Supporting information

# Iron-Cobalt-catalyzed Heterotrimerization of Alkynes and Nitriles to Polyfunctional Pyridines

Yufang Xie, Chengjuan Wu, Changhao Jia, Chen-Ho Tung and Wenguang Wang\*

Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No.27 South Shanda Road, Jinan, 250100, P. R. China

Email: wwg@sdu.edu.cn

### **Tables of contents**

| 1. | General information                                                                       | S2  |
|----|-------------------------------------------------------------------------------------------|-----|
| 2. | Experimental procedures                                                                   | S2  |
|    | General procedures for the cycloaddition of alkynes and nitriles                          | S3  |
|    | Photophysical properties of <b>6h</b> and <b>6i</b>                                       | S3  |
|    | ESI-MS spectrum of Int1                                                                   | S4  |
|    | FI-IR spectra of MeCN and 1 in CH <sub>2</sub> Cl <sub>2</sub>                            | S4  |
|    | $[Cp*Fe(NCPh)_3]^+$                                                                       | S5  |
|    | FI-IR spectra [Cp*Fe(NCPh) <sub>3</sub> ] <sup>+</sup> in CH <sub>2</sub> Cl <sub>2</sub> | S5  |
| 3. | Characterizations                                                                         | S6  |
| 4. | NMR Spectra                                                                               | S17 |
| 5. | Crystal data and structure refinement parameters                                          | S49 |
| 6. | References                                                                                | S53 |

### 1. General information

All reactions were performed in flame-dried glassware using standard Schlenk techniques or in a glovebox under nitrogen atmosphere. Toluene and acetonitrile were dried and degassed by Solvent Purification Systems (Innovative Technology). All reagents were purchased from commercial suppliers, unless specified otherwise, or prepared as described in the literature. The  $Cp*Co(1,2-Ph_2PC_6H_4NH)$  (2)<sup>1</sup> and  $[Cp*Fe(NCMe)_3][PF_6]$  (1)<sup>2</sup> were prepared according to published procedures. NMR spectra were recorded on Bruker 500 (500 MHz for <sup>1</sup>H, 126 MHz for <sup>13</sup>C) spectrometers. Chemical shifts for <sup>1</sup>H and <sup>13</sup>C spectra were referenced to residual solvent resonances and are reported relative to tetramethylsilane. GC-MS spectra were obtained on a Shimadzu GCMS-QP2010 SE spectrometer. High resolution mass spectra (MS) were obtained using a LC/MSD TOF spectrometer system with electrospray ionization (ESI). UV-vis absorption spectra were recorded with an Agilent Cary 60 spectrophotometer. Steady-state emission spectra were recorded using a Shimadzu RF-6000 spectrofluorimeter. Crystallographic data were collected using a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer equipped with a HyPix-6000HE area detector at 173 K using Mo K $\alpha$  ( $\lambda = 0.71073$  Å) or Cu K $\alpha$  ( $\lambda = 1.54184$  Å) from PhotonJet micro-focus X-ray Source. FT-IR spectra were recorded on a PerkinElmer FT-IR Spectrometer Spectrum Two (the range: from 4000 to 450 cm<sup>-1</sup>). Melting point were recorded on X-5A Micro Melting Point Tester.

### 2. Experimental procedures

| $MeO_2C$ ———————————————————————————————————— | 4 mol% <b>2</b><br>+ MeCN <u>2 mol% additive</u><br>toluene, 50 °C, 20 l | $MeO_2C$ $CO_2Me$<br>$N$ $CO_2Me$ |  |
|-----------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|--|
| entry                                         | additive                                                                 | yield <sup>a</sup> /%             |  |
| 1                                             | none                                                                     | N.D. <sup>b</sup>                 |  |
| 2                                             | none                                                                     | 28                                |  |
| 3                                             | 1                                                                        | 92                                |  |
| 4                                             | 1                                                                        | N.D. <sup>c</sup>                 |  |
| 5                                             | FeCl <sub>2</sub>                                                        | 32                                |  |
| 6                                             | FeCl <sub>3</sub>                                                        | N.D.                              |  |
| 7                                             | Fe(OTf) <sub>3</sub>                                                     | N.D.                              |  |

Table S1. Screening of catalysts

<sup>*a*</sup> Conditions: Determined by <sup>1</sup>H NMR using 1,3,5-trimethoxybenzene as the internal standard. <sup>*b*</sup> Without MeCN, give hexamethyl benzene-1,2,3,4,5,6-hexacarboxylate as product in 90% yield. <sup>*c*</sup> Without **2**.

*Characterization of hexamethyl benzene-1,2,3,4,5,6-hexacarboxylate:* <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.84 (s, 18H). MS (EI): m/z calcd. for C<sub>18</sub>H<sub>18</sub>O<sub>12</sub>: 426.08 GC-MS: m/z 426.10. <sup>1</sup>H data agrees with reported data.<sup>3</sup>



**Figure S1.** <sup>1</sup>H NMR spectrum of hexamethyl benzene-1,2,3,4,5,6-hexacarboxylate in CDCl<sub>3</sub>

#### General procedures for the cycloaddition of alkynes and nitriles

 $[Cp*Fe(NCMe)_3][PF_6]$  (2.8 mg, 0.006 mmol),  $Cp*Co(1,2-Ph_2PC_6H_4NH)$  (5.6 mg, 0.012 mmol) and nitriles (0.9 mmol) were mixed in 2 mL toluene in a flame-dried glassware in a glove box. The alkyne substrate (0.3 mmol) was added. The mixture was stirred at 50 °C for 20 h. The reaction progress was monitored by GLC. After the reaction was complete, the solvent was evaporated *under vacuum*. The products was isolated by wash the residue through column chromatography (petroleum ether: EtOAc = 10:1).

#### Photophysical properties of 6h and 6i



**Figure S2.** UV-vis absorption (red line) and fluorescence (black line) spectra of **6h** (10<sup>-5</sup> M) and **6i** (10<sup>-5</sup> M) in DCM with  $\lambda_{ex} = 365$  nm.



Figure S3. UV-vis absorption spectra of  $6h (10^{-5} \text{ M})$  and  $6i (10^{-5} \text{ M})$  in DCM.

#### **ESI-MS** spectrum of Int1



**Figure S4.** ESI-MS spectroscopic analysis for the reaction solution of **2** with dimethyl but-2-ynedioate *Results:* calcd for C<sub>34</sub>H<sub>36</sub>CoNO<sub>4</sub>P, 612.1714; found, 612.1620.

### FI-IR spectra of MeCN and 1 in CH<sub>2</sub>Cl<sub>2</sub>



Figure S5. FI-IR spectra of (a) complex  $[Cp*Fe(NCMe)_3]^+(1)$ , (b) pure MeCN and (c) 1 with MeCN in CH<sub>2</sub>Cl<sub>2</sub>.

#### [Cp\*Fe(NCPh)<sub>3</sub>]<sup>+</sup>

Treatment of **1** in CH<sub>2</sub>Cl<sub>2</sub> with PhCN (5 equiv) caused the purple solution to immediately turn brown. The replacement of the MeCN ligand in **1** by PhCN was suggested by the appearance of  $v_{C=N}$  band at 2254 cm<sup>-1</sup> for free MeCN in the IR spectrum. The reaction solution was layered with hexane and stored at -30 oC for 24 hours, providing single crystals suitable for X-ray diffraction. Crystallographically analysis confirmed the solid-sate structure of [Cp\*Fe(NCPh)<sub>3</sub>]PF<sub>6</sub>.



**Figure S6.** Structures of  $[Cp*Fe(NCPh)_3]^+$  with 50% probability thermal ellipsoids. For clarity, hydrogen atoms and counteranions are omitted. Selected bond distances (Å): for Fe–N (avg.) 1.923, N–C (avg.) 1.145.

#### FI-IR spectra of PhCN and [Cp\*Fe(NCPh)<sub>3</sub>]<sup>+</sup> in CH<sub>2</sub>Cl<sub>2</sub>



**Figure S7.** FI-IR spectra (CH<sub>2</sub>Cl<sub>2</sub> solution) of (a)  $[Cp*Fe(NCMe)_3]^+$  (1), (b) pure MeCN, (c) 1 + MeCN, and (d)  $[Cp*Fe(NCPh)_3]PF_6$ .

#### 3. Characterizations

#### *Tetramethyl* 6-*methylpyridine-2,3,4,5-tetracarboxylate* (5*a*)<sup>4</sup>



White solid, 44 mg, 90% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.96 (s, 3H), 3.91 (s, 3H), 3.89 (s, 3H), 3.87 (s, 3H), 2.70 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.25, 165.69, 164.69, 164.58, 158.81, 147.88, 139.15, 128.98, 126.24, 53.61, 53.37, 53.29, 23.41. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>):  $v_{C=0}$  1743 cm<sup>-1</sup>,  $v_{C-0-C}$  1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>14</sub>H<sub>15</sub>NO<sub>8</sub> [M+H<sup>+</sup>]: 326.0876; Found: 326.0850. GC-MS: 325.05.

Tetramethyl 6-cyclohexylpyridine-2,3,4,5-tetracarboxylate (5b)



White solid, 45 mg, 76% yield. M.p.: 107-109 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.92 (dd, J = 24.7, 14.5 Hz, 12H), 2.85 (s, 1H), 1.93 – 1.68 (m, 7H), 1.33 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.71, 165.95, 165.88, 165.17, 165.00, 148.55, 138.69, 128.40, 125.47, 77.41, 77.16, 76.91, 53.59, 53.38, 53.34, 53.25, 44.21, 32.11, 26.3, 25.73. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>):  $v_{C=0}$  1743 cm<sup>-1</sup>,  $v_{C-0-C}$  1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>19</sub>H<sub>23</sub>NO8 [M+H<sup>+</sup>]: 394.1502; Found: 394.1497. GC-MS: 393.10.

*Tetramethyl 6-benzylpyridine-2,3,4,5-tetracarboxylate (5c)* 



White solid, 47 mg, 61% yield. M.p.: 89-91 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.23 – 7.03 (m, 5H), 4.34 (s, 2H), 3.91 (s, 3H), 3.84 (s, 3H), 3.78 (s, 3H), 3.63 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.90, 165.64, 164.65, 164.59, 160.80, 148.01, 139.72, 137.33, 129.17, 129.13, 128.53, 126.85, 126.55, 53.55, 53.38, 53.04, 42.33. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>): *v*<sub>C=0</sub> 1743 cm<sup>-1</sup>, *v*<sub>C-0-C</sub> 1267, 1265 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>20</sub>H<sub>19</sub>NO8 [M+H<sup>+</sup>]: 402.1189; Found: 402.1187. GC-MS: 401.05.

Tetramethyl 6-(4-cyanobutyl)pyridine-2,3,4,5-tetracarboxylate (5d)



Orange oil, 47 mg, 80% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.98 (s, 3H), 3.93 (s, 4H), 3.92 (s, 2H), 3.90 (s, 3H), 2.99 (t, J = 7.6 Hz, 2H), 2.39 (t, J = 7.1 Hz, 2H), 2.01 – 1.86 (m, 2H), 1.79 – 1.67 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.22, 165.65, 164.73, 164.68, 161.14, 148.40, 139.48, 128.85, 126.35, 119.51, 77.41, 77.16, 76.91, 53.69, 53.62, 53.48, 53.46, 35.13, 28.13, 25.01, 17.04. MS (EI) m/z calcd. for C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>O<sub>8</sub>: 392.12. GC-MS: m/z 392.05.

*Tetramethyl 6-phenylpyridine-2,3,4,5-tetracarboxylate (5e)*<sup>5</sup>



White solid, 49 mg, 84% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 – 7.56 (m, 2H), 7.45 (d, *J* = 4.9 Hz, 3H), 4.03 – 3.90 (m, 9H), 3.69 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.81, 165.69, 164.75, 164.71, 158.71, 148.41, 140.23, 137.55, 130.15, 128.78, 128.72, 126.26, 53.76, 53.61, 53.51, 53.21. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>): *v*<sub>C=0</sub> 1746 cm<sup>-1</sup>, *v*<sub>C-0-C</sub> 1267, 1264 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>19</sub>H<sub>17</sub>NO<sub>8</sub> [M+H<sup>+</sup>]: 388.1032; Found: 388.1025. GC-MS: 387.05. Crystal was obtained by slow evaporation of the CH<sub>2</sub>Cl<sub>2</sub>/hexane at room temperature.

Tetramethyl 6-(p-tolyl)pyridine-2,3,4,5-tetracarboxylate (5f)<sup>6</sup>



White solid, 39 mg, 65% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 7.3 Hz, 2H), 3.99 (s, 3H), 3.95 (s, 3H), 3.93 (s, 3H), 3.73 (s, 3H), 2.40 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.89, 165.65, 164.75, 164.70, 158.59, 148.32, 140.35, 140.13, 134.61, 129.43, 128.57, 128.34, 125.73, 53.62, 53.47, 53.38, 53.11, 21.41. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>): *v*<sub>C=0</sub> 1745 cm<sup>-1</sup>, *v*<sub>C-0-C</sub> 1267, 1264 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>20</sub>H<sub>19</sub>NO8 [M+H<sup>+</sup>]: 402.1189; Found: 402.1177. GC-MS: 401.05.

Tetramethyl 6-(4-(trifluoromethyl)phenyl)pyridine-2,3,4,5-tetracarboxylate (5g)



White solid, 61 mg, 89% yield. M.p.: 134-136 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (s, 4H), 4.10 – 3.85 (m, 9H), 3.72 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.21, 165.32, 164.35, 164.31, 157.02, 148.45, 140.82, 140.27, 131.91 (q, *J*<sub>CF</sub> = 32.7 Hz), 129.09, 128.00 (q, *J*<sub>CF</sub> = 268.4 Hz), 125.63 (q, *J*<sub>CF</sub> = 3.7 Hz), 122.74, 53.75, 53.58, 53.48, 53.28, 29.69. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -62.87. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>): *v*<sub>C</sub>=0 1746 cm<sup>-1</sup>, *v*<sub>C</sub>-0-c 1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>20</sub>H<sub>16</sub>F<sub>3</sub>NO<sub>8</sub> [M+H<sup>+</sup>]: 456.0906; Found: 456.0908. GC-MS: 455.10.

Tetramethyl 6-(4-(methoxycarbonyl)phenyl)pyridine-2,3,4,5-tetracarboxylate (5h)



White solid, 61 mg, 92% yield. M.p.: 150-152 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 3.99 (s, 4H), 3.95 (s, 3H), 3.93 (s, 2H), 3.92 (s, 2H), 3.68 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.53, 166.40, 165.45, 164.51, 164.48, 157.59, 148.53, 141.66, 140.37, 131.48, 129.93, 129.01, 128.80, 126.90, 77.41, 77.16, 76.91, 53.81, 53.67, 53.55, 53.33, 52.44. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>):  $v_{C=0}$  1745 cm<sup>-1</sup>,  $v_{C-0-C}$  1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>21</sub>H<sub>19</sub>NO<sub>10</sub> [M+H<sup>+</sup>]: 446.1087; Found: 446.1091. GC-MS: 445.15.

2-methyl-3,4,5,6-tetraphenylpyridine (6a)<sup>7</sup>



White solid, 41 mg, 69% yield.<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 – 7.33 (m, 2H), 7.23 – 7.13 (m, 6H), 7.09 – 7.04 (m, 2H), 6.99 – 6.94 (m, 3H), 6.92 – 6.88 (m, 3H), 6.88 – 6.83 (m, 2H), 6.77 – 6.71 (m, 2H), 2.50 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.19, 155.34, 149.30, 140.99, 138.86, 138.44, 138.16, 134.73, 132.63, 131.40, 130.27, 130.08, 129.97, 127.84, 127.64, 127.33, 127.23, 126.92, 126.63, 126.11, 77.30, 77.04, 76.79, 24.31. HRMS (ESI) Calcd for C<sub>30</sub>H<sub>23</sub>N [M+H<sup>+</sup>]: 398.1909; Found: 398.1908. GC-MS: 397.10.

2-benzyl-3,4,5,6-tetraphenylpyridine (6b)<sup>8</sup>



White solid, 38 mg, 52% yield. M.p.: 153-155 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 – 7.31 (m, 2H), 7.23 – 7.17 (m, 5H), 7.15 (dd, J = 6.1, 2.5 Hz, 4H), 7.11 – 7.06 (m, 2H), 7.01 – 6.90 (m, 5H), 6.82-6.87 (m, 5H), 6.74 – 6.65 (m, 2H), 4.15 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.16, 140.96, 138.15, 131.34, 130.60, 130.18, 129.19, 127.96, 127.59, 127.32, 126.77, 126.10, 125.83, 42.47. HRMS (ESI) Calcd for C<sub>36</sub>H<sub>27</sub>N [M+H<sup>+</sup>]: 473.2222; Found: 474.2225. GC-MS: 474.23.

2,3,4,5,6-pentaphenylpyridine (6c)<sup>9</sup>



White solid, 44 mg, 64% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (dd, J = 6.5, 2.9 Hz, 4H), 7.23 – 7.13 (m, 6H), 7.05 – 6.96 (m, 6H), 6.92 (m, 7H), 6.78 (dd, J = 6.4, 2.8 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.42, 150.25, 140.89, 138.45, 138.16, 133.69, 131.32, 130.43, 130.22, 127.50, 127.38, 127.31, 126.96, 126.25, 126.18. HRMS (ESI) Calcd for C<sub>35</sub>H<sub>25</sub>N [M+H<sup>+</sup>]: 460.2065; Found: 460.2064. GC-MS: 459.90.

2-(4-chlorophenyl)-3,4,5,6-tetraphenylpyridine (6e)



White solid, 46 mg, 62% yield. M.p.: 240-242 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 – 7.39 (m, 2H), 7.38 – 7.34 (m, 2H), 7.21 – 7.18 (m, 3H), 7.17 – 7.14 (m, 2H), 7.06 – 6.99 (m, 6H), 6.96 – 6.89 (m, 7H), 6.77 (dd, *J* = 6.6, 3.0 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.74, 155.21, 150.61, 140.92, 139.53, 138.47, 138.36, 138.15, 134.13, 133.80, 133.64, 131.74, 131.43, 131.38, 130.55, 130.32, 127.89, 127.77, 127.69, 127.58, 127.16, 126.65, 126.65, 126.41. HRMS (ESI) Calcd for C<sub>35</sub>H<sub>24</sub>ClN [M+H<sup>+</sup>]: 494.1676; Found: 494.1662. GC-MS: 493.70.

2,3,4,5-tetraphenyl-6-(4-(trifluoromethyl)phenyl)pyridine (6f)



Yellow solid, 48 mg, 61% yield. M.p.: 192-194 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.39 (d, *J* = 4.8 Hz, 1H), 7.20 (s, 3H), 7.03 (d, *J* = 10.3 Hz, 6H), 6.93 (d, *J* = 16.1 Hz, 7H), 6.84 (s, 1H), 6.78 (d, *J* = 3.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.7, 154.86, 150.54, 144.45, 140.63, 138.16, 137.88, 137.82, 134.38, 133.94, 131.24, 131.21, 130.51, 130.38, 130.15, 129.24 (q, *J*<sub>CF</sub> = 32.3 Hz), 128.91 (q, *J*<sub>CF</sub> = 294.84 Hz), 127.66, 127.59, 127.53, 127.47, 127.07, 126.6, 126.58, 126.43, 126.36, 125.32, 125.19, 124.48 (q, *J*<sub>CF</sub> = 3.7 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -62.51. HRMS (ESI) Calcd for C<sub>36</sub>H<sub>25</sub>F<sub>3</sub>N [M+H<sup>+</sup>]: 528.1939; Found: 528.2008.

2-(furan-2-yl)-3,4,5,6-tetraphenylpyridine (6g)



White solid, 40 mg, 59% yield. M.p.: 203-205 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 – 7.40 (m, 3H), 7.22 – 7.18 (m, 6H), 7.11 – 7.07 (m, 2H), 7.00 – 6.96 (m, 3H), 6.93 – 6.89 (m, 3H), 6.88 (dd, *J* = 6.5, 3.1 Hz, 2H), 6.76 (dd, *J* = 6.5, 3.1 Hz, 2H), 6.23 (dd, *J* = 3.5, 1.7 Hz, 1H), 5.66 (d, *J* = 3.5 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.93, 152.75, 150.77, 146.29, 143.17, 140.89, 138.50, 138.42, 137.96, 133.58, 132.41, 131.42, 130.56, 130.37, 128.13, 127.76, 127.59, 127.51 127.17, 127.08, 126.40, 126.35, 112.51, 111.27. HRMS (ESI) Calcd for C<sub>33</sub>H<sub>23</sub>NO [M+H<sup>+</sup>]: 450.1858; Found: 450.1850. GC-MS: 448.90. Crystal was obtained by slow evaporation of the CH<sub>2</sub>Cl<sub>2</sub>/hexane at room temperature.

2,3,4,5-tetraphenyl-6-(thiophen-3-yl)pyridine (6h)



White solid, 32 mg, 46% yield. M.p.: 204-206 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 – 7.41 (m, 2H), 7.23 (dd, J = 4.8, 1.5 Hz, 1H), 7.20 (dt, J = 4.5, 2.3 Hz, 3H), 7.16 –

7.12 (m, 3H), 7.09 (dt, J = 3.1, 2.3 Hz, 2H), 7.05 – 6.98 (m, 5H), 6.94 – 6.88 (m, 5H), 6.78 (d, J = 3.6 Hz, 1H), 6.76 (d, J = 2.4 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.21, 150.89, 150.47, 41.99, 140.88, 138.78, 138.45, 138.08, 133.27, 133.00, 131.30, 130.86, 130.33, 130.23, 129.49, 127.90, 127.49, 127.39, 127.37, 126.94, 126.83, 126.30, 126.23, 126.15, 123.71. HRMS (ESI) Calcd for C<sub>33</sub>H<sub>23</sub>NS [M+H<sup>+</sup>]: 466.1629; Found: 466.1621. GC-MS: 465.70. Crystal was obtained by slow evaporation of the CH<sub>2</sub>Cl<sub>2</sub>/hexane at room temperature.

*3,4,5,6-tetraphenyl-2,4'-bipyridine (6i)*<sup>10</sup>



White solid, 42 mg, 63% yield. <sup>1</sup>H NMR (500 MHz, CDCl3)  $\delta$  8.43 (d, *J* = 5.6 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.31 (dd, *J* = 4.6, 1.5 Hz, 2H), 7.21 – 7.16 (m, 3H), 7.04 (tdd, *J* = 6.9, 4.9, 2.3 Hz, 6H), 6.95 – 6.89 (m, 7H), 6.77 (dd, *J* = 6.5, 3.2 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  157.09, 153.69, 150.76, 149.30, 148.57, 140.59, 138.12, 137.71, 137.65, 134.99, 134.28, 131.30, 131.20, 130.45, 130.23, 127.87, 127.74, 127.72, 127.62, 127.22, 127.01, 126.63, 126.56, 124.83. HRMS (ESI) Calcd for C<sub>34</sub>H<sub>24</sub>N<sub>2</sub> [M+H<sup>+</sup>]: 461.2018; Found: 461.2013. GC-MS: 460.10. Crystal was obtained by slow evaporation of the CH<sub>2</sub>Cl<sub>2</sub>/hexane at room temperature.

Diethyl 6-methylpyridine-2,5-dicarboxylate (7a)<sup>11</sup>



Oil, 17 mg, 48% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.29 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 4.48 (q, J = 7.1 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 2.90 (s, 3H), 1.39–1.33 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.11, 164.81, 160.12, 149.69, 139.44, 128.65, 122.24, 62.37, 61.83, 25.08, 14.40, 14.35. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>):  $v_{C}$ =0 1729 cm<sup>-1</sup>,  $v_{C}$ -0-C 1267, 1264 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>12</sub>H<sub>15</sub>NO<sub>4</sub> [M+H<sup>+</sup>]: 238.1079; Found: 238.1073. GC-MS: 237.05.

Diethyl 6-methylpyridine-2,4-dicarboxylate (8a)<sup>12</sup>



Oil, 18 mg, 51% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.42 (d, J = 0.7 Hz, 1H), 7.88 (d, J = 1.2 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 4.42 (q, J = 7.1 Hz, 2H), 2.72 (s, 3H), 1.46 –

1.40 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.67, 164.50, 160.10, 148.69, 138.99, 125.76, 121.41, 62.03, 61.92, 24.49, 14.17, 14.0. MS (EI): m/z calcd. for C<sub>12</sub>H<sub>15</sub>NO<sub>4</sub>: 237.10 GC-MS: m/z 237.10.

Diethyl 2-(tert-butyl)pyridine-3,5-dicarboxylate (8b)



Oil, 29 mg, 70% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.38 (d, J = 1.2 Hz, 1H), 8.06 (d, J = 1.2 Hz, 1H), 4.45 (dq, J = 11.3, 7.1 Hz, 4H), 1.48 – 1.38 (m, 15H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  171.16, 165.28, 165.23, 148.44, 139.11, 121.87, 121.35, 62.11, 61.93, 38.20, 30.20, 14.43, 14.39. MS (EI): m/z calcd. for C<sub>15</sub>H<sub>21</sub>NO<sub>4</sub>: 279.15 GC-MS: m/z 279.10.

Diethyl 6-benzylpyridine-2,5-dicarboxylate (7c)



Colorless oil, 13 mg, 30% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.23 (d, *J* = 8.0 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.25 – 7.20 (m, 4H), 7.17 – 7.12 (m, 1H), 4.67 (s, 2H), 4.49 (q, *J* = 7.1 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 1.45 (t, *J* = 7.1 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.96 (s), 164.67 (s), 161.32 (s), 149.67 (s), 139.52 (s), 139.20 (s), 129.12 (s), 128.98 (s), 128.21 (s), 126.17 (s), 122.55 (s), 62.18 (s), 61.77 (s), 42.53 (s), 14.28 (s), 14.07 (s). MS (EI): m/z calcd. for C<sub>18</sub>H<sub>19</sub>NO<sub>4</sub>: 313.13 GC-MS: m/z 313.10.

Diethyl 6-benzylpyridine-2,4-dicarboxylate (8c)



Colorless oil, 16 mg, 34% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (d, *J* = 1.3 Hz, 1H), 7.79 (d, *J* = 1.4 Hz, 1H), 7.35 – 7.26 (m, 4H), 7.26 – 7.21 (m, 1H), 4.51 (q, *J* = 7.1 Hz, 2H), 4.39 (q, *J* = 7.1 Hz, 2H), 4.35 (s, 2H), 1.46 (t, *J* = 7.1 Hz, 3H), 1.38 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.94 (s), 164.69 (s), 163.02 (s), 149.00 (s), 139.62 (s), 138.56 (s), 129.35 (s), 128.92 (s), 126.91 (s), 125.79 (s), 122.16 (s), 62.33 (s), 62.21 (s), 44.69 (s), 14.48 (s), 14.32 (s). MS (EI): m/z calcd. for C<sub>18</sub>H<sub>19</sub>NO<sub>4</sub>: 313.13 GC-MS: m/z 313.05.

Diethyl 6-phenylpyridine-2,5-dicarboxylate (7d)<sup>13</sup>



White solid, 19 mg, 42% yield. M.p.: 101-103 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.69 – 7.52 (m, 2H), 7.49 – 7.35 (m, 3H), 4.48 (q, J = 7.1 Hz, 2H), 4.17 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.74 (s), 164.65, 158.74, 149.35, 139.35, 138.68, 130.22, 129.01, 128.83, 128.22, 122.63, 62.20, 61.85, 14.28, 13.61. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>):  $v_{C=0}$  1721 cm<sup>-1</sup>,  $v_{C-0-C}$  1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>17</sub>H<sub>17</sub>NO<sub>4</sub> [M+H<sup>+</sup>]: 300.1236; Found: 300.1221. GC-MS: 299.05.

Diethyl 6-phenylpyridine-2,4-dicarboxylate (8d)



White solid, 23 mg, 52% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.54 (d, *J* = 1.3 Hz, 1H), 8.46 (d, *J* = 1.3 Hz, 1H), 8.24 – 8.05 (m, 2H), 7.61 – 7.41 (m, 3H), 4.50 (dq, *J* = 19.5, 7.1 Hz, 4H), 1.47 (dt, *J* = 12.2, 7.1 Hz, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.03, 164.79, 158.85, 149.51, 139.97, 137.87, 130.07, 129.07, 127.45, 122.82, 122.51, 62.33, 62.27, 14.46, 14.40. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>): *v*<sub>C=0</sub> 1729 cm<sup>-1</sup>, *v*<sub>C-0-C</sub> 1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>17</sub>H<sub>17</sub>NO4 [M+H<sup>+</sup>]: 300.1236; Found: 300.1236. GC-MS: 299.10.

Diethyl 6-(4-fluorophenyl)pyridine-2,5-dicarboxylate (7e)



White solid, 9 mg, 19% yield. M.p.: 116-118 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (d, *J* = 8.0 Hz, 1H), 8.11 (d, *J* = 8.0 Hz, 1H), 7.70 – 7.47 (m, 2H), 7.22 – 7.07 (m, 2H), 4.49 (q, *J* = 7.1 Hz, 2H), 4.20 (q, *J* = 7.1 Hz, 2H), 1.44 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.63, 164.65, 163.61 (d, *J*<sub>CF</sub> = 249.5 Hz), 157.77, 149.53, 139.01, 135.58 (d, *J*<sub>CF</sub> = 3.3 Hz), 130.94 (d, *J*<sub>CF</sub> = 8.5 Hz), 130.11, 122.86, 115.48, 115.31, 62.40, 62.08, 14.41, 13.86. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  - 111.35. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>): *v*<sub>C=0</sub> 1728 cm<sup>-1</sup>, *v*<sub>C-0-C</sub> 1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>17</sub>H<sub>16</sub>FNO4 [M+H<sup>+</sup>]: 318.1142; Found: 318.1129. GC-MS: 317.05.

Diethyl 6-(4-fluorophenyl)pyridine-2,4-dicarboxylate (8e)



White solid, 24 mg, 50% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.52 (d, *J* = 1.2 Hz, 1H), 8.41 (d, *J* = 1.2 Hz, 1H), 8.17 – 8.09 (m, 2H), 7.19 (t, *J* = 8.7 Hz, 2H), 4.50 (dq, *J* = 18.2, 7.1 Hz, 4H), 1.47 (dt, *J* = 11.2, 7.1 Hz, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.92, 164.69, 164.25 (d, *J<sub>CF</sub>* = 249.5 Hz), 157.76, 149.50, 140.08, 134.05, 129.40 (d, *J<sub>CF</sub>* = 8.6 Hz), 122.45 (d, *J<sub>CF</sub>* = 3.5 Hz), 116.17, 115.99, 62.39, 62.31, 14.46, 14.40. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -112.52. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>): *v*<sub>C</sub>=0 1722 cm<sup>-1</sup>, *v*<sub>C</sub>-0-c 1267, 1264 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>17</sub>H<sub>16</sub>FNO4 [M+H<sup>+</sup>]: 318.1142; Found: 318.1134. GC-MS: 317.05.

#### Diethyl 6-(4-chlorophenyl)pyridine-2,5-dicarboxylate (7f)



White solid, 10 mg, 21% yield. M.p.: 86-88 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.57 – 7.50 (m, 2H), 7.47 – 7.38 (m, 2H), 4.49 (q, J = 7.1 Hz, 2H), 4.21 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1Hz, 5.2 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.45, 164.60, 157.71, 149.60, 139.09, 137.92, 135.44, 130.39, 130.07, 128.57, 123.05, 62.43, 62.14, 14.41, 13.86. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>):  $v_{C=0}$  1722 cm<sup>-1</sup>,  $v_{C=0-C}$  1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>17</sub>H<sub>16</sub>ClNO<sub>4</sub> [M+H<sup>+</sup>]: 334.0846; Found: 334.0833. GC-MS: 333.05.

Diethyl 6-(4-chlorophenyl)pyridine-2,4-dicarboxylate (8f)



White solid, 21 mg, 42% yield. M.p.: 100-102 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.54 (d, J = 1.2 Hz, 1H), 8.42 (d, J = 1.2 Hz, 1H), 8.09 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 4.50 (dq, J = 18.0, 7.1 Hz, 4H), 1.47 (dt, J = 11.0, 7.1 Hz, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.85, 164.62, 157.56, 149.57, 140.14, 136.36, 136.25, 129.29, 128.71, 122.74, 122.54, 62.43, 62.34, 14.45, 14.39. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>):  $v_{C=0}$  1730 cm<sup>-1</sup>,  $v_{C-0-C}$  1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>17</sub>H<sub>16</sub>ClNO<sub>4</sub> [M+H<sup>+</sup>]: 334.0846; Found: 334.0832. GC-MS: 333.05.

#### Diethyl 6-(4-(trifluoromethyl)phenyl)pyridine-2,5-dicarboxylate (7g)



White solid, 15 mg, 27% yield. M.p.: 56-58 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.27 (d, J = 8.0 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.72 – 7.65 (m, 4H), 4.49 (q, J = 7.1 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H), 1.07 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  166.11 (s), 163.78 (s), 156.39 (s), 149.01 (s), 143.03 (s), 139.66 (s), 129.66 (s), 129.42 (s), 129.17 (q,  $J_{CF} = 31.5$  Hz), 125.06 (q,  $J_{CF} = 3.7$  Hz), 124.19 (q,  $J_{CF} = 272.2$  Hz), 123.73 (s), 61.71 (s), 61.68 (s), 14.06 (s), 13.34 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -61.13. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>):  $v_{C=0}$  1723 cm<sup>-1</sup>,  $v_{C-0-C}$  1267, 1264 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>NO<sub>4</sub> [M+H<sup>+</sup>]: 368.1110; Found: 368.1103. GC-MS: 367.10.

#### Diethyl 6-(4-(trifluoromethyl)phenyl)pyridine-2,4-dicarboxylate (8g)



White solid, 26 mg, 47% yield. M.p.: 107-109 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.59 (d, J = 1.1 Hz, 1H), 8.49 (d, J = 1.1 Hz, 1H), 8.25 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H), 4.51 (dq, J = 17.4, 7.1 Hz, 4H), 1.47 (dt, J = 10.4, 7.1 Hz, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.73, 164.49, 157.22, 149.78, 141.10, 140.32, 134.57, 131.85 (q,  $J_{CF} = 31.5$  Hz), 128.42 (q,  $J_{CF} = 267.12$  Hz), 127.79, 126.02 (q,  $J_{CF} = 3.7$  Hz), 123.33, 123.06, 62.51, 62.41, 14.44, 14.38. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -61.24. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>):  $v_{C=0}$  1729 cm<sup>-1</sup>,  $v_{C-0-C}$  1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>NO4 [M+H<sup>+</sup>]: 368.1110; Found: 368.1112. GC-MS: 367.10.

Diethyl 6-(4-(methoxycarbonyl)phenyl)pyridine-2,5-dicarboxylate (7h)



White solid, 16 mg, 30% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.39 – 8.03 (m, 4H), 7.66 (d, *J* = 8.0 Hz, 2H), 4.49 (q, *J* = 14.1, 7.0 Hz, 2H), 4.18 (q, *J* = 14.1, 7.1 Hz, 2H), 3.95 (s, 3H), 1.44 (t, *J* = 7.1 Hz, 3H), 1.06 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.13, 166.80, 164.43, 157.85, 149.55, 143.74, 139.02, 130.42, 130.18, 129.48, 128.96, 123.25, 62.35, 62.04, 52.26, 14.27, 13.67. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>): *v*<sub>C</sub>=0 1722 cm<sup>-1</sup>, *v*<sub>C</sub>-0-c 1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>19</sub>H<sub>19</sub>NO<sub>6</sub> [M+H<sup>+</sup>]: 358.1291; Found: 358.1277. GC-MS: 357.05. Crystal was obtained by slow evaporation of the CH<sub>2</sub>Cl<sub>2</sub>/hexane at room temperature.



White solid, 24 mg, 46% yield. M.p.: 97-99 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.57 (d, J = 1.1 Hz, 1H), 8.49 (d, J = 1.1 Hz, 1H), 8.19 (m, 4H), 4.50 (dq, J = 18.8, 7.1 Hz, 4H), 3.95 (s, 3H), 1.47 (dt, J = 11.7, 7.1 Hz, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.88, 164.82, 164.57, 157.63, 149.75, 141.88, 140.25, 131.41, 130.35, 127.44, 123.23, 62.49, 62.42, 52.43, 14.46, 14.41. FT-IR (CH<sub>2</sub>Cl<sub>2</sub>):  $v_{C=0}$  1725 cm<sup>-1</sup>,  $v_{C-0-C}$  1267, 1263 cm<sup>-1</sup>. HRMS (ESI) Calcd for C<sub>19</sub>H<sub>19</sub>NO<sub>6</sub> [M+H<sup>+</sup>]: 358.1291; Found: 358.1283. GC-MS: 357.30. Crystal was obtained by slow evaporation of the CH<sub>2</sub>Cl<sub>2</sub>/hexane at room temperature.

*Diethyl* 2,5,6-*triphenylpyridine-3,4-dicarboxylate* (9) and *diethyl* 2,4,6*triphenylpyridine-3,5-dicarboxylate* (10)



White solid, 58 mg, 86% NMR yield. Attempts to separate the two isomers through column chromatography were unsuccessful. Layering a  $CH_2Cl_2$  solution of the product mixture with hexane at  $-30^{\circ}C$  provided single crystals some of which were suitable for XRD analysis. Both isomers were crystallographically characterized by our diligent work. HRMS (ESI) Calcd for  $C_{29}H_{25}NO_4$  [M+H<sup>+</sup>]: 452.1862; Found: 452.1767. GC-MS: 451.09.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 – 7.72 (m, 7H), 7.72 – 7.66 (m, 2H), 7.46 – 7.37 (m, 22H), 7.36 – 7.33 (m, 2H), 7.30 – 7.26 (m, 3H), 7.25 – 7.15 (m, 5H). For **9**: 4.16 (q, *J* = 7.1 Hz, 2H), 4.05 (q, *J* = 7.1 Hz, 2H), 1.05 (t, *J* = 7.1 Hz, 3H), 0.96 (t, *J* = 7.2 Hz, 3H). For **10**<sup>14</sup>: 3.88 (q, *J* = 7.1 Hz, 7H), 0.83 (t, *J* = 7.1 Hz, 11H).

### 4. NMR Spectra



Figure S8. <sup>1</sup>H NMR spectrum of 5a in CDCl<sub>3</sub>



Figure S9. <sup>13</sup>C NMR spectrum of 5a in CDCl<sub>3</sub>



Figure S11. <sup>13</sup>C NMR spectrum of 5b in CDCl<sub>3</sub>



Figure S13. <sup>13</sup>C NMR spectrum of 5c in CDCl<sub>3</sub>



Figure S15. <sup>13</sup>C NMR spectrum of 5d in CDCl<sub>3</sub>



Figure S17. <sup>13</sup>C NMR spectrum of 5e in CDCl<sub>3</sub>



Figure S19. <sup>13</sup>C NMR spectrum of 5f in CDCl<sub>3</sub>







Figure S21. <sup>13</sup>C NMR spectrum of 5g in CDCl<sub>3</sub>



Figure S23. <sup>13</sup>C NMR spectrum of 5h in CDCl<sub>3</sub>





Figure S25. <sup>13</sup>C NMR spectrum of 6a in CDCl<sub>3</sub>

## $\begin{array}{c} 7.26\\ 7.21\\ 7.22\\ 7.22\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\$



Figure S27. <sup>13</sup>C NMR spectrum of 6b in CDCl<sub>3</sub>



Figure S29. <sup>13</sup>C NMR spectrum of 6c in CDCl<sub>3</sub>

### 





Figure S31. <sup>13</sup>C NMR spectrum of 6e in CDCl<sub>3</sub>



Figure S33. <sup>13</sup>C NMR spectrum of 6f in CDCl<sub>3</sub>



-1.26



Figure S35. <sup>13</sup>C NMR spectrum of 6g in CDCl<sub>3</sub>



Figure S37. <sup>1</sup>H NMR spectrum of 6h in CDCl<sub>3</sub>

#### 





Figure S39. <sup>13</sup>C NMR spectrum of 6i in CDCl<sub>3</sub>

 8
 13

 8
 13

 8
 13

 8
 13

 8
 13

 8
 13

 8
 13

 8
 13

 8
 13

 8
 13

 8
 13

 8
 13

 8
 13

 14
 14

 14
 14

 14
 14

 14
 14

 14
 14

 14
 14

 14
 14

 14
 14

 14
 14

 14
 14

 14
 14

 103
 10

 103
 10



Figure S41. <sup>13</sup>C NMR spectrum of 7a in CDCl<sub>3</sub>



Figure S43. <sup>13</sup>C NMR spectrum of 8a in CDCl<sub>3</sub>



Figure S45. <sup>13</sup>C NMR spectrum of 8b in CDCl<sub>3</sub>



Figure S47. <sup>13</sup>C NMR spectrum of 7c in CDCl<sub>3</sub>

# 844 844 844 877 8732 88 89 844 875 875 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 <tr





Figure S49. <sup>13</sup>C NMR spectrum of 8c in CDCl<sub>3</sub>

 8
 8
 13

 8
 8
 17
 15

 8
 10
 10
 10
 10

 8
 10
 10
 10
 10
 10

 8
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10





Figure S51. <sup>13</sup>C NMR spectrum of 7d in CDCl<sub>3</sub>

#### 



Figure S53. <sup>13</sup>C NMR spectrum of 8d in CDCl<sub>3</sub>

 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 18
 8
 18
 18
 8
 18
 18
 18
 18
 18
 18
 18
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 <td





Figure S55. <sup>13</sup>C NMR spectrum of 7e in CDCl<sub>3</sub>



Figure S57. <sup>13</sup>C NMR spectrum of 8e in CDCl<sub>3</sub>







Figure S59. <sup>13</sup>C NMR spectrum of 7f in CDCl<sub>3</sub>

4.54 4.51 4.51 4.51 4.50 4.49 4.49 4.49 4.47 1.60 1.49 1.47 1.46 1.46 1.46





ppm Figure S61. <sup>13</sup>C NMR spectrum of 8f in CDCl<sub>3</sub>

1.45 1.44 1.42 1.09 1.07





Figure S63. <sup>13</sup>C NMR spectrum of 7g in DMSO-*d*<sub>6</sub>



Figure S65. <sup>13</sup>C NMR spectrum of 8g in CDCl<sub>3</sub>



Figure S67. <sup>13</sup>C NMR spectrum of 7h in CDCl<sub>3</sub>



Figure S69. <sup>13</sup>C NMR spectrum of 8h in CDCl<sub>3</sub>



Figure S70. <sup>1</sup>H NMR spectrum of 9 and 10 in CDCl<sub>3</sub>



### 5. Crystal data and structure refinement parameters

Figure S71. X-ray structure of 5e, 6g-6i, 7h, 8h, 9 and 10 showing 50% probability ellipsoids. For clarity, hydrogen atoms are omitted.

| Identification code                            | 5e                                                         | 6g                                                          | 6h                                                                                            |
|------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Empirical formula                              | $C_{19}H_{17}NO_8$                                         | C <sub>33</sub> H <sub>23</sub> NO                          | C <sub>33</sub> H <sub>23</sub> NS                                                            |
| Formula weight                                 | 387.33                                                     | 449.52                                                      | 465.58                                                                                        |
| Temperature/K                                  | 172.99(10)                                                 | 172.99(10)                                                  | 172.97(10)                                                                                    |
| Crystal system                                 | triclinic                                                  | triclinic                                                   | triclinic                                                                                     |
| Space group                                    | <i>P</i> -1                                                | <i>P</i> -1                                                 | P-1                                                                                           |
| a/Å                                            | 8.3982(2)                                                  | 9.9189(5)                                                   | 9.4561(4)                                                                                     |
| b/Å                                            | 9.2747(2)                                                  | 10.1839(4)                                                  | 10.7759(5)                                                                                    |
| c/Å                                            | 12.2174(3)                                                 | 12.4921(5)                                                  | 12.6690(4)                                                                                    |
| α/°                                            | 97.153(2)                                                  | 77.403(4)                                                   | 74.816(3)                                                                                     |
| β/°                                            | 91.869(2)                                                  | 89.399(4)                                                   | 87.896(3)                                                                                     |
| γ/°                                            | 95.266(2)                                                  | 77.392(4)                                                   | 82.262(4)                                                                                     |
| Volume/Å <sup>3</sup>                          | 939.30(4)                                                  | 1200.88(9)                                                  | 1234.53(9)                                                                                    |
| Z                                              | 2                                                          | 2                                                           | 2                                                                                             |
| Density (calculated)<br>(g/cm <sup>3</sup> )   | 1.37                                                       | 1.243                                                       | 1.252                                                                                         |
| Absorption coefficient (mm <sup>-1</sup> )     | 0.921                                                      | 0.576                                                       | 1.316                                                                                         |
| F(000)                                         | 404                                                        | 472                                                         | 488                                                                                           |
| Radiation                                      | $CuK\alpha$ ( $\lambda = 1.54184$ )                        | $CuK\alpha$ ( $\lambda = 1.54184$ )                         | CuKα ( $λ = 1.54184$ )                                                                        |
| Crystal color,<br>morphology                   | Colorless, block                                           | Colorless, block                                            | Colorless, block                                                                              |
| $2\theta$ range ( )                            | 7.3 to 134.16                                              | 9.124 to 134.144                                            | 7.23 to 134.12                                                                                |
| Absorption<br>correction                       | Multi-scan                                                 | Multi-scan                                                  | Multi-scan                                                                                    |
| $T_{\min}, T_{\max}$                           | 0.097, 1.000                                               | 0.752, 1.000                                                | 0.777, 1.000                                                                                  |
| Index ranges                                   | $-10 \le h \le 10, -11 \le k$<br>$\le 8, -14 \le 1 \le 14$ | $-11 \le h \le 10, -12 \le k$<br>$\le 12, -14 \le 1 \le 14$ | $\begin{array}{c} -9 \leq h \leq 11,  -12 \leq k \leq \\ 12,  -15 \leq l \leq 14 \end{array}$ |
| Reflections collected                          | 7821                                                       | 10933                                                       | 11884                                                                                         |
| Independent reflections                        | 3295 [ $R_{int} = 0.0336$ ,<br>$R_{sigma} = 0.0306$ ]      | 4211 [ $R_{int} = 0.0346$ ,<br>$R_{sigma} = 0.0390$ ]       | 4347 [ $R_{int} = 0.0370$ ,<br>$R_{sigma} = 0.0392$ ]                                         |
| Goodness-of-fit on<br>F2                       | 1.097                                                      | 1.033                                                       | 1.064                                                                                         |
| Final R indexes<br>[I>=2σ (I)]                 | $R_1 = 0.0460, wR_2 = 0.1248$                              | $R_1 = 0.0382, wR_2 = 0.0942$                               | $R_1 = 0.0956, wR_2 = 0.2480$                                                                 |
| Final R indexes [all data]                     | $R_1 = 0.0544, wR_2 = 0.1504$                              | $R_1 = 0.0470, wR_2 = 0.1024$                               | $R_1 = 0.1069, wR_2 = 0.2612$                                                                 |
| Largest diff.<br>peak/hole / e Å <sup>-3</sup> | 0.29/-0.32                                                 | 0.14/-0.20                                                  | 0.73/-1.19                                                                                    |

Table S2. Crystal data and structure refinement for 5e, 6g and 6h.

| Identification code                            | 6i                                                         | 7h                                                        | 8h                                                   |
|------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|
| Empirical formula                              | $C_{34}H_{24}N_2$                                          | $C_{19}H_{19}NO_{6}$                                      | $C_{19}H_{19}NO_{6}$                                 |
| Formula weight                                 | 459.56                                                     | 357.35                                                    | 357.37                                               |
| Temperature/K                                  | 170.00(10)                                                 | 172.99(10)                                                | 172.99(10)                                           |
| Crystal system                                 | triclinic                                                  | triclinic                                                 | monoclinic                                           |
| Space group                                    | <i>P</i> -1                                                | <i>P</i> -1                                               | <i>P21/</i> c                                        |
| a/Å                                            | 9.4955(3)                                                  | 6.1349(3)                                                 | 8.0143(2)                                            |
| b/Å                                            | 10.7087(3)                                                 | 9.9549(6)                                                 | 16.4743(5)                                           |
| c/Å                                            | 12.7175(3)                                                 | 15.8859(9)                                                | 12.9122(3)                                           |
| α/°                                            | 75.731(2)                                                  | 75.901(5)                                                 | 90                                                   |
| β/°                                            | 87.433(3)                                                  | 82.885(5)                                                 | 93.475(2)                                            |
| γ/°                                            | 82.570(3)                                                  | 78.777(5)                                                 | 90                                                   |
| Volume/Å <sup>3</sup>                          | 1242.64(6)                                                 | 919.98(9)                                                 | 1701.66(8)                                           |
| Z                                              | 2                                                          | 2                                                         | 4                                                    |
| Density (calculated)<br>(g/cm <sup>3</sup> )   | 1.228                                                      | 1.29                                                      | 1.3948                                               |
| Absorption coefficient (mm <sup>-1</sup> )     | 0.537                                                      | 0.808                                                     | 0.874                                                |
| F(000)                                         | 484                                                        | 376                                                       | 754.7                                                |
| Radiation                                      | $CuK\alpha$ ( $\lambda = 1.54184$ )                        | $CuK\alpha$ ( $\lambda = 1.54184$ )                       | $CuK\alpha$ ( $\lambda = 1.54184$ )                  |
| Crystal color,<br>morphology                   | Colorless, block                                           | Colorless, block                                          | Colorless, block                                     |
| $2\theta$ range ( )                            | 8.584 to 134.156                                           | 5.754 to 134.152                                          | 8.72 to 134.14                                       |
| Absorption correction                          | Multi-scan                                                 | Multi-scan                                                | Multi-scan                                           |
| $T_{\min}, T_{\max}$                           | 0.763, 1.000                                               | 0.704, 1.000                                              | 0.712, 1.000                                         |
| Index ranges                                   | $-11 \le h \le 11, -12 \le k$<br>$\le 12, -15 \le l \le 8$ | $-7 \le h \le 6, -11 \le k \le$<br>11, -18 $\le 1 \le 18$ | $-9 \le h \le 10, -7 \le k \le 20, -16 \le 1 \le 15$ |
| Reflections collected                          | 11018                                                      | 8436                                                      | 10051                                                |
| Independent reflections                        | 4372 [ $R_{int} = 0.0233$ ,<br>$R_{sigma} = 0.0255$ ]      | 3233 [ $R_{int} = 0.0491$ ,<br>$R_{sigma} = 0.0484$ ]     | $3006 [R_{int} = 0.0388,$<br>$R_{sigma} = 0.0422]$   |
| Goodness-of-fit on<br>F2                       | 1.098                                                      | 1.169                                                     | 1.037                                                |
| Final R indexes<br>[I>=2σ (I)]                 | $R_1 = 0.0448, wR_2 = 0.1077$                              | $R_1 = 0.0600, wR_2 = 0.1418$                             | $R_1 = 0.0483, wR_2 = 0.1228$                        |
| Final R indexes [all<br>data]                  | $R_1 = 0.0501, wR_2 = 0.1140$                              | $R_1 = 0.0767, wR_2 = 0.1529$                             | $R_1 = 0.0624, wR_2 = 0.1354$                        |
| Largest diff.<br>peak/hole / e Å <sup>-3</sup> | 0.23/-0.23                                                 | 0.28/-0.27                                                | 0.40/-0.50                                           |

Table S3. Crystal data and structure refinement for 6i, 7g and 8h.

| Identification code                            | 9                                                                                             | 10                                                    | [Cp*Fe(NCPh)3] <sup>+</sup>                                                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Empirical formula                              | C <sub>29</sub> H <sub>25</sub> NO <sub>4</sub>                                               | C14.5H12.5N0.5O2                                      | C <sub>31</sub> H <sub>30</sub> F <sub>6</sub> FeN <sub>3</sub> P                              |
| Formula weight                                 | 451.50                                                                                        | 225.75                                                | 645.40                                                                                         |
| Temperature/K                                  | 170.00(10)                                                                                    | 172.99(10)                                            | 172.99(10)                                                                                     |
| Crystal system                                 | monoclinic                                                                                    | monoclinic                                            | monoclinic                                                                                     |
| Space group                                    | P21/n                                                                                         | I2/a                                                  | $P2_1/n$                                                                                       |
| a/Å                                            | 10.8616(4)                                                                                    | 9.4775(2)                                             | 15.8364(5)                                                                                     |
| b/Å                                            | 9.2071(4)                                                                                     | 10.9889(3)                                            | 10.9603(3)                                                                                     |
| c/Å                                            | 24.3258(9)                                                                                    | 22.4345(4)                                            | 18.9161(6)                                                                                     |
| α/°                                            | 90                                                                                            | 90                                                    | 90                                                                                             |
| β/°                                            | 101.336(4)                                                                                    | 92.282(2)                                             | 108.912(3)                                                                                     |
| γ/°                                            | 90                                                                                            | 90                                                    | 90                                                                                             |
| Volume/Å <sup>3</sup>                          | 2385.21(17)                                                                                   | 2334.64(9)                                            | 3106.06(17)                                                                                    |
| Z                                              | 4                                                                                             | 8                                                     | 4                                                                                              |
| Density (calculated)<br>(g/cm <sup>3</sup> )   | 1.257                                                                                         | 1.285                                                 | 1.380                                                                                          |
| Absorption<br>coefficient (mm <sup>-1</sup> )  | 0.673                                                                                         | 0.687                                                 | 4.919                                                                                          |
| F(000)                                         | 952.0                                                                                         | 952.0                                                 | 1328.0                                                                                         |
| Radiation                                      | $CuK\alpha$ ( $\lambda = 1.54184$ )                                                           | $CuK\alpha$ ( $\lambda = 1.54184$ )                   | CuKα ( $λ = 1.54184$ )                                                                         |
| Crystal color,<br>morphology                   | Colorless, block                                                                              | Colorless, block                                      | Colorless, block                                                                               |
| $2\theta$ range ( )                            | 7.412 to 155.814                                                                              | 8.962 to 134.086                                      | 6.35 to 134.158                                                                                |
| Absorption correction                          | Multi-scan                                                                                    | Multi-scan                                            | Multi-scan                                                                                     |
| $T_{\min}, T_{\max}$                           | 0.805, 1.000                                                                                  | 0.267, 1.000                                          | 0.249, 1.000                                                                                   |
| Index ranges                                   | $\begin{array}{c} -13 \leq h \leq 13,  -9 \leq k \leq \\ 11,  -30 \leq l \leq 27 \end{array}$ | $-9 \le h \le 11, -12 \le k \le 13, -24 \le 1 \le 26$ | $\begin{array}{l} -18 \leq h \leq 18,  -13 \leq k \\ \leq 10,  -22 \leq l \leq 22 \end{array}$ |
| Reflections collected                          | 13755                                                                                         | 7248                                                  | 18035                                                                                          |
| Independent<br>reflections                     | 4710 [ $R_{int} = 0.0446$ ,<br>$R_{sigma} = 0.0488$ ]                                         | 2054 [ $R_{int} = 0.0310$ ,<br>$R_{sigma} = 0.0296$ ] | 5473 [ $R_{int} = 0.0547$ ,<br>$R_{sigma} = 0.0518$ ]                                          |
| Goodness-of-fit on<br>F2                       | 1.051                                                                                         | 1.100                                                 | 1.046                                                                                          |
| Final R indexes<br>[I>=2 $\sigma$ (I)]         | $R_1 = 0.0803, wR_2 = 0.2242$                                                                 | $R_1 = 0.0377, wR_2 = 0.0932$                         | $R_1 = 0.0493, wR_2 = 0.1312$                                                                  |
| Final R indexes [all data]                     | $R_1 = 0.0994, wR_2 = 0.2485$                                                                 | $R_1 = 0.0456, wR_2 = 0.1040$                         | $R_1 = 0.0668, wR_2 = 0.1420$                                                                  |
| Largest diff.<br>peak/hole / e Å <sup>-3</sup> | 0.69/-0.35                                                                                    | 0.24/-0.24                                            | 0.68/-0.42                                                                                     |

Table S4. Crystal data and structure refinement for 9, 10 and  $[Cp*Fe(NCPh)_3]^+$ 

#### 6. References

- [1] M. Pang, C. Wu, X. Zhuang, F. Zhang, M. Su, Q. Tong, C.-H. Tung and W. Wang, Organometallics, 2018, 37, 1462.
- [2] (a) M. D. Walter and P. S. White, New J. Chem., 2011, 35, 1842; (b) F. Zhang, J. Jia,
- S. Dong, W. Wang and C.-H. Tung, Organometallics, 2016, 35, 1151.
- [3] C. Victorio, E. G-G. Sergio and G. José, J. Am. Chem. Soc., 2006, 128, 15094.
- [4] R. M. Acheson, A. R. Hands and M. J. Woolven, J. Am. Chem. Soc., 1963, 2082.
- [5] N. Abe, S. Kondo and K. Morita, Bull. Chem. Soc. Jpn., 1987, 60, 1201.
- [6] N. Abe, T. Nishiwaki and K. Ikeda, Bull. Chem. Soc. Jpn., 1982, 55, 2463.
- [7] H. Nehl, Chem. Ber., 1994, 127, 2535.
- [8] Y. K. Sim, H. Lee, J. W. Park, D. S. Kim and C. H. Jun, *Chem Commun.*, 2012, 48, 11787.
- [9] E. K. J. Lui, D. Hergesell and L. L. Schafer, Org. Lett., 2018, 20, 6663.
- [10] J. Tadeusz, Roczniki Chemii, 1960, 34, 899.
- [11] K. Ferré, L. Toupet and V. Guerchais, Organometallics, 2002, 21, 2578.
- [12] N. Agenet, O. Buisine, F. Slowinski, V. Gandon, C. Aubert and M. Malacria, *Organic Reactions*, 2007, **68**, 1.
- [13] S. P. Stanforth, B. Tarbit and M. D. Watson, Tetrahedron, 2004, 60, 8893.
- [14] J. N. Chatterjea, K. Prasad, *Journal of Scientific & Industrial Research*, 1955, 14B, 383.