, 664 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₂NO₃ [M+H]⁺ 324.1594, found 324.1589.

1,7,7-Triphenylhept-6-en-1-one (3n): Yellow oil; (76%, 51.8 mg); E/Z > 99:1; R_f = 0.35 (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.89 (m, 2H), 7.56 – 7.51 (m, 1H), 7.45 – 7.41 (m, 2H), 7.37 – 7.32 (m, 2H), 7.30 – 7.26 (m, 2H), 7.23 – 7.20 (m, 3H), 7.20 (m, 1H), 7.18 – 7.15 (m, 2H), 6.08 (t, J = 7.2 Hz, 1H), 2.89 (t, J = 7.6 Hz, 2H), 2.20 – 2.14 (m, 2H), 1.78 – 1.71 (m, 2H), 1.58 – 1.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.27, 142.68, 141.91, 140.16, 137.01, 132.85, 129.88, 129.49, 128.51, 128.12, 128.03, 128.00, 127.18, 126.85, 126.79, 38.19, 29.43, 29.37, 23.72 ppm; IR (neat): v_{max} 3451, 3060, 2935, 1682, 1592, 1494, 1449, 757, 698, 643 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₄NaO [M+Na]⁺ 363.1719, found 363.1717.

6-(1*H*-Inden-3-yl)-1-phenylhexan-1-one (*endo*-3o) and 6-(2,3-Dihydro-1H-inden-1 -ylidene)-1-phenylhexan-1-one (*exo*-3o) : Yellow oil; (74%, 42.9 mg); *endo*: *exo* = 89:11; $R_f = 0.34$ (EtOAc/petroleum ether = 1:25); *endo*-3o: ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 7.8 Hz, 2H), 7.57 – 7.54 (m, 1H), 7.48 – 7.45 (m, 3H), 7.37 (d, J = 7.2 Hz, 1H), 7.30 (t, J = 7.2 Hz, 1H), 7.20 (t, J = 7.2 Hz, 1H), 6.21 (s, 1H), 3.33 (d, J = 1.2 Hz, 2H), 2.99 (t, J = 7.2 Hz, 2H), 2.60 – 2.56 (m, 2H), 1.84 – 1.79 (m, 2H), 1.79 -1.73 (m, 2H), 1.55 - 1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.5, 145.5, 144.5, 144.4, 137.1, 132.9, 128.5, 128.0, 127.8, 125.9, 124.4, 123.7, 118.9, 38.5, 37.7, 29.3, 27.8, 27.6, 24.2 ppm; IR (neat): v_{max} 3062, 2935, 1682, 1593, 1453, 804, 693 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₂NaO [M+Na]⁺ 313.1563, found 313.1570.

6-(6-Bromo-1*H*-inden-3-yl)-1-phenylhexan-1-one (*endo*-3p) and 6-(5-Bromo-2,3dihydro-1H-inden-1-ylidene)-1-phenylhexan-1-one (*exo*-3p): Yellow oil; (71%, 52.4 mg); *endo*: *exo* = 91:9; $R_f = 0.35$ (EtOAc/petroleum ether = 1:20); *endo*-3p: ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.59 – 7.53 (m, 2H), 7.48 – 7.44 (m, 2H), 7.41 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 6.18 (s, 1H), 3.30 (s, 2H), 2.98 (t, J = 7.6 Hz, 2H), 2.53 (t, J = 6.8 Hz, 2H), 1.84 – 1.76 (m, 2H), 1.76 – 1.68 (m, 2H), 1.54 – 1.44 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.4, 146.6, 144.4, 143.9, 137.0, 132.9, 129.0, 128.5, 128.2, 128.0, 126.9, 120.1, 118.6, 38.5, 37.6, 29.2, 27.8, 27.4, 24.1 ppm; IR (neat): v_{max} 3449, 2931, 1682, 1593, 1454, 803, 752, 691 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₁BrNaO [M+Na]⁺ 391.0668, found 391.0670.

6-(3,4-Dihydronaphthalen-1-yl)-1-phenylhexan-1-one (*endo*-3q) and 6-(3,4-Dihydronaphthalen-1(2*H*)-ylidene)-1-phenylhexan-1-one (*exo*-3q): Yellow oil; (83%, 50.5 mg); *endo*: *exo* = 92:8; $R_f = 0.33$ (EtOAc/petroleum ether = 1:25); *endo*-3q: ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H), 7.58 – 7.54 (m, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.26 – 7.24 (m, 1H), 7.23 – 7.17 (m, 1H), 7.14 – 7.13 (m, 2H), 5.85 (t, *J* =

4.4 Hz, 1H), 2.98 (t, J = 7.6 Hz, 2H), 2.76 – 2.70 (m, 2H), 2.48 – 2.44 (m, 2H), 2.27 – 2.21 (m, 2H), 1.82 – 1.75 (m, 2H), 1.63 – 1.56 (m, 2H), 1.51 – 1.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.5$, 137.1, 136.8, 136.3, 134.9, 132.8, 128.5, 128.0, 127.5, 126.5, 126.2, 124.8, 122.6, 38.5, 32.6, 29.2, 28.4, 28.2, 24.2, 23.1 ppm; IR (neat): v_{max} 3059, 2933, 1683, 1592, 1450, 803, 750, 693 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₄NaO [M+Na]⁺ 327.1719, found 327.1716.

1,9-Diphenylnona-6,8-dien-1-one (3r): (known compound)^b, Colorless oil; (58%, 33.7 mg); EE/ZE = 2:1; $R_f = 0.49$ (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.92 (m, 2H), 7.58 – 7.53 (m, 1H), 7.49 – 7.44 (m, 2H), 7.42 – 7.36 (m, 2H), 7.34 – 7.28 (m, 2H), 7.24 – 7.17 (m, 1H), 7.07 (dd, J = 15.1, 11.5 Hz, 0.34H), 6.75 (dd, J = 15.6, 10.4 Hz, 0.69H), 6.54 (d, J = 15.6 Hz, 0.32H), 6.45 (d, J = 15.7 Hz, 0.64H), 6.28 – 6.14 (m, 1H), 5.90 – 5.76 (m, 0.66H), 5.57 – 5.50 (m, 0.33H), 3.02 – 2.98 (m, 2H), 2.42 – 2.30 (m, 1H), 2.23 – 2.20 (m, 1H), 1.86 – 1.76 (m, 2H), 1.58 – 1.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.3$, 137.6, 137.0, 135.1, 132.9, 132.5, 132.2, 130.9, 130.2, 129.3, 129.1, 128.6, 128.5, 128.0, 127.4, 127.1, 126.3, 126.1, 124.3, 38.4, 38.3, 32.6, 29.3, 29.0, 27.8, 23.9, 23.9 ppm.

(8R,9S,13S,14S)-13-Methyl-3-(7-oxo-7-phenylhept-1-en-1-yl)-

6,7,8,9,11,12,13,14,15,16-decahydro-17*H***-cyclopenta[a]phenanthren-17-one (3s):** Colorless oil; (59%, 52.0 mg); $R_f = 0.15$ (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 7.08 (s, 1H), 6.35 (d, *J* = 15.6 Hz, 1H), 6.18 (dt, *J* = 15.6, 6.8 Hz 1H), 3.00 (t, *J* = 7.2 Hz, 2H), 2.91 – 2.88 (m, 2H), 2.54 – 2.47 (m, 1H), 2.45 – 2.38 (m, 1H), 2.29 – 2.23 (m, 3H), 2.20 – 2.12 (m, 1H), 2.10 – 1.94 (m, 3H), 1.84 – 1.76 (m, 2H), 1.66 – 1.60 (m, 2H), 1.57 – 1.42 (m, 6H), 0.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 220.9, 200.3, 138.5, 137.0, 136.5, 135.4, 132.9, 129.9, 129.8, 128.5, 128.0, 126.5, 125.5, 123.4, 50.5, 48.0, 44.4, 38.4, 38.2, 35.8, 32.8, 31.6, 29.4, 29.1, 26.5, 25.7, 23.8, 21.6, 13.8 ppm; IR (neat): v_{max} 3450, 2960, 1734, 1681, 1412, 803, 692 cm⁻¹; HRMS (ESI) calcd for C₃₁H₃₆NaO₂ [M+Na]⁺ 463.2608, found 463.2606.

Characterization of Products 4

7-Phenyl-1-(*p*-tolyl)hept-6-en-1-one (4a): (known compound)^b, White solid; (88%, 48.9 mg); E/Z > 99:1; R_f = 0.36 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.85 (m, 2H), 7.36 – 7.32 (m, 2H), 7.30 – 7.26 (m, 2H), 7.24 (s, 1H), 7.22 – 7.16 (m, 1H), 6.40 (d, *J* = 16.0 Hz, 1H), 6.23 (dt, *J* = 16.0, 6.8 Hz, 1H), 2.98 (t, *J* = 7.2 Hz, 2H), 2.41 (s, 3H), 2.31 – 2.23 (m, 2H), 1.84 – 1.76 (m, 2H), 1.61 – 1.52 (m, 2H); ¹³C NMR (100 MHz,) δ = 200.0, 143.7, 134.5, 130.5, 130.1, 129.2, 128.4, 128.2, 126.8, 125.9, 38.3, 32.9, 29.0, 24.0, 21.6 ppm.

1-(4-Fluorophenyl)-7-phenylhept-6-en-1-one (4b): (known compound)^b, White solid; (85%, 48.1 mg); E/Z > 99:1; R_f = 0.43 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ 8.00 – 7.97 (m, 2H), 7.34 (d, J = 7.2 Hz, 2H), 7.30 – 7.27 (m, 2H), 7.20 (d, J = 7.2 Hz, 1H), 7.13 – 7.10 (m, 2H), 6.40 (d, J = 15.6 Hz, 1H), 6.23 (dt, J = 16.2, 6.6 Hz, 1H), 2.97 (t, J = 7.2 Hz, 2H), 2.30 – 2.25 (m, 2H), 1.83 – 1.78 (m, 2H), 1.60 – 1.54 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 198.6, 165.6 (d, J = 252.0 Hz), 137.7, 133.4 (d, J = 3.0 Hz), 130.6 (d, J = 9.0 Hz), 130.4, 130.2, 128.5, 126.9, 125.9, 115.6 (d, J = 21.8 Hz), 38.3, 32.8, 29.0, 23.8 ppm.

1-(3-Fluorophenyl)-7-phenylhept-6-en-1-one (4c): (known compound)^b, Colorless oil; (93%, 52.5 mg); E/Z > 99:1; R_f = 0.50 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ 7.75 – 7.73 (m, 1H), 7.66 – 7.63 (m, 1H), 7.43 (td, J = 7.8, 5.4 Hz, 1H), 7.34 (d, J = 7.2 Hz, 2H), 7.29 (t, J = 7.8 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.20 (t, J = 7.2 Hz, 1H), 6.41 (d, J = 15.8 Hz, 1H), 6.23 (dt, J = 16.2, 6.6 Hz, 1H), 2.98 (t, J =

7.2 Hz, 2H), 2.30 – 2.26 (m, 2H), 1.84 – 1.78 (m, 2H), 1.61 – 1.55 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 198.92 (d, *J* = 2.1 Hz), 162.85 (d, *J* = 246.3 Hz), 139.08 (d, *J* = 5.9 Hz), 137.68, 130.31, 130.21 (d, *J* = 17.6 Hz), 130.18, 128.45, 126.86, 125.91, 123.76 (d, *J* = 2.6 Hz), 119.91 (d, *J* = 21.1 Hz), 114.76 (d, *J* = 22.1 Hz), 38.53, 32.79, 28.92, 23.70 ppm.

7-Phenyl-1-(4-(trifluoromethyl)phenyl)hept-6-en-1-one (4d): (known compound)^b, White solid; (85%, 55.0 mg); E/Z > 99:1; R_f = 0.39 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, J = 7.8 Hz, 2H), 7.71 (d, J = 7.8 Hz, 2H), 7.33 (d, J = 7.2 Hz, 2H), 7.28 (t, J = 7.8 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 6.40 (d, J = 16.2 Hz, 1H), 6.21 (dt, J = 15.6, 7.2 Hz, 1H), 3.02 (t, J = 7.2 Hz, 2H), 2.30 – 2.23 (m, 2H), 1.84 – 1.79 (m, 2H), 1.60 – 1.55 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 199.21, 139.60, 137.66,134.24 (q, J = 32.7 Hz), 130.27, 130.24, 128.48, 128.35, 126.91, 125.91, 125.65 (q, J = 4.1 Hz), 124.77 (q, J = 270.8 Hz), 38.70, 32.78, 28.89, 23.62 ppm.

1-(Naphthalen-2-yl)-7-phenylhept-6-en-1-one (4e): Yellow oil; (62%, 39.0 mg); *E/Z* > 99:1; R_f = 0.33 (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 8.06 – 8.03 (m, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.91 – 7.87 (m, 2H), 7.64 – 7.52 (m, 2H), 7.35 (d, *J* = 7.2 Hz, 2H), 7.31 – 7.27 (m, 2H), 7.20 (t, *J* = 7.2 Hz, 1H), 6.42 (d, *J* = 15.6 Hz, 1H), 6.25 (dt, *J* = 15.6, 6.4 Hz, 1H), 3.14 (t, *J* = 7.2 Hz, 2H), 2.34 – 2.28 (m, 2H), 1.92 – 1.83 (m, 2H), 1.65 – 1.57 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.30, 137.70, 135.48, 134.28, 132.49, 130.46, 130.12, 129.62, 129.51, 128.45, 128.39, 128.34, 127.73, 126.82, 126.69, 125.90, 123.90, 38.47, 32.85, 29.02, 24.04 ppm; IR (neat): ν_{max} 3025, 2931, 2858, 1947, 1679, 1630, 1591, 814, 746, 697 cm⁻¹; HRMS (ESI) calcd for C₂₃H₂₂NaO [M+Na]⁺ 337.1563, found 337.1571.

7-Phenyl-1-(thiophen-2-yl)hept-6-en-1-one (4f): Yellow oil; (55%, 29.8 mg); E/Z > 99:1; R_f = 0.35 (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.70 (m, 1H), 7.65 – 7.59 (m, 1H), 7.34 – 7.30 (m, 2H), 7.30 – 7.27 (m, 2H), 7.14 – 7.11 (m, 1H), 7.14 – 7.09 (m, 1H), 6.40 (d, J = 15.8 Hz, 1H), 6.22 (dt, J = 15.6, 6.8 Hz 1H), 2.94 (t, J = 7.2 Hz, 2H), 2.30 – 7.24 (m, 2H), 1.87 – 1.78 (m, 2H), 1.62 – 1.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 193.3$, 144.4, 137.7, 133.4, 131.7, 130.3, 130.1, 128.4, 128.0, 126.8, 125.9, 39.2, 32.8, 28.9, 24.3 ppm; IR (neat): v_{max} 3024, 2931, 2859, 1662, 1509, 1449, 1415, 1234, 1062, 967, 598 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₈NaOS [M+Na]⁺ 293.0971, found 293.0970.

9-(3-Methoxyphenyl)non-8-en-3-one (4g): Colorless oil; (78%, 40.3 mg); E/Z > 99:1; R_f = 0.45 (EtOAc/petroleum ether = 1:10); ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 6.38 (d, J = 15.6 Hz, 1H), 6.20 (dt, J = 15.6, 6.6 Hz, 1H), 2.42 (t, J = 7.2 Hz, 2H), 2.39 (t, J = 7.2 Hz, 2H), 2.25 – 2.20 (m, 2H), 1.66 – 1.61 (m, 2H), 1.60 – 1.54 (m, 2H), 1.50 – 1.44 (m, 2H), 1.34 – 1.29 (m, 2H), 1.28 – 1.24 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 211.4, 137.7, 130.4, 130.1, 128.4, 126.8, 125.9, 42.8, 42.6, 32.8, 31.4, 28.9, 23.5, 23.4, 22.4, 13.9 ppm; IR (neat): v_{max} 3023, 2931, 2862, 1712, 1454, 1413, 968, 746, 695 cm⁻¹; HRMS (ESI) calcd for C₁₈H₂₆NaO [M+Na]⁺ 281.1876, found 281.1879.

5-Methyl-1,7-diphenylhept-6-en-1-one (4h): (known compound)^b, Colorless oil; (89%, 49.6 mg); E/Z > 99:1; R_f = 0.43 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ 7.97 – 7.95 (m, 2H), 7.57 – 7.53 (m, 1H), 7.46 – 7.43 (m, 2H), 7.35 (d, J = 7.2 Hz, 2H), 7.30 (t, J = 7.2 Hz, 2H), 7.20 (t, J = 7.2 Hz, 1H), 6.38 (d, J = 15.6 Hz,

1H), 6.11 (dd, J = 15.6, 7.8 Hz, 1H), 3.03 – 2.93 (m, 2H), 2.39 – 2.34 (m, 1H), 1.82 – 1.76 (m, 2H), 1.52 – 1.45 (m, 2H), 1.12 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) $\delta = 200.36$, 137.72, 136.99, 136.31, 132.87, 128.53, 128.43, 128.40, 128.02, 126.82, 125.97, 38.60, 37.24, 36.62, 22.24, 20.66 ppm.

1-Phenyl-5-styryldodecan-1-one (4i): Yellow oil; (83%, 60.2 mg); E/Z > 99:1; R_f = 0.41 (EtOAc/petroleum ether = 1:25); ¹H NMR (600 MHz, CDCl₃) δ 7.96 – 7.93 (m, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.2 Hz, 2H), 7.35 (d, J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 6.36 (d, J = 15.6 Hz, 1H), 5.97 (dd, J = 15.6, 9.0 Hz, 1H), 3.01 – 2.91 (m, 2H), 2.20 – 2.14 (m, 1H), 1.84 – 1.77 (m, 1H), 1.76 – 1.69 (m, 1H), 1.58 – 1.52 (m, 1H), 1.48 – 1.38 (m, 2H), 1.33 – 1.32 (m, 2H), 1.29 – 1.22 (m, 9H), 0.87 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) $\delta = 200.4$, 137.7, 137.0, 135.2, 132.9, 129.9, 128.5, 128.4, 128.0, 126.8, 126.0, 43.4, 38.7, 35.5, 35.1, 31.9, 29.7, 29.3, 27.3, 22.7, 22.3, 14.1 ppm; IR (neat): v_{max} 2921, 1680, 1450, 966, 879, 753, 686 cm⁻¹; HRMS (ESI) calcd for C₂₆H₃₄NaO [M+Na]⁺ 385.2502, found 385.2497.

Ethyl-2-(4-(6-oxo-6-phenyl-2-styrylhexyl)phenyl)propanoate (4j): (known compound)^b, Colorless oil; (79%, 71.8 mg); E/Z > 99:1; dr = 1:1; R_f = 0.17 (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.91 (m, 2H), 7.56 – 7.51 (m, 1H), 7.45 – 7.40 (m, 2H), 7.30 – 7.27 (m, 4H), 7.20 – 7.18 (m, 3H), 7.10 (d, J = 8.0 Hz, 2H), 6.28 (d, J = 16.0 Hz, 1H), 6.02 (dd, J = 16.0, 8.8 Hz, 1H), 4.15 – 4,05 (m, 2H), 3.69 – 3.63 (m, 1H), 2.99 – 2.87 (m, 2H), 2.71 (d, J = 6.8 Hz, 2H), 2.52

-2.44 (m, 1H), 1.86 -1.78 (m, 1H), 1.75 -1.66 (m, 1H), 1.63 -1.58 (m, 1H), 1.56 -1.50 (m, 1H), 1.47 (d, J = 7.2 Hz, 3H), 1.20 -1.16 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.28$, 174.72, 174.70, 138.99, 138.16, 138.13, 137.60, 136.99, 133.99, 132.89, 130.36, 129.50, 128.54, 128.43, 128.03, 127.21, 126.93, 126.04, 60.63, 45.17, 45.14, 44.87, 41.76, 38.59, 34.10, 29.69, 22.22, 18.55, 18.50, 14.09 ppm.

1-Phenyl-2-(3-styrylcyclopentyl)ethan-1-one (4k): (known compound)^b, Colorless oil; (78%, 45.3 mg); E/Z > 99:1; dr = 1:1; R_f = 0.55 (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.34 (d, J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 6.37 (dd, J = 16.0, 2.8 Hz, 1H), 6.21 (dd, J = 16.0, 8.0 Hz, 1H), 3.07 – 3.03 (m, 2H), 2.81 – 2.50 (m, 2H), 2.12 – 2.18 (m, 0.54H), 2.09 – 1.88 (m, 2H), 1.86 – 1.78 (m, 0.56H), 1.60 – 1.46 (m, 1H), 1.44 – 1.25 (m, 1.44H), 1.19 – 1.09 (m, 0.56H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.0, 137.7, 137.1, 135.3, 135.1, 132.9, 128.5, 128.4, 128.1, 128.0, 126.8, 125.9, 45.3, 45.0, 43.5, 42.3, 40.6, 38.9, 35.8, 34.7, 33.3, 32.9, 31.9, 31.7 ppm.

1,8-Diphenyloct-7-en-1-one (41): (known compound)^b, White soild; (44%, 24.5 mg); E/Z > 99:1; R_f = 0.44 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ 7.98 – 7.93 (m, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.48 – 7.44 (m, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.29 (t, J = 7.2 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 6.38 (d, J = 15.6 Hz, 1H), 6.22 (dt, J = 15.6, 7.2 Hz, 1H), 2.98 (t, J = 7.2 Hz, 2H), 2.26 – 2.21 (m, 2H), 1.81 – 1.76 (m, 2H), 1.56 – 1.51 (m, 2H), 1.48 – 1.43 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.46, 137.82, 137.03, 132.89, 130.81, 129.92, 128.55, 128.45, 128.04, 126.79, 125.90, 38.54, 32.84, 29.18, 28.89, 24.17 ppm.

1,9-Diphenylnon-8-en-1-one (4m): (known compound)^b, Colorless oil; (80%, 46.8 mg); E/Z > 99:1; R_f = 0.43 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 7.57 – 7.54 (m, 1H), 7.48 – 7.45 (m, 2H), 7.35 (d, J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 6.38 (d, J = 16.2 Hz, 1H), 6.23 (dt, J = 16.2, 6.6 Hz, 1H), 2.98 (t, J = 7.8 Hz, 2H), 2.24 – 2.20 (m, 2H), 1.79 – 1.73 (m, 2H), 1.53 – 1.46 (m, 2H), 1.45 – 1.38 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) $\delta = 200.49$, 137.85, 137.04, 132.84, 130.97, 129.79, 128.52, 128.43, 128.01, 126.73, 125.87, 38.54, 32.92, 29.17, 29.15, 28.98, 24.24 ppm.

1,10-Diphenyldec-9-en-1-one (4n): (known compound)^b, White soild; (70%, 42.9 mg); E/Z > 99:1; R_f = 0.49 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.95 (m, 2H), 7.57 – 7.53 (m, 1H), 7.48 – 7.44 (m, 2H), 7.35 – 7.27 (m, 4H), 7.21 – 7.17 (m, 1H), 6.38 (d, J = 16.0 Hz, 1H), 6.22 (dt, J = 16.0, 6.8 Hz, 1H), 2.99 – 2.95 (m, 2H), 2.23 – 2.18 (m, 2H), 1.77 – 1.71 (m, 2H), 1.49 – 1.44 (m, 2H), 1.38 – 1.37 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.6, 137.9, 137.0, 132.9, 131.1, 129.7, 128.5, 128.4, 128.0, 126.7, 125.9, 38.6, 33.0, 29.3, 29.0, 24.3 ppm.

1,14-Diphenyltetradec-13-en-1-one (40): White soild; (77%, 55.8 mg); mp: 73 – 75 °C; E/Z > 99:1; R_f = 0.50 (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.35 (d, J = 7.6 Hz, 2H), 7.31 – 7.27 (m, 2H), 7.19 (t, J = 7.6 Hz, 1H), 6.38 (d, J = 15.6 Hz, 1H), 6.23 (dt, J = 16.0, 6.8 Hz, 1H), 2.96 (t, J = 7.2 Hz, 2H), 2.23 – 2.17 (m, 2H), 1.78 – 1.70 (m, 2H), 1.48 – 1.43 (m, 2H), 1.37 – 1.26 (m, 14H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.6, 137.9, 137.0, 132.8, 131.2, 129.6, 128.5, 128.4, 128.0, 126.7, 125.9, 38.6,

33.0, 29.6, 29.5, 29.4, 29.2, 24.3 ppm; IR (neat): v_{max} 2921, 2851, 1684, 1456, 736, 690 cm⁻¹; HRMS (ESI) calcd for C₂₆H₃₄NaO [M+Na]⁺ 385.2502, found 385.2497.

7-Methoxy-7-(4-methoxyphenyl)-1-phenylheptan-1-one (5a): Colorless oil; (86%, 56.2 mg); $R_f = 0.25$ (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 2H), 7.58 – 7.50 (m, 1H), 7.45 (t, J = 8.0 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 6.90 – 6.86 (m, 2H), 4.03 (t, J = 6.8 Hz, 1H), 3.80 (s, 3H), 3.17 (s, 3H), 2.93 (t, J = 7.2 Hz, 2H), 1.84 – 1.59 (m, 4H), 1.45 – 1.23 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.4, 159.0, 137.0, 134.3, 132.8, 128.5, 128.0, 127.8, 113.7, 83.5, 56.3, 55.2, 38.5, 37.9, 29.2, 25.6, 24.2 ppm; IR (neat): v_{max} 2934, 2856, 1684, 1607, 1510, 1454, 831, 748, 694 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₆NaO₃ [M+Na]⁺ 349.1774, found 349.1775.

7-Ethoxy-7-(4-methoxyphenyl)-1-phenylheptan-1-one (5b): Colorless oil; (81%, 55.1 mg); $R_f = 0.28$ (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.91 (m, 2H), 7.57 – 7.52 (m, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.22 – 7.18 (m, 2H), 6.89 – 6.85 (m, 2H), 4.13 (t, J = 6.8 Hz, 1H), 3.80 (s, 3H), 3.39 – 3.30 (m, 1H), 3.30 – 3.29 (m, 1H), 2.93 (t, J = 7.6 Hz, 2H), 1.83 – 1.59 (m, 4H), 1.47 – 1.33 (m, 3H), 1.31 – 1.22 (m, 1H), 1.15 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.4$, 158.8, 137.0, 135.1, 132.8, 128.5, 128.0, 127.7, 113.6, 81.6, 63.7, 55.2, 38.5, 38.1, 29.2, 25.7, 24.2, 15.3 ppm; IR (neat): v_{max} 2934, 2861, 1684, 1607, 1510, 1453, 830, 751, 693 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₈NaO₃ [M+Na]⁺ 363.1931, found 363.1930.

7-(Benzyloxy)-7-(4-methoxyphenyl)-1-phenylheptan-1-one (5c): Yellow oil; (93%,

74.8 mg); $R_f = 0.40$ (EtOAc/petroleum ether = 1:15); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 8.0 Hz, 2H), 7.35 – 7.28 (m, 5H), 7.26 – 7.24 (s, 2H), 6.91 (d, J = 8.4 Hz, 2H), 4.43 (d, J = 12.0 Hz, 1H), 4.27 – 4.20 (m, 2H), 3.83 (s, 3H), 2.92 (t, J = 7.2 Hz, 2H), 1.94 – 1.82 (m, 1H), 1.76 – 1.64 (m, 3H), 1.51 – 1.44 (m, 1H), 1.40 – 1.28 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.4, 159.0, 138.7, 136.9, 134.5, 132.8, 128.5, 128.3, 128.0, 127.9, 127.8, 127.4, 113.7, 80.8, 70.1, 55.2, 38.5, 38.1, 29.1, 25.7, 24.2 ppm; IR (neat): v_{max} 2933, 2857, 1683, 1608, 1509, 1453, 804, 746, 695 cm⁻¹; HRMS (ESI) calcd for C₂₇H₃₀NaO₃ [M+Na]⁺ 425.2087, found 425.2090.

7-(Cyclopropylmethoxy)-7-(4-methoxyphenyl)-1-phenylheptan-1-one (5d): Yellow oil; (86%, 62.9 mg); $R_f = 0.35$ (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.86 (m, 2H), 7.58 – 7.50 (m, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.21 – 7.18 (m, 2H), 6.88 – 6.84 (m, 2H), 4.16 (t, J = 6.8 Hz, 1H), 3.80 (s, 3H), 3.11 (dd, J = 10.0, 6.8Hz, 1H), 3.04 (dd, J = 10.0, 6.8Hz, 1H), 2.93 (t, J = 7.2 Hz, 2H), 1.91 – 1.77 (m, 1H), 1.75 – 1.67 (m, 2H), 1.64 – 1.56 (m, 1H), 1.50 – 1.34 (m, 3H), 1.32 – 1.25 (m, 1H), 1.07 – 0.96 (m, 1H), 0.53 – 0.42 (m, 2H), 0.15 – 0.07 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.5, 158.8, 137.0, 135.0, 132.8, 128.5, 128.0, 127.7, 113.6, 81.4, 73.2, 55.2, 38.5, 38.3, 29.2, 25.8, 24.2, 10.7, 3.1, 2.9 ppm; IR (neat): <math>v_{max}$ 3072, 2005, 2935, 1685, 1607, 1510, 1455, 830, 750, 693 cm⁻¹; HRMS (ESI) calcd for C₂₄H₃₀NaO₃ [M+Na]⁺ 389.2087, found 389.2082.

7-(4-Methoxyphenyl)-1-phenyl-7-((tetrahydrofuran-2-yl)methoxy)heptan-1-one (5e): Faint yellow oil; (78%, 61.8 mg); dr = 1:1; $R_f = 0.32$ (EtOAc/petroleum ether =

1:25); ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.20 (d, *J* = 7.2 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 4.20 – 4.15 (m, 1H), 4.05 – 3.95 (m, 1H), 3.87 – 3.81 (m, 1H), 3.80 (s, 3H), 3.77 – 3.70 (m, 1H), 3.30 (dd, *J* = 10.0, 6.0 Hz, 0.5H), 3.27 – 3.22 (m, 1H), 3.19 (dd, *J* = 10.0, 4.4 Hz, 0.5H), 2.95 – 2.89 (m, 2H), 1.92 – 1.79 (m, 4H), 1.74 – 1.66 (m, 2H), 1.64 – 1.57 (m, 2H), 1.45 – 1.32 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.46, 158.89, 137.01, 134.74, 134.70, 132.83, 128.50, 128.01, 127.90, 127.81, 113.63, 82.34, 82.31, 78.10, 77.82, 71.27, 71.16, 68.26, 68.22, 55.20, 38.49, 38.09, 37.99, 29.17, 28.32, 28.13, 25.70, 25.61, 25.43, 24.20 ppm; IR (neat): v_{max} 3029, 2935, 2861,1728, 1684, 1592, 1452, 756, 698 cm⁻¹; HRMS (ESI) calcd for C₂₄H₃₂NaO₄ [M+Na]⁺ 419.2193, found 419.2197.

7-((3,7-Dimethyloct-6-en-1-yl)oxy)-7-(4-methoxyphenyl)-1-phenylheptan-1-one (**5f**): Yellow oil; (78%, 70.3 mg); dr = 1:1; R_f = 0.33 (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.07 – 5.05 (m, 1H), 4.10 (t, *J* = 6.4 Hz, 1H), 3.79 (s, 3H), 3.34 – 3.26 (m, 1H), 3.25 – 3.16 (m, 1H), 2.92 (t, *J* = 7.2 Hz, 2H), 2.02 – 1.84 (m, 2H), 1.79 – 1.50 (m, 12H), 1.43 – 1.22 (m, 6H), 1.15 – 0.97 (m, 1H), 0.84 – 0.78 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.46, 158.77, 136.96, 135.19, 135.16, 132.84, 131.05, 130.99, 128.50, 128.00, 127.70, 127.66, 124.84, 124.83, 113.57, 81.84, 81.71, 66.80, 55.18, 38.48, 38.19, 37.17, 37.02, 36.89, 36.79, 29.50, 29.45, 29.17, 25.75, 25.71, 25.44, 25.40, 24.20, 19.51, 19.46, 17.60 ppm; IR (neat): v_{max} 2925, 2859, 1727, 1685, 1608, 1510, 1453, 805, 752, 693 cm⁻¹; HRMS (ESI) calcd for C₃₀H₄₂NaO₃ [M+Na]⁺ 473.3036, found 473.3039.

7-(But-3-yn-1-yloxy)-7-(4-methoxyphenyl)-1-phenylheptan-1-one (5g): Faint

yellow oil; (80%, 58.3 mg); $R_f = 0.35$ (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.89 (m, 2H), 7.59 – 7.51 (m, 1H), 7.47 – 7.43 (m, 2H), 7.22 – 7.19 (m, 2H), 6.91 – 6.81 (m, 2H), 4.24 – 4.11 (m, 1H), 3.80 (s, 3H), 3.46 – 3.39 (m, 1H), 3.38 – 3.31 (m, 1H), 2.93 (t, *J* = 7.2 Hz, 2H), 2.48 – 2.32 (m, 2H), 1.94 (t, *J* = 2.8 Hz, 1H), 1.87 – 1.77 (m, 1H), 1.76 – 1.66 (m, 2H), 1.65 – 1.60 (m, 1H), 1.52 – 1.42 (m, 1H), 1.43 – 1.29 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.5, 159.0, 137.0, 134.5, 132.9, 128.5, 128.0, 127.8, 113.7, 82.0, 81.5, 69.1, 66.5, 55.2, 38.5, 38.0, 29.1, 25.7, 24.2, 19.9 ppm; IR (neat): v_{max} 2934, 2861, 2237, 1684, 1607, 1511, 1454, 828, 751, 692 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₈NaO₃ [M+Na]⁺ 387.1931, found 387.1928.

7-(*sec*-Butoxy)-7-(4-methoxyphenyl)-1-phenylheptan-1-one (5h): Yellow oil; (62%, 45.7 mg); dr = 1:1; R_f = 0.23 (EtOAc/petroleum ether = 1:25); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.23 – 7.19 (m, 2H), 6.86 (d, *J* = 8.1 Hz, 2H), 4.24 (dd, *J* = 12.4, 5.6 Hz, 1H), 3.80 (s, 3H), 3.31 – 3.23 (m, 0.5H), 3.22 – 3.13 (m, 0.5H), 2.93 (t, *J* = 7.2 Hz, 2H), 1.82 – 1.66 (m, 3H), 1.61 – 1.51 (m, 2H), 1.50 – 1.27 (m, 5H), 1.09 (d, *J* = 6.0 Hz, 1.5H), 0.97 (d, *J* = 6.0 Hz, 1.5H), 0.88 (t, *J* = 7.6 Hz, 1.5H), 0.76 (t, *J* = 7.6 Hz, 1.5H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.5, 158.7, 137.0, 136.1, 132.8, 128.5, 128.0, 127.9, 127.7, 120.1, 113.5, 113.4, 104.9, 79.4, 78.3, 73.9, 73.0, 55.2, 38.6, 38.5, 30.3, 29.2, 28.1, 25.9, 24.2, 20.3, 18.6, 10.2, 9.3, 8.0 ppm; IR (neat): v_{max} 2932, 2866, 1684, 1611, 1455, 830, 752, 693 cm⁻¹; HRMS (ESI) calcd for C₂₄H₃₂NaO₃ [M+Na]⁺ 391.2244, found 391.2239.

7-(Cyclohexyloxy)-7-(4-methoxyphenyl)-1-phenylheptan-1-one (5i): Faint yellow

oil; (50%, 39.5 mg); $R_f = 0.30$ (EtOAc/petroleum ether = 1:15); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.45 (t, J = 7.2 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 4.32 – 4.28 (m, 1H), 3.80 (s, 3H), 3.15 – 3.05 (m, 1H), 2.93 (t, J = 7.2 Hz, 2H), 1.75 – 1.67 (m, 6H), 1.43 – 1.34 (m, 2H), 1.30 – 1.25 (m, 7H), 1.15 – 1.09 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.5, 158.6, 136.2, 132.8, 128.5, 128.0, 127.6, 113.5, 78.2, 74.5, 55.2, 38.8, 38.5, 33.6, 31.5, 29.2, 26.0, 25.8, 24.4, 24.3, 24.1 ppm; IR (neat): v_{max} 2929, 2857, 1685, 1610, 1510, 1454, 804, 752, 695 cm⁻¹; HRMS (ESI) calcd for C₂₆H₃₄NaO₃ [M+Na]⁺ 417.2400, found 417.2401.

7-(*tert***-Butoxy)-7-(4-methoxyphenyl)-1-phenylheptan-1-one (5j):** Yellow oil; (35%, 25.8 mg); $R_f = 0.35$ (EtOAc/petroleum ether = 1:15); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 4.38 – 4.34 (m, 1H), 3.79 (s, 3H), 2.93 (t, J = 7.2 Hz, 2H), 1.75 – 1.66 (m, 2H), 1.56 – 1.43 (m, 2H), 1.41 – 1.34 (m, 2H), 1.28 – 1.25 (m, 2H), 1.10 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.5, 158.2, 139.1, 137.0, 132.8, 128.5, 128.0, 127.0, 113.4, 73.9, 73.8, 55.2, 40.3, 38.5, 29.3, 28.8, 26.1, 24.3 ppm; IR (neat): v_{max} 2966, 1684, 1608, 1509, 1455, 815, 749, 694 cm⁻¹; HRMS (ESI) calcd for C₂₄H₃₂NaO₃ [M+Na]⁺ 391.2244, found 391.2239.

7-Hydroxy-7-(4-methoxyphenyl)-1-phenylheptan-1-one (5k): Yellow oil; (84%, 52.4 mg); $R_f = 0.20$ (EtOAc/petroleum ether = 1:10); ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.58 – 7.51 (m, 1H), 7.45 (t, J = 8.0 Hz, 2H), 7.27 – 7.23 (m, 2H), 6.89 – 6.84 (m, 2H), 4.61 (t, J = 6.4 Hz, 1H), 3.79 (s, 3H), 2.94 (t, J = 7.6 Hz, 2H), 1.94 (s, 1H), 1.85 – 1.77 (m, 1H), 1.74 – 1.70 (m, 2H), 1.51 – 1.20 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.4, 158.9, 136.9, 132.9, 128.5, 128.0, 127.1, 113.7, 74.1, 55.2,

38.7, 38.4, 29.1, 25.7, 24.1 ppm; IR (neat): υ_{max} 2966, 1684, 1608, 1509, 1455, 815, 749, 694 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₄NaO₃ [M+Na]⁺ 335.1618, found 335.1617.

7-Ethoxy-1,7-diphenylheptan-1-one (5l): Colorless oil; (46%, 28.5 mg); $R_f = 0.34$ (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.88 (m, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.36 – 7.26 (m, 5H), 4.19 (t, J = 6.0 Hz, 1H), 3.41 – 3.33 (m, 1H), 3.32 – 3.25 (m, 1H), 2.93 (t, J = 7.2 Hz, 2H), 1.86 – 1.76 (m, 1H), 1.76 – 1.67 (m, 2H), 1.67 – 1.60 (m, 1H), 1.52 – 1.44 (m, 1H), 1.43 – 1.34 (m, 2H), 1.33 – 1.26 (m, 1H), 1.17 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.5$, 143.2, 137.6, 132.9, 128.5, 128.3, 128.0, 127.3, 126.5, 82.1, 64.1, 38.5, 38.2, 29.2, 25.7, 24.2, 15.3 ppm; IR (neat): $v_{max} 2966$, 2929, 1684, 1523, 1458, 756, 696 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₆NaO₂ [M+Na]⁺ 333.1825, found 333.1860.

7-(Benzyloxy)-1,7-diphenylheptan-1-one (5m): Colorless oil; (48%, 35.7 mg); $R_f = 0.33$ (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.88 (m, 2H), 7.58 – 7.54 (m, 1H), 7.46 (t, J = 8.0 Hz, 2H), 7.39 – 7.28 (m, 10H), 4.46 (d, J = 11.6 Hz, 1H), 4.30 (dd, J = 7.6, 6.0 Hz, 1H), 4.25 (d, J = 11.6 Hz, 1H), 2.93 (t, J = 7.2 Hz, 2H), 1.94 – 1.81 (m, 1H), 1.76 – 1.64 (m, 3H), 1.55 – 1.46 (m, 1H), 1.41 – 1.28 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.4$, 142.6, 138.6, 137.0, 132.9, 128.5, 128.4, 128.3, 128.0, 127.8, 127.5, 127.4, 126.8, 81.3, 70.4, 38.5, 38.2, 29.1, 25.7, 24.2 ppm; IR (neat): v_{max} 3030, 2934, 2859, 1684, 1592, 1494, 1452, 802, 746, 697 cm⁻¹; HRMS (ESI) calcd for C₂₆H₂₈NaO₂ [M+Na]⁺ 395.1982, found 395.1979.

7-(Cyclopropylmethoxy)-1,7-diphenylheptan-1-one (5n): Yellow oil; (54%, 36.3 mg); $R_f = 0.35$ (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.90 (m, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.35 – 7.30 (m, 2H), 7.29 – 7.26 (m, 3H), 4.21 (dd, J = 7.2, 5.6 Hz, 1H), 3.14 (dd, J = 10.0, 6.4 Hz, 1H), 3.07 (dd, J = 10.0, 6.4 Hz, 1H), 2.94 (t, J = 7.2 Hz, 2H), 1.90 – 1.79 (m, 1H), 1.76 – 1.67 (m, 2H), 1.66 – 1.60 (m, 1H), 1.56 – 1.44 (m, 1H), 1.42 – 1.35 (m, 2H), 1.34 – 1.26 (m, 1H), 1.09 – 0.98 (m, 1H), 0.54 – 0.43 (m, 2H), 0.15 – 0.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.5, 143.1, 137.0, 132.9, 128.5, 128.3, 128.0, 127.3, 126.5, 81.8, 73.5, 38.5, 38.3, 29.2, 25.8, 24.2, 10.7, 3.1, 2.9 ppm; IR (neat): ν_{max} 3013, 2934, 2858, 1684, 1592, 1453, 1410, 802, 746, 697 cm⁻¹; HRMS (ESI) calcd for C₂₃H₂₈NaO₂ [M+Na]⁺ 359.1982, found 359.1975.

7-(But-3-yn-1-yloxy)-1,7-diphenylheptan-1-one (50): Faint yellow oil; (50%, 33.4 mg); $R_f = 0.30$ (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.92 (m, 2H), 7.59 – 7.51 (m, 1H), 7.49 – 7.42 (m, 2H), 7.36 – 7.30 (m, 2H), 7.30 – 7.26 (m, 3H), 4.25 – 4.21 (m, 1H), 3.48 – 3.41 (m, 1H), 3.40 – 3.34 (m, 1H), 2.94 (t, *J* = 7.2 Hz, 2H), 2.50 – 2.35 (m, 2H), 1.94 (t, *J* = 2.4 Hz, 1H), 1.88 – 1.77 (m, 1H), 1.75 – 1.64 (m, 2H), 1.65 – 1.60 (m, 1H), 1.55 – 1.43 (m, 1H), 1.42 – 1.35 (m, 2H), 1.34 – 1.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.4, 142.5, 137.0, 132.9, 128.5, 128.3, 128.0, 127.5, 126.5, 82.4, 81.5, 69.1, 66.7, 38.5, 38.1, 29.1, 25.7, 24.2, 19.9 ppm; IR (neat): v_{max} 3013, 2959, 2245, 1682, 1591, 1450, 802, 694 cm⁻¹; HRMS (ESI) calcd for C₂₃H₂₆NaO₂ [M+Na]⁺ 357.1825, found 357.1819.

2-(3-(2-Methoxy-2-(4-methoxyphenyl)ethyl)cyclopentyl)-1-phenylethan-1-one (**5p**): Faint yellow oil; (81%, 56.9 mg); dr = 1:1; $R_f = 0.33$ (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.90 (m, 2H), 7.57 – 7.52 (m, 1H), 7.47 – 7.43 (m, 2H), 7.21 – 7.17 (m, 2H), 6.89 – 6.86 (m, 2H), 4.03 (t, *J* = 6.8 Hz, 1H), 3.81 (s, 3H), 3.15 (s, 3H), 2.99 (d, *J* = 6.9 Hz, 1H), 2.95 (d, *J* = 7.1 Hz, 1H), 2.56 – 2.47 (m, 0.5H), 2.43 – 2.34 (m, 0.5H), 1.96 – 1.78 (m, 4H), 1.59 – 1.40 (m, 2H), 1.30 – 1.22 (m, 2H), 1.20 – 1.13 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.24, 159.01, 137.21, 134.45, 132.84, 128.52, 128.06, 127.91, 127.86, 113.71, 82.84, 82.78, 82.72, 56.29, 55.22, 45.27, 45.18, 44.85, 44.77, 40.53, 38.56, 38.48, 36.44, 35.85, 35.73, 35.19, 35.14, 34.65, 34.56, 33.01, 32.85, 32.77, 31.58, 31.45, 31.39 ppm; IR (neat): ν_{max} 2931, 2856, 1683, 1463, 1447, 1209, 1034, 831, 694, 574 cm⁻¹; HRMS (ESI) calcd for C₂₃H₂₈NaO₃ [M+Na]⁺ 375.1931, found 375.1924.

7-Methoxy-7-(4-methoxyphenyl)-1-(naphthalen-2-yl)heptan-1-one (5q): Faint yellow oil; (63%, 47.4 mg); $R_f = 0.28$ (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.03 – 8.00 (m, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.90 – 7.86 (m, 2H), 7.64 – 7.51 (m, 2H), 7.21 – 7.18 (m, 2H), 6.89 – 6.86 (m, 2H), 4.04 (t, J = 6.8 Hz, 1H), 3.80 (s, 3H), 3.18 (s, 3H), 3.07 (t, J = 7.6 Hz, 2H), 1.80 – 1.73 (m, 2H), 1.71 – 1.54 (m, 2H), 1.42 – 1.38 (m, 2H), 1.35 – 1.22 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.4$, 159.0, 135.5, 134.4, 134.3, 132.5, 129.6, 129.5, 128.4, 128.3, 127.8, 127.7, 126.7, 123.9, 83.5, 56.3, 55.2, 38.5, 37.9, 29.2, 25.7, 24.4 ppm; IR (neat): v_{max} 2931, 1670, 1610, 1510, 1244, 1173, 1086, 827, 748, 476 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₈NaO₃ [M+Na]⁺ 399.1931, found 399.1918.
References

- (1) (a) R. Sakamoto, S. Sakurai and K. Maruoka, Chem.-Eur. J., 2017, 23, 9030; (b) R. Sakamoto,
- T. Kato, S. Sakurai and K. Maruoka, Org. Lett., 2018, 20, 1400; (c) T. Seihara, S. Sakurai, T. Kato,
- R. Sakamoto and Maruoka, K. Org. Lett., 2019, 21, 2477; (d) P. C. Too, Y. L. Tnay and S. Chiba,
- Beilstein J. Org. Chem., 2013, 9, 1217.
- (2) P. Gao, H. Wu, J.-C. Yang and L.-N. Guo, Org. Lett., 2019, 21, 7104.

¹H NMR and ¹³C NMR Spectra of the Products 3

7, 946 7, 928 7, 528 7, 528 7, 528 7, 528 7, 528 7, 518 7, 518 7, 518 7, 518 7, 518 7, 518 7, 518 7, 405 7, 518 7, 405 7, 518 7, 161 17, 328 6, 339 6, 339 6, 237 7, 177 9, 220 6, 237 7, 177 9, 222 6, 237 7, 177 9, 222 6, 237 7, 222 6, 237 7, 222 6, 237 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 222 6, 227 7, 227 6, 227 7

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

3,032 3,014 3,014 2,2,295 2,288 2,288 2,288 2,288 2,288 2,253 2,253 2,253 2,253 2,253 2,253 2,253 2,27

¹H NMR (400 MHz, CDCl₃)

HMO	4 4 0 00 0 r 00 00 0 0 0 1 m 0	0 H M	-	ŝ	6	1-10	00	00	0	-1	S	-	in i	20 00	51 1	a.
F 10 10	C C C C C C C C C C C C C C C C C C C	000	00	-	10	m	N	0	00	5	0	00	r 1	0 .	4 0	3
0 0 0	4 4 M M O OM M N H H H H H H H	000	N	N	2	000	00	00	5	5	6	5	in i	n ı	n i	Ω
									•							
000	0000000000000	0 m m	N	N	N	NH	-	-	-	-	-	-	-	- r	- r	-
~~	Vara Vara		5	5	1	~ ~	1	2	_	-	-	-	-	-	-	-

¹H NMR (400 MHz, CDCl₃)

3.034 3.016 2.998 2.998 2.352 2.334 2.334 2.334 1.850 1.850 1.851 1.851 1.851 1.793 1.793 1.621 1.583

¹H NMR and ¹³C NMR Spectra of the Products 4

8.479

8.479

8.036

8.035

8.036

8.035

8.035

8.035

8.035

8.035

8.035

8.035

8.035

8.035

8.035

8.035

8.035

8.035

8.035

8.035

9.035

9.035

9.036

9.037

9.037

9.037

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031

9.031</

7, 240 7, 2289 7, 2289 7, 2289 7, 2289 7, 2289 7, 2289 7, 2289 7, 2289 7, 2289 6, 2201 6, 2201 6, 2201 6, 2201 2, 4366 2, 2411 6, 2201 2, 4316 2, 2411 2, 4316 2, 2424 2, 2424 2, 2424 2, 2424 2, 2424 2, 2426

¹H NMR (400 MHz, CDCl₃)

¹H NMR and ¹³C NMR Spectra of the Products 5

7, 945 7, 945 7, 923 7, 923 7, 923 7, 923 7, 923 7, 923 7, 923 7, 923 7, 923 7, 923 7, 923 7, 923 7, 923 7, 1529 6, 883 7, 446 6, 883 7, 446 6, 883 7, 446 6, 883 7, 446 6, 883 7, 426 7, 446 6, 883 7, 426 7, 440 1, 726 1, 726 1, 726 1, 726 1, 726 1, 726 1, 733 7, 671 1, 726 1, 726 1, 733 7, 671 1, 726 1, 726 1, 733 7, 671 1, 726 1

S75

S77

S85

^3.794 ^3.762 ^3.762 ^3.762 ^3.028 ^3.028 ^3.0108 ^1.8556 71.8556 71.8556 71.8556 71.8556 71.657 71.8556 71.657 71.759 70.7597 70.7597 70.7597 70.7597 7000 70000000000000000000000

