Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

AIBN for Ru-catalyzed meta-CAr-H alkylation

Suling Yang^a, Bingxu Yan^a, Lei Zhong^a, Chunqi Jia^b, Dan Yao^a, Chunli Yang^a, Kai Sun^a and Gang Li^a*

^aCollege of Chemistry and Chemical Engineering, Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455002, PR China.

^bEngineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, PR China

Supporting Information

1. General information	S-1
2. Experimental section	S-2
2.1. Synthesis of arenes substrates	S-2
2.2. Typical experimental procedure of ruthenium-catalyzed meta-C-H	
bond alkylation of arenes with AIBN	S-2
2.3. Typical procedure of intermolecular competition experiments	S-2
3. References	S-3
4. Data and spectra of ¹ H NMR and ¹³ C NMR	S-3

1. General Information

All commercial reagents and solvents were used directly without additional purification. Column chromatography were performed on silica gel 200-300 mesh. ¹H NMR and ¹³C NMR spectra were registered on a Bruker AscendTM 400 spectrometer (Germany). Chemical shifts were reported in units (ppm) referenced to 0.0 ppm of TMS in the ¹H spectrum and 77.0 ppm of CDCl₃ in the ¹³C spectrum. All coupling constants were reported in Hertz (Hz). HRMS data were obtained on a Waters LCT PremierxeTM (USA), Single-crystal X-ray crystallography was carried out on a Bruker Smart Apex II diffractometer system.

2. Experimental Section

2.1. Synthesis of arenes substrates

The pyridine derivatives were prepared via Suzuki coupling of the corresponding arylboronic acids and 2-bromopyridine according to literature report.¹

The pyrimidine derivatives were prepared via Suzuki coupling of the corresponding arylboronic acids and 2-bromopyrimidine according to literature report.²

2.2. Typical experimental procedure of Ru(III)-catalyzed *meta*-C-H bond alkylation of arenes with AIBN

2-Phenylpyridine (0.2 mmol), AIBN (0.6 mmol, 3.0 equiv.), RuCl₃ (0.02 mmol, 10 mol %), dry DMF (0.5 mL) were charged into a pre-dried 30-mL pressure tube sealed with rubber plugs under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 12 h. The reaction was cooled down to room temperature, and saturated salt water (10 mL) was added. The resulting mixture was extracted with EtOAc (5 mL×5). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and the solvent was removed under reduced pressure to provide the crude product. The purification was performed by flash column chromatography (PE/EtOAc as eluent) on silica gel.

2.3. Typical experimental procedure of intermolecular competition experiments

2-(4-Methoxyphenyl)pyridine (0.2 mmol), 2-(4-fluorophenyl)pyridine (0.2 mmol), AIBN (0.2 mmol), RuCl₃ (0.02 mmol, 10 mol %), dry DMF (0.5 mL) were charged into a pre-dried 30-mL pressure tube sealed with rubber plugs under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 12 h. The reaction was cooled down to room temperature, and saturated salt water (10 mL) was added. The resulting mixture was extracted with EtOAc (5 mL \times 5). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and the solvent was removed under reduced pressure to provide the crude product. The purification was performed by flash column chromatography (PE/EtOAc as eluent) on silica gel.

2-Phenylpyridine (0.2 mmol), AIBN (0.2 mmol, 1.0 equiv.), 2,2'-azobis-(2,4dimethylvaleronitrile) (0.2 mmol, 1.0 equiv.), RuCl₃ (0.02 mmol, 10 mol %), dry DMF (0.5 mL) were charged into a pre-dried 30-mL pressure tube sealed with rubber plugs under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 12 h. The reaction was cooled down to room temperature, and saturated salt water (10 mL) was added. The resulting mixture was extracted with EtOAc (5 mL×5). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and the solvent was removed under reduced pressure to provide the crude product. The purification was performed by flash column chromatography (PE/EtOAc as eluent) on silica gel.

3. References

1. C. Liu, N. Han, X. X. Song, J. S. Qiu, Eur. J. Org. Chem. 2010, 29, 5548-5551.

2. M. A. Ali, X. Y. Yao, G. G. Li, H. J. Lu, Org. Lett. 2016, 186, 1386-1389

4. Data and Spectra of ¹H NMR and ¹³C NMR

2-methyl-2-(3-(pyridin-2-yl)phenyl)propanenitrile (**3a**, colorless oil, PE/EtOAc = 3:1 as eluent, 32.3 mg, 73% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 4.8 Hz, 1H), 8.13 (t, *J* = 1.6 Hz, 1H), 7.91 (d, *J* = 7.6 Hz, 1H), 7.81–7.67 (m, 2H), 7.59–7.45 (m, 2H), 7.28–7.24 (m, 1H), 1.79 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.78, 149.74, 142.03, 140.18, 136.91, 129.35, 126.38, 125.77, 124.55, 123.65, 122.49, 120.78, 37.34, 29.18. HRMS (ESI) Calcd. For C₁₅H₁₅N₂: [M+H]⁺, 223.1230, Found: m/z 223.1234.

2-methyl-2-(2-methyl-5-(pyridin-2-yl)phenyl)propanenitrile (**3b**, colorless oil, PE/EtOAc = 3:1 as eluent, 26.9 mg, 57% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 4.7 Hz, 1H), 8.04 (s, 1H), 7.78 (m, 2H), 7.71 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 7.9 Hz, 1H), 7.27–7.22 (m, 1H), 2.72 (s, 3H), 1.89 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.94, 149.69, 138.56, 137.66, 137.24, 136.83, 133.15, 126.20, 124.52, 123.56, 122.18, 120.42, 35.10, 28.24, 20.98. HRMS (ESI) Calcd. For C₁₆H₁₇N₂:

[M+H]⁺, 237.1386, Found: m/z 237.1388.

2-methyl-2-(4-(pyridin-2-yl)-[1,1'-biphenyl]-2-yl)propanenitrile (**3c**, colorless oil, PE/EtOAc = 3:1 as eluent, 31 mg, 52% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, J = 4.2 Hz, 1H), 8.29 (s, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 6.4 Hz, 2H), 7.48–7.36 (m, 6H), 7.32 (d, J = 6.3 Hz, 1H), 1.71 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.67, 149.76, 141.18, 138.33, 137.07, 133.38, 130.04, 128.71, 127.83 (d), 126.67, 125.64, 125.18, 122.56, 120.84, 115.75, 37.22, 29.98. HRMS (ESI) Calcd. For C₂₁H₁₉N₂: [M+H]⁺, 299.1543, Found: m/z 299.1544.

2-(2-chloro-5-(pyridin-2-yl)phenyl)-2-methylpropanenitrile (**3d**, colorless oil, PE/EtOAc = 3:1 as eluent, 23.6 mg, 46% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 4.1 Hz, 1H), 8.21 (d, *J* = 2.1 Hz, 1H), 7.87 (m, 1H), 7.79 (m, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.55 (d, *J* = 8.3 Hz, 1H), 7.32–7.28 (m, 1H), 1.96 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.71, 149.86, 138.45, 137.41, 136.93, 134.02, 132.18, 127.47, 125.77, 123.22, 122.65, 120.40, 36.73, 27.27. HRMS (ESI) Calcd. For C₁₅H₁₄ClN₂: [M+H]⁺, 257.0840, Found: m/z 257.0843.

2-(2-bromo-5-(pyridin-2-yl)phenyl)-2-methylpropanenitrile (**3e**, colorless oil, PE/EtOAc = 3:1 as eluent, 28.2 mg, 47% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 4.8 Hz, 1H), 8.20 (s, 1H), 7.86–7.68 (m, 4H), 7.37–7.28 (m, 1H), 1.98 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.72, 149.87, 139.16, 138.67, 137.04, 135.91, 127.64, 125.93, 123.38 (d), 122.78, 120.47, 37.47, 27.56. HRMS (ESI) Calcd. For C₁₅H₁₄BrN₂: [M+H]⁺, 301.0335, Found: m/z 301.0330.

2-(2-fluoro-5-(pyridin-2-yl)phenyl)-2-methylpropanenitrile (**3f**, colorless oil, PE/EtOAc = 3:1 as eluent, 20.6 mg, 43% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 4.8 Hz, 1H), 8.16 (m, 1H), 7.95 (m, 1H), 7.78 (m, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.28–7.18 (m, 2H), 1.88 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.18, 160.15, 155.92, 149.77, 136.93, 136.13, 128.43 (d), 125.96 (d), 123.51, 122.37, 120.38, 117.24, 117.01, 35.14, 27.22(d). HRMS (ESI) Calcd. For C₁₅H₁₄FN₂: [M+H]⁺, 241.1136, Found: m/z 241.1132.

2-(2-methoxy-5-(pyridin-2-yl)phenyl)-2-methylpropanenitrile (**3g**, colorless oil, PE/EtOAc = 3:1 as eluent, 34.3 mg, 68% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.70–8.61 (m, 1H), 8.05 (d, *J* = 2.2 Hz, 1H), 7.92 (m, 1H), 7.71 (m, 2H), 7.19 (m, 1H), 7.04 (d, *J* = 8.6 Hz, 1H), 3.98 (s, 3H), 1.84 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 158.09,

156.74, 149.61, 136.78, 132.10, 129.02, 127.82, 124.74(d), 121.71, 119.97, 112.08, 55.73, 34.46, 27.03. HRMS (ESI) Calcd. For C₁₆H₁₇N₂O: [M+H]⁺, 253.1335, Found: m/z 253.1331.

2-methyl-2-(3-(4-methylpyridin-2-yl)phenyl)propanenitrile (**3h**, colorless oil, PE/EtOAc = 3:1 as eluent, 30.2 mg, 64% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 5.0 Hz, 1H), 8.10 (t, *J* = 1.6 Hz, 1H), 7.90 (m, 1H), 7.65–7.43 (m, 3H), 7.10 (d, *J* = 4.9 Hz, 1H), 2.44 (s, 3H), 1.81 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.73, 149.51, 147.99, 141.92, 140.35, 129.30, 126.44, 125.63, 124.62, 123.59 (d), 121.76, 37.35, 29.21, 21.27. HRMS (ESI) Calcd. For C₁₆H₁₇N₂: [M+H]⁺, 237.1386, Found: m/z 237.1383.

2-methyl-2-(3-(5-methylpyridin-2-yl)phenyl)propanenitrile (**3i**, colorless oil, PE/EtOAc = 3:1 as eluent, 33.5 mg, 71% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.10 (d, *J* = 1.6 Hz, 1H), 7.88 (m, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.58 (m, 1H), 7.51 (m, 2H), 2.38 (s, 3H), 1.80 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 154.12, 150.17, 141.94, 140.20, 137.44, 132.08, 129.31, 126.16, 125.42, 124.62, 123.39, 120.27, 37.35, 29.20, 18.22. HRMS (ESI) Calcd. For C₁₆H₁₇N₂: [M+H]⁺, 237.1386, Found: m/z 237.1384.

2-(3-(1H-pyrazol-1-yl)phenyl)-2-methylpropanenitrile (3j, colorless oil, PE/EtOAc = 3:1 as eluent, 19.4 mg, 46% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 2.4 Hz, 1H), 7.86 (s, 1H), 7.76 (d, *J* = 1.3 Hz, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.48 (m, 2H), 6.51 (t, *J* = 2.0 Hz, 1H), 1.80 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.17, 141.40, 140.78, 130.07, 126.93, 124.25, 123.31, 118.43, 116.16, 107.98, 37.30, 29.10. HRMS (ESI) Calcd. For C₁₃H₁₄N₃: [M+H]⁺, 212.1182, Found: m/z 212.1185.

2-methyl-2-(3-(pyrimidin-2-yl)phenyl)propanenitrile (**3k**, colorless oil, PE/EtOAc = 3:1 as eluent, 30.3 mg, 68% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 4.8 Hz, 2H), 8.58 (s, 1H), 8.41 (d, *J* = 7.8 Hz, 1H), 7.66 (m, 1H), 7.54 (t, *J* = 7.8 Hz, 1H), 7.23 (t, *J* = 4.8 Hz, 1H), 1.82 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 164.10, 157.31, 141.92, 138.33, 129.27, 127.69 (d), 124.58 (d), 119.43, 37.30, 29.19. HRMS (ESI) Calcd. For C₁₄H₁₄N₃: [M+H]⁺, 224.1182, Found: m/z 224.1187.

2-methyl-2-(2-methyl-5-(pyrimidin-2-yl)phenyl)propanenitrile (**31**, colorless oil, PE/EtOAc = 3:1 as eluent, 26.1 mg, 55% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, *J* = 4.8 Hz, 2H), 8.46 (d, *J* = 1.4 Hz, 1H), 8.31 (m, 1H), 7.37 (d, *J* = 8.0 Hz, 1H),

7.21 (t, J = 4.8 Hz, 1H), 2.74 (s, 3H), 1.90 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 164.53, 157.24, 139.36, 138.42, 135.86, 133.13, 127.61, 124.54 (d), 119.10, 34.98, 28.31, 21.15. HRMS (ESI) Calcd. For C₁₅H₁₆N₃: [M+H]⁺, 238.1339, Found: m/z 238.1336.

2-methyl-2-(3-(pyrimidin-2-yl)naphthalen-1-yl)propanenitrile (**3m**, white solid, PE/EtOAc = 3:1 as eluent, 30.6 mg, 56% yield): ¹H NMR (400 MHz, CDCl₃) δ 9.00 (s, 1H), 8.88 (d, *J* = 4.8 Hz, 2H), 8.62 (m, 2H), 8.09 (d, *J* = 8.0 Hz, 1H), 7.71 (t, *J* = 7.3 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 5.4 Hz, 1H), 2.09 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 164.17, 157.37, 136.26, 134.65, 133.89, 131.40, 130.94, 129.91, 127.70, 126.27, 125.07, 124.57, 122.07, 119.38, 34.70, 28.91. HRMS (ESI) Calcd. For C₁₈H₁₆N₃: [M+H]⁺, 274.1339, Found: m/z 274.1332.

2-methyl-2-(3-(pyridin-2-yl)naphthalen-1-yl)propanenitrile (**3n**, colorless oil, PE/EtOAc = 3:1 as eluent, 28.3 mg, 52% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.7 Hz, 1H), 8.59 (d, *J* = 8.6 Hz, 1H), 8.41 (s, 1H), 8.29 (d, *J* = 1.4 Hz, 1H), 8.03 (d, *J* = 8.1 Hz, 1H), 7.90 (d, *J* = 7.9 Hz, 1H), 7.82 (m, 1H), 7.67 (m, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.36–7.26 (m, 1H), 2.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.80, 149.82, 136.94, 136.46, 135.83, 134.80, 130.30, 127.57, 127.00, 126.25, 125.03, 124.56, 122.44, 121.94, 120.83, 34.81, 28.86. HRMS (ESI) Calcd. For C₁₉H₁₇N₂: [M+H]⁺, 273.1386, Found: m/z 273.1381.

2-(benzo[h]quinolin-7-yl)-2-methylpropanenitrile (**3o**, colorless oil, PE/EtOAc = 3:1 as eluent, 31 mg, 63% yield): ¹H NMR (400 MHz, CDCl₃) δ 9.54–9.43 (m, 1H), 9.04 (m, 1H), 8.60 (d, *J* = 9.4 Hz, 1H), 8.24 (m, 1H), 7.87 (d, *J* = 9.4 Hz, 1H), 7.79–7.70 (m, 2H), 7.58 (m, 1H), 2.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 149.20, 146.73, 135.79 (d), 133.12, 130.59, 126.36, 125.77, 125.51 (d), 125.11, 124.78, 123.60, 122.30, 34.65, 29.15. HRMS (ESI) Calcd. For C₁₇H₁₅N₂: [M+H]⁺, 247.1230, Found: m/z 247.1233.

2-methyl-2-(3-(pyridin-2-yl)phenyl)butanenitrile (**3p**, colorless oil, PE/EtOAc = 3:1 as eluent, 31.2 mg, 66% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.71 (m, 1H), 8.14–8.06 (m, 1H), 7.98–7.88 (m, 1H), 7.81–7.72 (m, 2H), 7.56–7.45 (m, 2H), 7.31–7.21 (m, 1H), 2.04 (q, *J* = 7.4 Hz, 2H), 1.78 (s, 3H), 1.00 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.82, 149.76, 140.73, 140.14, 136.87, 129.26, 126.26 (d), 124.05, 123.39, 122.46, 120.75, 43.40, 35.27, 27.31, 9.95. HRMS (ESI) Calcd.

For C₁₆H₁₇N₂: [M+H]⁺, 237.1386, Found: m/z 237.1382.

2,4-dimethyl-2-(3-(pyridin-2-yl)phenyl)pentanenitrile (**3q**, colorless oil, PE/EtOAc = 3:1 as eluent, 32.8 mg, 62% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, *J* = 4.8 Hz, 1H), 8.11 (s, 1H), 7.93 (d, *J* = 7.3 Hz, 1H), 7.78 (m, 2H), 7.61–7.46 (m, 2H), 7.30–7.25 (m, 1H), 1.95 (m, 2H), 1.79 (d, *J* = 8.4 Hz, 3H), 1.76–1.68 (m, 1H), 1.02 (d, *J* = 6.6 Hz, 3H), 0.80 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.85, 149.78, 141.16, 140.10, 136.86, 129.25, 126.19 (d), 123.98 (d), 122.44, 120.74, 50.36, 41.80, 29.32, 25.91, 23.77, 23.48. HRMS (ESI) Calcd. For C₁₈H₂₁N₂: [M+H]⁺, 265.1699, Found: m/z 265.1692.

1-(3-(pyridin-2-yl)phenyl)cyclohexanecarbonitrile (**3r**, colorless oil, PE/EtOAc = 3:1 as eluent, 29.3 mg, 56% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 4.5 Hz, 1H), 8.15 (d, *J* = 1.6 Hz, 1H), 7.91 (d, *J* = 7.6 Hz, 1H), 7.82–7.71 (m, 2H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 1H), 7.26 (m, 1H), 1.93–1.84 (m, 8H), 1.32 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.91, 149.74, 142.07, 140.10, 136.88, 129.30, 126.35 (d), 124.15, 122.73, 122.43, 120.77, 44.52, 37.36, 24.96, 23.62. HRMS (ESI) Calcd. For C₁₈H₁₉N₂: [M+H]⁺, 263.1543, Found: m/z 263.1541.

methyl 2-methyl-2-(3-(pyridin-2-yl)phenyl)propanoate (3s, white solid, PE/EtOAc = 3:1 as eluent, 33.2 mg, 65% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.78–8.65 (m, 1H), 8.00 (d, *J* = 1.5 Hz, 1H), 7.90–7.82 (m, 1H), 7.74 (m, 2H), 7.41 (m, 2H), 7.23 (m, 1H), 3.67 (s, 3H), 1.66 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 177.25, 157.49, 149.66, 145.18, 139.60, 136.73, 128.79, 126.46, 125.41, 124.24, 122.15, 120.76, 52.25, 46.66, 26.60. HRMS (ESI) Calcd. For C₁₆H₁₈NO₂: [M+H]⁺, 256.1332, Found: m/z 256.1328.

-1.66

28.73
 28.73
 28.73
 28.73
 28.73
 28.73
 28.74
 28.75
 28.75
 28.75
 29.75
 29.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75
 20.75

H/D

-1.82

