Electronic Supplementary Information

Synthesis of [60]fullerene-fused dihydrobenzooxazepines *via* the palladium-catalyzed oxime-directed C–H bond activation and subsequent electrochemical functionalization

Chen Wang,^a Zhan Liu,^a Zheng-Chun Yin^a and Guan-Wu Wang^{*a,b}

 ^aCAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China E-mail: gwang@ustc.edu.cn; Fax: +86 0551 63607864; Tel: +86 0551 63607864
^bState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

Table of Contents

1.	General information	S2
2.	General procedure for the reaction of C60 and oximes 1a–p	S2
3.	Synthesis and spectral data of compounds 2a-p and 3a-c	S2–S12
4.	Kinetic isotope effect study for the formation of 2d	S13
5.	NMR spectra of compounds 2a-p and 3a-c	S14–S44
6.	¹ H NMR spectrum of compounds 2d and 2d-d ₄	S44
7.	UV-Vis spectra of compounds 2a–p and 3a–c	S45–S48
8.	CV and DPV of compounds 2a–p and 3a–c	S48–S61

1. General information

NMR spectra were recorded on a 400 or 500 MHz NMR spectrometer. ¹H NMR chemical shifts were determined relative to TMS or residual CDCl₂CDCl₂ (δ 5.92 ppm). ¹³C NMR chemical shifts were determined relative to TMS or residual CDCl₂CDCl₂ (δ 5.92 ppm). ¹³C NMR chemical shifts were determined relative to TMS or residual CDCl₂CDCl₂ (δ 72.86 ppm) or residual DMSO (δ 39.52 ppm). Data for ¹H NMR and ¹³C NMR are reported as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet). High-resolution mass spectra (HRMS) were measured with MALDI-TOF in a negative mode.

2. General procedure for the reaction of C₆₀ and oximes 1a-p

A dry 25-mL tube equipped with a magnetic stirrer was charged with C_{60} (36.0 mg, 0.05 mmol), **1** (0.10 or 0.15 mmol), Pd(TFA)₂ (0.005 mmol or 0.01 mmol), Na₂S₂O₈ (0.10 mmol) or K₂S₂O₈ (0.10 mmol). After dissolving the solids in anhydrous *ortho*-dichlorobenzene (ODCB) (5 mL) by sonication, trifluoroacetic acid (TFA) (0.25 mL or 0.5 mL) was added in the reaction system. Then, the tube was stirred in an oil bath at the pre-determined reaction temperature for the desired time. The reaction mixture was filtered through a silica gel plug to remove insoluble material. After the solvent had been evaporated in *vacuo*, the residue was separated on a silica gel column with carbon disulfide (CS₂) as the eluent to recover unreacted C₆₀, and then the eluent was switched to CS₂/ dichloromethane (DCM) to give product **2**.

3. Synthesis and spectral data of compounds 2a-p and 3a-c

By following the general procedure, a mixture of C₆₀ (36.0 mg, 0.05 mmol), **1a** (20.2 mg, 0.10 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.1 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 13 h afforded recovered C₆₀ (18.4 mg, 51%) and **2a** (14.0 mg, 31%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₂CDCl₂/CS₂) δ 8.04 (d, J = 7.4 Hz, 1H), δ 7.82 (d, J = 7.2 Hz, 2H), δ 7.62 (t, J = 7.4 Hz, 1H), δ 7.54 (t, J = 7.3 Hz, 2H), δ 7.62 (t, J = 7.4 Hz, 1H), δ 7.54 (t, J = 7.3 Hz, 2H), δ 7.24 (t, J = 7.4 Hz, 1H), δ 7.15 (t, J = 7.3 Hz, 1H), δ 6.46 (d, J = 8.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₂CDCl₂/CS₂) δ 168.88 (*C*=N), 151.32, 146.76, 146.62, 146.25, 145.35, 145.34, 145.15, 145.07, 144.84, 144.72, 144.27, 144.20, 144.15, 144.02, 143.95, 143.43, 143.38, 141.89, 141.71, 141.68, 141.63, 141.15, 141.08, 140.96, 140.78, 140.61, 139.98, 139.87, 136.92, 135.63, 135.19, 134.03, 130.85, 129.46, 128.18, 128.10, 127.26, 125.04, 123.45, 116.30, 86.09 (sp³-C of C₆₀), 70.84 (sp³-C of C₆₀); FT-IR v/cm⁻¹ (KBr) 1656, 1592, 1514, 1479, 1341, 1316, 1259, 1185, 797, 746, 708, 696, 644, 575, 526; UV-Vis (CHCl₃) λ_{max} /nm (log ε) 257 (5.20), 314 (4.75), 428 (4.52), 687 (3.58); MALDI-TOF MS *m*/*z* calcd for C₇₃H₉NO [M]⁻ 915.0690, found 915.0687.

By following the general procedure, a mixture of C₆₀ (36.1 mg, 0.05 mmol), **1b** (33.8 mg, 0.15 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.2 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 110 °C for 15 h afforded recovered C₆₀ (21.4 mg, 59%) and **2b** (8.0 mg, 17%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₂CDCl₂/CS₂) δ 7.82 (s, 1H), 7.70 (d, *J* = 7.9 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 1H), 6.38 (d, *J* = 8.4 Hz, 1H), 2.47 (s, 3H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₂CDCl₂/CS₂) δ 168.74 (*C*=N), 151.45, 146.74, 146.70, 146.24, 145.33, 145.31, 145.12, 145.03, 144.82, 144.73, 144.58, 144.18, 144.12, 144.04, 144.00, 143.42, 143.39, 141.87, 141.68, 141.66, 141.63, 141.31, 141.16, 141.06, 140.95, 140.78, 140.64, 139.94, 137.66, 136.89, 135.55, 134.00, 133.16, 132.40, 129.34, 128.85, 128.70, 127.40, 125.26, 116.16, 86.19 (sp³-*C* of C₆₀), 70.84 (sp³-*C* of C₆₀), 20.84, 20.04; FT-IR v/cm⁻¹ (KBr) 1652, 1608, 1514, 1492, 1428, 1335, 1269, 1177, 1133, 1089, 827, 807, 766, 572, 526; UV-Vis (CHCl₃) λ_{max}/nm (log ε) 257 (5.20), 314 (4.76), 428 (4.59), 687 (3.75); MALDI-TOF MS *m*/*z* calcd for C₇₅H₁₃NO [M]⁻ 943.1003, found 943.1008.

By following the general procedure, a mixture of C₆₀ (36.1 mg, 0.05 mmol), **1c** (52.6 mg, 0.15 mmol), Pd(TFA)₂ (3.4 mg, 0.01 mmol), Na₂S₂O₈ (24.0 mg, 0.10 mmol) and TFA (0.5 mL) in ODCB (5 mL) at 100 °C for 13 h afforded recovered C₆₀ (18.0 mg, 50%) and **2c** (10.5 mg, 20%), amorphous brown solid; ¹H NMR (500 MHz, CDCl₂CDCl₂) δ 8.14 (d, J = 2.0 Hz, 1H), 7.70 (s, 4H), 7.35 (dd, J = 8.9, 2.0 Hz, 1H), 6.39 (d, J = 8.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₂CDCl₂) δ 167.87 (*C*=N), 150.42, 146.79, 146.26, 146.22, 145.35, 145.14, 145.06, 144.86, 144.62, 144.23, 144.20, 144.04, 143.61, 143.48, 143.38, 143.30, 141.86, 141.70, 141.67, 141.56, 141.07, 140.97, 140.96, 140.74, 140.49, 140.03, 138.76, 136.99, 135.63, 134.14, 133.44, 131.84, 131.60, 131.21, 128.95, 128.00, 125.83, 117.48, 116.00, 86.38 (sp³-C of C₆₀), 70.20 (sp³-C of C₆₀); FT-IR v/cm⁻¹ (KBr) 1661, 1586, 1514, 1477, 1389, 1333, 1311, 1279, 1248, 1130, 1068, 1011, 937, 840, 808, 785, 750, 575, 504, 527; UV-Vis (CHCl₃)

 λ_{max} /nm (log ε) 255 (5.15), 315 (4.73), 428 (4.19), 686 (3.17); MALDI-TOF MS *m*/*z* calcd for C₇₃H₇⁷⁹Br₂NO [M]⁻ 1070.8900, found 1070.8903.

By following the general procedure, a mixture of C₆₀ (36.2 mg, 0.05 mmol), **1d** (25.5 mg, 0.10 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (23.9 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 7 h afforded recovered C₆₀ (15.4 mg, 43%) and **2d** (12.2 mg, 25%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₂CDCl₂) δ 8.20 (d, *J* = 8.1 Hz, 2H), 8.08 (d, *J* = 7.4 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 2H), 7.27 (dd, *J* = 8.3, 7.4 Hz, 1H), 7.17 (t, *J* = 8.3 Hz, 1H), 6.40 (d, *J* = 8.3 Hz, 1H), 3.94 (s, 3H); ¹³C NMR (101 MHz, CDCl₂CDCl₂) δ 168.07 (*C*=N), 165.29 (*C*=O), 151.36, 146.86, 146.58, 146.32, 145.42, 145.22, 145.16, 144.93, 144.78, 144.29, 144.23, 144.09, 143.98, 143.97, 143.51, 143.41, 141.95, 141.78, 141.73, 141.68, 141.16, 141.03, 140.82, 140.62, 140.07, 139.32, 139.29, 136.97, 135.89, 134.08, 131.80, 129.92, 129.50, 128.31, 127.29, 125.34, 123.99, 116.21, 86.25 (sp³-*C* of C₆₀), 70.82 (sp³-*C* of C₆₀), 51.81; FT-IR v/cm⁻¹ (KBr) 1725, 1655, 1514, 1480, 1430, 1343, 1278, 1190, 1143, 1105, 1005, 950, 866, 791, 774, 743, 630, 577, 527; UV-Vis (CHCl₃) λ_{max}/nm (log ε) 254 (5.03), 315 (4.58), 428 (4.35), 682 (3.29); MALDI-TOF MS *m*/z calcd for C₇₅H₁₁NO₃ [M]⁻ 973.0744, found 973.0738.

By following the general procedure, a mixture of C₆₀ (36.1 mg, 0.05 mmol), **1e** (27.3 mg, 0.10 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.4 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 10 h afforded recovered C₆₀ (16.8 mg, 47%) and **2e** (15.4 mg, 31%), amorphous brown solid; ¹H NMR (500 MHz, CDCl₂CDCl₂) δ 8.19 (d, J = 8.1 Hz, 2H), 7.88 (d, J = 8.1 Hz, 2H), 7.85 (s, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.26 (d, J = 8.5 Hz, 1H), 3.94 (s, 3H), 2.37 (s, 3H); ¹³C NMR (126 MHz, CDCl₂CDCl₂) δ 167.74 (*C*=N), 165.24 (*C*=O), 151.42, 146.78, 146.56, 146.24, 145.34, 145.14, 145.07, 144.84, 144.72, 144.21, 144.13, 144.10, 144.01, 143.97, 143.45, 143.35, 141.87, 141.69, 141.65, 141.61, 141.10, 141.08, 140.95, 140.75, 140.56, 139.99, 139.42, 136.86, 136.80, 135.78, 134.00, 133.97, 131.58, 129.88, 129.37, 129.04, 127.15, 125.46, 115.90, 86.29 (sp³-*C* of C₆₀), 70.74 (sp³-*C* of C₆₀), 51.70, 20.01; FT-IR v/cm⁻¹ (KBr) 1725, 1655, 1517, 1493, 1430, 1342, 1269, 1102, 1016, 871, 805, 791, 771, 728, 709, 571, 526; UV-Vis (CHCl₃) λ_{max} /nm (log ε) 254 (5.03), 314 (4.58), 427 (4.36), 682 (3.26); MALDI-TOF MS *m*/z calcd for C₇₆H₁₃NO₃

By following the general procedure, a mixture of C₆₀ (36.3 mg, 0.05 mmol), **1f** (31.5 mg, 0.10 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.0 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 11 h afforded recovered C₆₀ (14.1 mg, 39%) and **2f** (15.0 mg, 29%), amorphous brown solid; ¹H NMR (500 MHz, CDCl₂CDCl₂) δ 8.20 (d, *J* = 8.3 Hz, 2H), 8.0 (d, *J* = 2.1 Hz, 1H), 7.89 (d, *J* = 8.3 Hz, 2H), 7.18 (dd, *J* = 8.8, 2.1 Hz, 1H), 6.29 (d, *J* = 8.8 Hz, 1H), 3.94 (s, 3H), 1.30 (s, 9H); ¹³C NMR (126 MHz, CDCl₂CDCl₂) δ 167.76 (*C*=N), 165.31 (*C*=O), 151.58, 147.48, 146.78, 146.61, 146.23, 145.34, 145.13, 145.07, 144.85, 144.74, 144.22, 144.12, 144.01, 143.97, 143.45, 143.36, 141.89, 141.70, 141.65, 141.62, 141.10, 141.09, 140.95, 140.75, 140.56, 140.07, 139.56, 136.82, 136.62, 135.85, 134.00, 131.52, 129.40, 127.11, 125.66, 121.60, 115.62, 86.39 (sp³-*C* of C₆₀), 70.98 (sp³-*C* of C₆₀), 51.71, 33.69, 30.41; FT-IR v/cm⁻¹ (KBr) 2957, 1731, 1655, 1492, 1432, 1364, 1341, 1274, 1188, 1102, 1020, 791, 774, 705, 574, 527; UV-Vis (CHCl₃) λ_{max} /nm (log ε) 254 (5.11), 314 (4.66), 427 (4.45), 681 (3.24); MALDI-TOF MS *m*/*z* calcd for C₇₉H₁₉NO₃ [M]⁻ 1029.1370, found 1029.1362.

By following the general procedure, a mixture of C₆₀ (35.9 mg, 0.05 mmol), **1g** (43.5 mg, 0.15 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.0 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 13 h afforded recovered C₆₀ (21.5 mg, 60%) and **2g** (15.4 mg, 31%), amorphous brown solid; ¹H NMR (500 MHz, CDCl₂CDCl₂) δ 8.19 (d, J = 8.3 Hz, 2H), 7.88 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 2.7 Hz, 1H), 6.71 (dd, J = 9.1, 2.7 Hz, 1H), 6.31 (d, J = 9.1 Hz, 1H), 3.94 (s, 3H), 3.79 (s, 3H); ¹³C NMR (126 MHz, CDCl₂CDCl₂) δ 167.36 (*C*=N), 165.26 (*C*=O), 155.99, 151.13, 146.78, 146.52, 146.24, 145.36, 145.33, 145.13, 145.08, 144.84, 144.68, 144.20, 144.17, 144.14, 144.02, 143.84, 143.42, 143.35, 141.87, 141.69, 141.64, 141.60, 141.06, 141.05, 140.93, 140.75, 140.55, 139.99, 139.40, 136.83, 135.75, 134.04, 132.24, 131.51, 131.25, 129.39, 127.16, 116.96, 113.67, 110.58, 86.31 (sp³-*C* of C₆₀), 55.03, 51.74; FT-IR v/cm⁻¹ (KBr) 1722, 1655, 1513, 1492, 1428, 1351, 1271, 1185, 1105, 1018, 866, 801, 789, 773, 726, 709, 597, 574, 526; UV-Vis (CHCl₃) λ_{max}/nm (log ε) 255 (5.12), 315 (4.69), 428 (4.11), 685 (3.07); MALDI-TOF

MS *m*/*z* calcd for C₇₆H₁₃NO₄ [M]⁻ 1003.0850, found 1003.0857.

By following the general procedure, a mixture of C₆₀ (36.2 mg, 0.05 mmol), **1h** (27.5 mg, 0.10 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.3 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 13 h afforded recovered C₆₀ (17.5 mg, 48%) and **2h** (14.4 mg, 29%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₂CDCl₂) δ 8.20 (d, *J* = 7.5 Hz, 2H), 7.97–7.88 (m, 3H), 7.09 (d, *J* = 7.4 Hz, 1H), 6.21 (s, 1H), 3.94 (s, 3H), 2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₂CDCl₂) δ 167.96 (*C*=N), 165.21 (*C*=O), 151.44, 146.76, 146.48, 146.21, 145.32, 145.30, 145.11, 145.04, 144.82, 144.70, 144.19, 144.09, 144.02, 143.97, 143.88, 143.43, 143.30, 141.84, 141.67, 141.63, 141.57, 141.11, 141.05, 140.93, 140.71, 140.52, 139.95, 139.35, 139.31, 138.50, 136.81, 135.82, 133.88, 131.54, 129.28, 127.21, 124.79, 116.77, 86.46 (sp³-C of C₆₀), 70.51 (sp³-C of C₆₀), 51.71, 21.00; FT-IR v/cm⁻¹ (KBr) 1729, 1651, 1498, 1436, 1346, 1275, 1182, 1103, 1019, 866, 789, 771, 724, 712, 596, 574, 527; UV-Vis (CHCl₃) λ_{max}/nm (log ε) 256 (5.15), 315 (4.69), 428 (4.47), 688 (3.54); MALDI-TOF MS *m/z* calcd for C₇₆H₁₃NO₃ [M]⁻ 987.0901, found 987.0902.

By following the general procedure, a mixture of C₆₀ (36.2 mg, 0.05 mmol), **1i** (26.9 mg, 0.10 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.4 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 13 h afforded recovered C₆₀ (20.3 mg, 56%) and **2i** (9.0 mg, 18%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₂CDCl₂) δ 8.01 (d, J = 8.2 Hz, 2H), 7.97–7.92 (m, 3H), 7.34 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 7.5 Hz, 1H), 3.86 (s, 3H), 2.04 (s, 3H); ¹³C NMR (101 MHz, CDCl₂CDCl₂) δ 170.81 (*C*=N), 165.06 (*C*=O), 151.30, 146.83, 146.21, 145.30, 145.20, 145.09, 144.94, 144.83, 144.64, 144.36, 144.19, 144.04, 143.97, 143.81, 143.46, 143.15, 141.84, 141.70, 141.62, 141.35, 141.13, 140.93, 140.71, 140.44, 139.96, 139.92, 139.71, 136.87, 135.90, 133.90, 132.15, 131.46, 130.52, 128.86, 128.79, 126.91, 124.81, 122.52, 86.33 (sp³-*C* of C₆₀), 72.25 (sp³-*C* of C₆₀), 51.69, 19.79; FT-IR v/cm⁻¹ (KBr) 1727, 1655, 1463, 1431, 1276, 1245, 1188, 1105, 1018, 865, 818, 791, 766, 743, 720, 596, 563, 527; UV-Vis (CHCl₃) λ_{max}/nm (log ε) 256 (5.14), 316 (4.66), 427 (4.09); MALDI-TOF MS *m*/*z* calcd for C₇₆H₁₃NO₃ [M]⁻ 987.0901, found 987.0903.

By following the general procedure, a mixture of C₆₀ (36.1 mg, 0.05 mmol), **1j** (28.7 mg, 0.10 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.3 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 13 h afforded recovered C₆₀ (21.4 mg, 59%) and **2j** (12.8 mg, 26%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₂CDCl₂) δ 8.20 (d, J = 8.3 Hz, 2H), 7.89 (d, J = 8.3 Hz, 2H), 7.78 (s, 1H), 6.17 (s, 1H), 3.95 (s, 3H), 2.28 (s, 3H), 2.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₂CDCl₂) δ 167.69 (*C*=N), 165.25 (*C*=O), 151.55, 146.75, 146.57, 146.21, 145.32, 145.11, 145.04, 144.82, 144.72, 144.21, 144.19, 144.09, 143.97, 143.44, 143.32, 141.84, 141.67, 141.62, 141.59, 141.13, 141.06, 140.94, 140.72, 140.54, 139.96, 139.56, 137.11, 137.09, 136.78, 135.82, 133.88, 132.82, 131.40, 129.27, 127.35, 127.17, 125.62, 117.19, 86.38 (sp³-C of C₆₀), 70.65 (sp³-C of C₆₀), 51.70, 19.72, 18.69; FT-IR v/cm⁻¹ (KBr) 1730, 1650, 1497, 1430, 1349, 1272, 1190, 1102, 1019, 867, 791, 779, 726, 709, 575, 553, 526; UV-Vis (CHCl₃) λ_{max}/nm (log ε) 254 (5.15), 314 (4.70), 427 (4.46), 683 (3.41); MALDI-TOF MS *m/z* calcd for C₇₇H₁₅NO₃ [M]⁻ 1001.1057, found 1001.1051.

By following the general procedure, a mixture of C₆₀ (36.2 mg, 0.05 mmol), **1k** (23.7 mg, 0.10 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.3 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 13 h afforded recovered C₆₀ (18.1 mg, 50%) and **2k** (11.0 mg, 23%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₂CDCl₂) δ 7.93 (d, *J* = 8.4 Hz, 2H), 7.86 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.26 (d, *J* = 8.4 Hz, 1H), 2.39 (s, 3H); the ¹³C NMR spectrum of **2k** could not be obtained because of its poor solubility; FT-IR v/cm⁻¹ (KBr) 2221, 1651, 1493, 1428, 1346, 1261, 1110, 1012, 875, 848, 797, 752, 700, 575, 565, 526; UV-Vis (CHCl₃) λ_{max} /nm (log ε) 256 (5.19), 315 (4.73), 428 (4.21), 686 (3.16); MALDI-TOF MS *m/z* calcd for C₇₅H₁₀N₂O [M]⁻ 954.0798, found 954.0792.

By following the general procedure, a mixture of C₆₀ (35.9 mg, 0.05 mmol), **11** (44.3 mg, 0.15 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.3 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 20 h afforded recovered C₆₀ (24.0 mg, 67%) and **21** (9.4 mg, 19%), amorphous brown solid; ¹H NMR (500 MHz, CDCl₂CDCl₂) δ 8.53 (s, 1H), 8.49 (s, 1H), 7.99–7.89 (m, 4H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.40–7.29 (m, 3H), 6.85 (s, 1H); ¹³C NMR (126 MHz, CDCl₂CDCl₂) δ 169.44 (*C*=N), 151.89, 146.78, 146.53, 146.26, 145.32, 145.14, 145.05, 144.83, 144.67, 144.19, 144.12, 144.00, 143.96, 143.45, 143.37, 141.85, 141.69, 141.64, 141.58, 141.14, 141.10, 140.98, 140.78, 140.59, 140.07, 137.46, 136.92, 135.81, 133.92, 133.76, 132.68, 132.25, 131.89, 130.85, 129.64, 128.65, 128.12, 127.86, 127.29, 127.10, 126.83, 126.69, 126.25, 126.18, 124.70, 123.67, 113.03, 86.30 (sp³-C of C₆₀), 70.03 (sp³-C of C₆₀); FT-IR v/cm⁻¹ (KBr) 1657, 1503, 1462, 1428, 1310, 1274, 1227, 1188, 1133, 864, 820, 773, 742, 577, 554, 528; UV-Vis (CHCl₃) λ_{max}/nm (log ε) 256 (5.24), 316 (4.77), 428 (4.63), 687 (3.70); MALDI-TOF MS *m/z* calcd for C₈₁H₁₃NO [M]⁻ 1015.1003, found 1015.1006.

By following the general procedure, a mixture of C₆₀ (35.9 mg, 0.05 mmol), **1m** (21.5 mg, 0.10 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.0 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 20 h afforded recovered C₆₀ (19.5 mg, 54%) and an isomeric mixture of **2m** and **2m'** (10.5 mg, 23%). Then, the mixture was separated twice by preparative thin-layer chromatography with CS₂ as the eluent to provide **2m** (6.1 mg, 13%) and **2m'** (4.4 mg, 10%), amorphous brown solid; **2m**: ¹H NMR (500 MHz, CDCl₂CDCl₂) δ 7.84–7.80 (m, 3H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 2H), 6.97 (dd, *J* = 8.6, 1.8 Hz, 1H), 6.33 (d, *J* = 8.6 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (126 MHz, CDCl₂CDCl₂) δ 168.93 (*C*=N), 151.47, 146.76, 146.62, 146.23, 145.313, 145.305, 145.11, 145.02, 144.82, 144.74, 144.44, 144.18, 144.10, 144.02, 143.99, 143.43, 143.36, 141.85, 141.66, 141.63, 141.59, 141.11, 141.07, 140.93, 140.74, 140.60, 139.95, 137.37, 136.86, 135.65, 135.25, 133.99, 133.50, 130.81, 129.55, 128.93, 128.14, 127.23, 125.25, 116.12, 86.23 (sp³-C of C₆₀), 70.86 (sp³-C of C₆₀), 20.01; FT-IR v/cm⁻¹ (KBr) 1652, 1509, 1492, 1423, 1342, 1262, 1164, 1099, 1020, 875, 805, 771, 704, 665, 656, 594, 573, 564, 526; UV-Vis (CHCl₃) λ_{max}/nm (log ε) 256

(5.14), 314 (4.68), 428 (4.46), 691 (3.30); MALDI-TOF MS *m*/*z* calcd for C₇₄H₁₁NO [M]⁻ 929.0846, found 929.0841; **2m**': ¹H NMR (500 MHz, CDCl₂CDCl₂/CS₂) δ 8.05 (d, *J* = 7.4 Hz, 1H), 7.74 (d, *J* = 7.7 Hz, 2H), 7.33 (d, *J* = 7.7 Hz, 2H), 7.24 (t, *J* = 7.4 Hz, 1H), 7.19 (t, *J* = 7.7 Hz, 1H), 6.54 (d, *J* = 8.2 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (126 MHz, CDCl₂CDCl₂/CS₂) δ 169.11 (*C*=N), 151.35, 146.77, 146.63, 146.26, 145.34, 145.33, 145.14, 145.04, 144.84, 144.74, 144.42, 144.20, 144.14, 144.02, 143.98, 143.43, 143.38, 141.88, 141.70, 141.67, 141.62, 141.15, 141.08, 140.96, 140.78, 140.64, 140.07, 139.97, 136.95, 135.60, 134.05, 132.21, 129.50, 129.34, 128.78, 128.06, 127.48, 124.98, 123.29, 116.38, 86.11 (sp³-*C* of C₆₀), 70.90 (sp³-*C* of C₆₀), 20.85; FT-IR v/cm⁻¹ (KBr) 1651, 1595, 1510, 1478, 1341, 1316, 1260, 1180, 1099, 1019, 803, 768, 742, 597, 571, 545, 526; UV-Vis (CHCl₃) λ_{max} /nm (log ε) 256 (5.12), 314 (4.70), 427 (4.43), 690 (3.22); MALDI-TOF MS *m*/*z* calcd for C₇₄H₁₁NO [M]⁻ 929.0846, found 929.0839.

By following the general procedure, a mixture of C₆₀ (36.1 mg, 0.05 mmol), **1n** (20.5 mg, 0.15 mmol), Pd(TFA)₂ (3.4 mg, 0.01 mmol), K₂S₂O₈ (27.2 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 20 h afforded recovered C₆₀ (22.3 mg, 62%) and **2n** (5.9 mg, 14%), amorphous brown solid; ¹H NMR (500 MHz, CDCl₂CDCl₂/CS₂) δ 8.13 (d, *J* = 7.4 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.58 (dd, *J* = 8.4, 7.4 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 1H), 2.88 (s, 3H); ¹³C NMR (101 MHz, CDCl₂CDCl₂/CS₂) δ 168.31 (*C*=N), 151.90, 146.97, 146.72, 146.21, 145.38, 145.34, 145.14, 145.03, 144.81, 144.70, 144.20, 144.10, 143.99, 143.86, 143.80, 143.43, 143.39, 141.88, 141.72, 141.70, 141.12, 141.05, 140.97, 140.65, 140.55, 139.97, 139.75, 136.41, 135.57, 133.94, 130.11, 128.92, 125.62, 123.68, 115.03, 85.91 (sp³-C of C₆₀), 70.30 (sp³-C of C₆₀), 26.99; FT-IR v/cm⁻¹ (KBr) 1670, 1600, 1483, 1437, 1365, 1340, 1313, 1247, 1185, 1157, 1038, 948, 898, 812, 743, 619, 598, 573, 563, 527; UV-Vis (CHCl₃) λ_{max} /nm (log ε) 255 (4.99), 314 (4.50), 428 (4.39), 685 (3.52); MALDI-TOF MS *m/z* calcd for C₆₈H₇NO [M]⁻ 853.0533, found 853.0535.

By following the general procedure, a mixture of C_{60} (35.8 mg, 0.05 mmol), **10** (22.8 mg, 0.15 mmol), Pd(TFA)₂ (3.5 mg, 0.01 mmol), K₂S₂O₈ (27.5 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 16 h afforded recovered C_{60} (25.2

mg, 70%) and **2o** (5.5 mg, 13%), amorphous brown solid; ¹H NMR (500 MHz, CDCl₂CDCl₂) δ 7.91 (s, 1H), 7.62 (d, *J* = 8.3 Hz, 1H), 7.37 (d, *J* = 8.3 Hz, 1H), 2.84 (s, 3H), 2.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₂CDCl₂) δ 168.82 (*C*=N), 152.11, 146.93, 146.74, 146.19, 145.35, 145.32, 145.12, 144.98, 144.80, 144.76, 144.18, 144.06, 144.03, 143.98, 143.97, 143.45, 143.36, 141.84, 141.68, 141.66, 141.63, 141.06, 140.94, 140.60, 140.54, 139.93, 137.24, 136.38, 135.66, 133.93, 133.73, 130.31, 129.59, 125.91, 114.90, 86.08 (sp³-*C* of C₆₀), 70.36 (sp³-*C* of C₆₀), 27.07, 19.97; FT-IR v/cm⁻¹ (KBr) 1672, 1495, 1425, 1364, 1336, 1311, 1263, 1219, 1188, 1091, 1034, 877, 800, 705, 684, 637, 575, 564, 527; UV-Vis (CHCl₃) λ_{max}/nm (log ε) 255 (5.06), 313 (4.60), 428 (4.48), 684 (3.55); MALDI-TOF MS *m*/*z* calcd for C₆₉H₉NO [M]⁻ 867.0690, found 867.0681.

By following the general procedure, a mixture of C₆₀ (36.2 mg, 0.05 mmol), **1p** (25.8 mg, 0.15 mmol), Pd(TFA)₂ (3.3 mg, 0.01 mmol), K₂S₂O₈ (26.9 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 10 h afforded recovered C₆₀ (21.2 mg, 59%) and **2p** (4.1 mg, 9%), amorphous brown solid; ¹H NMR (400 MHz, CDCl₂CDCl₂) δ 8.07 (d, *J* = 2.2 Hz, 1H), 7.69 (d, *J* = 8.9 Hz, 1H), 7.54 (dd, *J* = 8.9, 2.2 Hz, 1H), 2.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₂CDCl₂) δ 168.81 (*C*=N), 151.23, 146.77, 146.64, 146.22, 145.38, 145.34, 145.14, 145.02, 144.83, 144.68, 144.20, 144.17, 144.03, 143.60, 143.41, 143.33, 143.30, 141.85, 141.69, 141.66, 141.06, 140.96, 140.94, 140.60, 140.47, 140.00, 138.31, 136.46, 135.63, 134.10, 132.20, 128.90, 128.70, 125.44, 116.07, 86.28 (sp³-C of C₆₀), 69.85 (sp³-C of C₆₀), 27.10; FT-IR v/cm⁻¹ (KBr) 1678, 1482, 1436, 1364, 1335, 1305, 1238, 1190, 1099, 979, 875, 803, 770, 624, 577, 564, 527; UV-Vis (CHCl₃) λ_{max} /nm (log ε) 256 (5.07), 313 (4.60), 428 (4.46), 682 (3.34); MALDI-TOF MS *m/z* calcd for C₆₈H₆³⁵CINO [M]⁻ 887.0143, found 887.0132.

18.4 mg (0.02 mmol) of **2a** was electroreduced by controlled potential electrolysis (CPE) at -1.18 V vs saturated calomel electrode (SCE) in 25 mL of ODCB containing 0.1 M *n*-butylammonium perchlorate (TBAP) under an argon atmosphere at room

temperature. The electrolysis was terminated when the theoretical number of coulombs required for a full conversion of 2a to $2a^{2-}$ was reached. Then, the dianion $2a^{2-}$ was allowed to react with TFA (2.5 µL, 0.03 mmol) at 25 °C for 10 min. The reaction mixture was filtered through a silica gel (200-300 mesh) plug with CS₂/CH₂Cl₂ (1:1, v/v) to remove TBAP. After evaporation in vacuo, the residue was separated on a silica gel (300–400 mesh) column with CS₂ to afford **3a** (7.7 mg, 42%) as an amorphous brown solid; ¹H NMR (500 MHz, CDCl₂CDCl₂/CS₂) δ 8.02 (d, J = 7.6 Hz, 1H), 7.64–7.50 (m, 5H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.9 Hz, 1H), 6.51 (d, *J* = 1.8 Hz, 1H), 6.43 (d, J = 1.8 Hz, 1H), 6.26 (d, J = 8.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₂CDCl₂/CS₂) δ 168.32 (C=N), 151.46, 148.21, 148.20, 147.73, 147.58, 147.32, 147.24, 146.88, 146.05, 145.93, 145.91, 145.83, 145.81, 145.58, 145.34, 145.33, 145.22, 144.92, 144.53, 144.31, 144.03, 143.98, 143.77, 143.63, 143.60, 143.38, 143.33, 143.28, 143.19, 143.18, 143.12, 143.07, 143.06, 142.72, 142.61, 142.57, 142.47, 142.07, 141.98, 141.94, 141.67, 141.44, 141.42, 141.36, 140.88, 140.78, 140.67, 140.48, 140.05, 139.94, 138.89, 137.74, 136.75, 136.41, 135.53, 134.94, 132.49, 130.54, 128.23, 127.88, 126.62, 124.53, 124.09, 115.14, 79.73 (sp³-C of C₆₀), 63.00 (sp³-C of C₆₀), 58.21 (sp³-C of C₆₀), 56.25 (sp³-C of C₆₀); FT-IR v/cm⁻¹ (KBr) 1658, 1592, 1515, 1479, 1441, 1342, 1315, 1261, 1188, 1141, 1098, 1022, 800, 743, 703, 696, 646, 638, 590, 565, 528, 520; UV-Vis (CHCl₃) λ_{max}/nm (log ε) 256 (4.36), 332 (4.43), 430 (3.71), 698 (3.11); MALDI-TOF MS m/z calcd for C₇₃H₁₁NO [M]⁻ 917.0846, found 917.0839.

9.2 mg (0.01 mmol) of 2a was electroreduced by controlled potential electrolysis (CPE) at -1.18 V vs saturated calomel electrode (SCE) in 25 mL of ODCB containing 0.1 M TBAP under an argon atmosphere at room temperature. The electrolysis was terminated when the theoretical number of coulombs required for a full conversion of 2a to $2a^{2-}$ was reached. Then, the dianion $2a^{2-}$ was allowed to react with benzyl bromide (5 µL, 0.04 mmol) at 25 °C for 30 min. The reaction mixture was filtered through a silica gel (200–300 mesh) plug with CS₂/CH₂Cl₂ (1:1, v/v) to remove TBAP. The same procedure was carried out for two times. After evaporation in vacuo, the residue was separated on a silica gel (300–400 mesh) column with CS₂ to afford **3b** (6.1 mg, 30%) as an amorphous brown solid; ¹H NMR (400 MHz, CS₂ with DMSO-d₆ as the external deuterium lock and containing TMS as the reference) δ 8.10 (d, J = 7.1 Hz, 1H), 7.69– 7.46 (m, 5H), 7.36 (d, J = 6.8 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.27–7.20 (m, 2H), 7.16–7.07 (m, 2H), 6.34 (d, J = 8.2 Hz, 1H), 6.21 (s, 1H), 4.38 (d, J = 13.1 Hz, 1H), 4.17 (d, J = 13.1 Hz, 1H); ¹³C NMR (126 MHz, CS₂ with DMSO- d_6 as the external deuterium lock and the reference) δ 166.48 (C=N), 155.87, 154.39, 151.16, 149.11, 148.53, 148.27, 148.20, 147.68, 147.65, 147.42, 147.36, 147.12, 146.84, 146.72,

146.55, 146.36, 146.21, 145.78, 145.72, 145.68, 145.58, 145.48, 145.36, 145.21, 144.81, 144.77, 144.66, 144.20, 144.15, 144.07, 143.97, 143.79, 143.78, 143.70, 143.66, 143.27, 143.00, 142.75, 142.70, 142.43, 142.32, 141.93, 141.89, 141.72, 141.43, 141.27, 140.92, 140.80, 140.76, 140.59, 140.09, 139.41, 139.06, 138.09, 136.82, 136.35, 135.27, 134.75, 133.27, 131.41, 130.72, 130.45, 129.96, 128.49, 127.77, 126.85, 125.21, 123.48, 115.92, 83.58 (sp³-*C* of C₆₀), 62.72 (sp³-*C* of C₆₀), 55.63 (sp³-*C* of C₆₀), 48.80; FT-IR v/cm⁻¹ (KBr) 1655, 1596, 1541, 1480, 1458, 1446, 1346, 1320, 1260, 1177, 1100, 1027, 799, 747, 699, 641, 590, 565, 526; UV-Vis (CHCl₃) λ_{max} /nm (log ε) 252 (4.97), 324 (4.51), 433 (3.71), 687 (3.40); MALDI-TOF MS *m*/*z* calcd for C₈₀H₁₇NO [M]⁻ 1007.1316, found 1007.1306.

18.4 mg (0.02 mmol) of 2a was electroreduced by CPE at -1.18 V vs SCE in 50 mL of ODCB containing 0.1 M TBAP under an argon atmosphere at room temperature. The electrolysis was terminated when the theoretical number of coulombs required for a full conversion of 2a to $2a^{2-}$ was reached. Then, the dianion $2a^{2-}$ was allowed to react with benzyl bromide (120 µL, 1.0 mmol) at 25 °C for 6 h. The reaction mixture was filtered through a silica gel (200–300 mesh) plug with $CS_2(1:1, v/v)$ to remove TBAP. After evaporation in *vacuo*, the residue was separated on a silica gel (300–400 mesh) column with CS₂ to afford **3c** (6.8 mg, 31%) as an amorphous brown solid; ¹H NMR (500 MHz, CS₂ with DMSO-d₆ as the external deuterium lock and containing TMS as the reference) δ 8.10 (d, J = 7.6 Hz, 1H), 7.63–7.49 (m, 4H), 7.44–7.31 (m, 5H), 7.27– 7.20 (m, 3H), 7.12 (t, J = 7.8 Hz, 1H), 7.09–7.01 (m, 4H), 6.40 (d, J = 8.2 Hz, 1H), 4.81 (d, J = 12.1 Hz, 1H), 4.36 (d, J = 13.0 Hz, 1H), 4.15 (d, J = 13.0 Hz, 1H), 3.81 (d, J = 12.1 Hz, 1H); ¹³C NMR (126 MHz, CS₂ with DMSO- d_6 as the external deuterium lock and the reference) δ 166.95 (C=N), 155.18, 154.93, 151.89, 150.83, 149.18, 148.94, 148.19, 147.77, 147.49, 147.46, 147.37, 147.14, 146.72, 146.20, 146.14, 145.95, 145.89, 145.77, 145.53, 145.48, 145.44, 145.34, 145.29, 145.00, 144.98, 144.72, 144.51, 144.24, 144.18, 144.02, 143.92, 143.85, 143.76, 143.70, 143.55, 143.42, 143.20, 142.91, 142.35, 142.18, 142.13, 141.97, 141.38, 141.30, 140.97, 140.73, 140.67, 140.56, 139.99, 139.42, 138.85, 138.69, 137.87, 137.81, 136.49, 136.27, 135.75, 134.82, 134.63, 132.98, 131.30, 131.12, 130.70, 129.93, 128.44, 128.14, 128.01, 127.74, 127.30, 126.81, 126.29, 124.96, 123.88, 117.36, 88.80 (sp³-C of C₆₀), 64.22 (sp³-C of C₆₀), 62.08 (sp³-C of C₆₀), 58.31 (sp³-C of C₆₀), 48.56, 44.76; FT-IR v/cm⁻¹ (KBr) 1656, 1597, 1494, 1480, 1454, 1446, 1345, 1319, 1259, 1175, 1143, 1099, 1023, 800, 793, 747, 698, 676, 642, 577, 535, 526; UV-Vis (CHCl₃) λ_{max}/nm (log ε) 250 (5.04), 323 (4.62), 449 (3.77), 698 (3.48); MALDI-TOF MS m/z calcd for C₈₇H₂₃NO [M]⁻ 1097.1785, found 1097.1778.

4. Kinetic isotope effect study for the formation of 2d

By following the general procedure, a mixture of C_{60} (36.0 mg, 0.05 mmol) with **1d** (12.8 mg, 0.05 mmol), **1d**- d_5 (12.9 mg, 0.05 mmol), Pd(TFA)₂ (1.8 mg, 0.005 mmol), Na₂S₂O₈ (24.1 mg, 0.10 mmol) and TFA (0.25 mL) in ODCB (5 mL) at 100 °C for 3 h. The same procedure had been carried out twice. The reaction mixtures from the two runs were combined and filtered through a silica gel plug to remove insoluble material. After the solvent had been evaporated in *vacuo*, the residue was separated on a silica gel column with CS₂ to afford recovered C₆₀ (56.4 mg, 78%), and then with CS₂/DCM (4:1) to provide products **2d** and **2d**- d_4 (6.5 mg, 7%). The KIE was determined as 3.12 by analyzing the integrals in the ¹H NMR spectrum.

5. NMR spectra of compounds 2a-p and 3a-c

Figure S1 ¹H NMR (400 MHz, CDCl₂CDCl₂/CS₂) of compound 2a

Figure S2 ¹³C NMR (101 MHz, CDCl₂CDCl₂/CS₂) of compound 2a

Figure S3 Expanded ¹³C NMR (101 MHz, CDCl₂CDCl₂/CS₂) of compound 2a

Figure S4 ¹H NMR (400 MHz, CDCl₂CDCl₂/CS₂) of compound 2b

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

Figure S6 Expanded ¹³C NMR (101 MHz, CDCl₂CDCl₂/CS₂) of compound 2b

Figure S7 ¹H NMR (500 MHz, CDCl₂CDCl₂) of compound 2c

Figure S8 ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2c

Figure S9 Expanded ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2c

Figure S10 ¹H NMR (400 MHz, CDCl₂CDCl₂) of compound 2d

Figure S11 ¹³C NMR (101 MHz, CDCl₂CDCl₂) of compound 2d

Figure S12 Expanded ¹³C NMR (101 MHz, CDCl₂CDCl₂) of compound 2d

Figure S13 ¹H NMR (500 MHz, CDCl₂CDCl₂) of compound 2e

Figure S14¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2e

Figure S15 Expanded ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2e

Figure S16¹H NMR (500 MHz, CDCl₂CDCl₂) of compound 2f

Figure S17¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2f

Figure S18 Expanded ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2f

Figure S19¹H NMR (500 MHz, CDCl₂CDCl₂) of compound 2g

Figure S20 ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2g

Figure S21 Expanded ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2g

Figure S22 ¹H NMR (400 MHz, CDCl₂CDCl₂) of compound 2h

Figure S23 ¹³C NMR (101 MHz, CDCl₂CDCl₂) of compound 2h

Figure S24 Expanded ¹³C NMR (101 MHz, CDCl₂CDCl₂) of compound 2h

Figure S25 ¹H NMR (400 MHz, CDCl₂CDCl₂) of compound 2i

Figure S26 ¹³C NMR (101 MHz, CDCl₂CDCl₂) of compound 2i

Figure S27 Expanded ¹³C NMR (101 MHz, CDCl₂CDCl₂) of compound 2i

Figure S28¹H NMR (400 MHz, CDCl₂CDCl₂) of compound 2j

Figure S29 ¹³C NMR (101 MHz, CDCl₂CDCl₂) of compound 2j

Figure S30 Expanded ¹³C NMR (101 MHz, CDCl₂CDCl₂) of compound 2j

Figure S31 ¹H NMR (400 MHz, CDCl₂CDCl₂) of compound 2j

Figure S32 ¹H NMR (500 MHz, CDCl₂CDCl₂) of compound 2l

Figure S33 ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2l

Figure S34 Expanded ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2l

Figure S35 ¹H NMR (500 MHz, CDCl₂CDCl₂) of compound 2m

Figure S36 ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2m

Figure S37 Expanded ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 2m

Figure S38 ¹H NMR (500 MHz, CDCl₂CDCl₂/CS₂) of compound 2m'

Figure S39 ¹³C NMR (126 MHz, CDCl₂CDCl₂/CS₂) of compound 2m'

Figure S40 Expanded ¹³C NMR (126 MHz, CDCl₂CDCl₂/CS₂) of compound 2m'

Figure S41 ¹H NMR (500 MHz, CDCl₂CDCl₂/CS₂) of compound 2n

Figure S42 ¹³C NMR (101 MHz, CDCl₂CDCl₂/CS₂) of compound 2n

Figure S43 Expanded ¹³C NMR (101 MHz, CDCl₂CDCl₂/CS₂) of compound 2n

Figure S44 ¹H NMR (500 MHz, CDCl₂CDCl₂) of compound 20

Figure S45 ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 20

Figure S46 Expanded ¹³C NMR (126 MHz, CDCl₂CDCl₂) of compound 20

Figure S47 ¹H NMR (400 MHz, CDCl₂CDCl₂) of compound 2p

Figure S48 ¹³C NMR (101 MHz, CDCl₂CDCl₂) of compound 2p

Figure S49 Expanded ¹³C NMR (101 MHz, CDCl₂CDCl₂) of compound 2p

Figure S50 ¹H NMR (500 MHz, CDCl₂CDCl₂/CS₂) of compound 3a

Figure S51 ¹³C NMR (126 MHz, CDCl₂CDCl₂/CS₂) of compound 3a

Figure S52 Expanded ¹³C NMR (126 MHz, CDCl₂CDCl₂/CS₂) of compound 3a

Figure S54 ¹H NMR (400 MHz, CS₂/DMSO-*d*₆) of compound 3b

Figure S55 ¹³C NMR (126 MHz, CS₂/DMSO-d₆) of compound 3b

Figure S56 Expanded ¹³C NMR (126 MHz, CS₂/DMSO-d₆) of compound 3b

Figure S57 Expanded ¹³C NMR (126 MHz, CS₂/DMSO-d₆) of compound 3b

Figure S58 ¹H NMR (500 MHz, CS₂/DMSO-*d*₆) of compound 3c

Figure S59 ¹³C NMR (126 MHz, CS₂/DMSO-*d*₆) of compound 3c

Figure S60 Expanded ¹³C NMR (126 MHz, CS₂/DMSO-*d*₆) of compound 3c

Figure S61 Expanded ¹³C NMR (126 MHz, CS₂/DMSO-*d*₆) of compound 3c

6. ¹H NMR spectrum of compounds 2d and 2d-d4

Figure S62 ¹H NMR (500 MHz, CDCl₂CDCl₂) of compounds 2d and 2d-d4

7. UV-Vis spectra of compounds 2a-p and 3a-c

Figure S63 UV-Vis absorption of compound 2a

Figure S64 UV-Vis absorption of compound 2b

Figure S65 UV-Vis absorption of compound 2c

Figure S66 UV-Vis absorption of compound 2d

Figure S67 UV-Vis absorption of compound 2e

Figure S68 UV-Vis absorption of compound 2f

Figure S69 UV-Vis absorption of compound 2g

Figure S70 UV-Vis absorption of compound 2h

Figure S71 UV-Vis absorption of compound 2i

Figure S72 UV-Vis absorption of compound 2j

Figure S73 UV-Vis absorption of compound 2k

Figure S74 UV-Vis absorption of compound 21

Figure S75 UV-Vis absorption of compound 2m

Figure S76 UV-Vis absorption of compound 2m'

Figure S77 UV-Vis absorption of compound 2n

Figure S78 UV-Vis absorption of compound 20

Figure S79 UV-Vis absorption of compound 2p

Figure S80 UV-Vis absorption of compound 3a

Figure S81 UV-Vis absorption of compound 3b

Figure S82 UV-Vis absorption of compound 3c

Figure S83 Cyclic voltammogram of compound 2a (scanning rate: 50 mV s⁻¹)

Figure S84 Differential pulse voltammogram of compound 2a

Figure S85 Cyclic voltammogram of compound 2b (scanning rate: 50 mV s⁻¹)

Figure S86 Differential pulse voltammogram of compound 2b

Figure S87 Cyclic voltammogram of compound 2c (scanning rate: 50 mV s⁻¹)

Figure S88 Differential pulse voltammogram of compound 2c

Figure S89 Cyclic voltammogram of compound 2d (scanning rate: 50 mV s⁻¹)

Figure S90 Differential pulse voltammogram of compound 2d

Figure S91 Cyclic voltammogram of compound 2e (scanning rate: 50 mV s⁻¹)

Figure S92 Differential pulse voltammogram of compound 2e

Figure S93 Cyclic voltammogram of compound 2f (scanning rate: 50 mV s⁻¹)

Figure S94 Differential pulse voltammogram of compound 2f

Figure S95 Cyclic voltammogram of compound 2g (scanning rate: 50 mV s⁻¹)

Figure S96 Differential pulse voltammogram of compound 2g

Figure S97 Cyclic voltammogram of compound 2h (scanning rate: 50 mV s⁻¹)

Figure S98 Differential pulse voltammogram of compound 2h

Figure S99 Cyclic voltammogram of compound 2i (scanning rate: 50 mV s⁻¹)

Figure S100 Differential pulse voltammogram of compound 2i

Figure S101 Cyclic voltammogram of compound 2j (scanning rate: 50 mV s⁻¹)

Figure S102 Differential pulse voltammogram of compound 2j

Figure S103 Cyclic voltammogram of compound 2k (scanning rate: 50 mV s⁻¹)

Figure S105 Cyclic voltammogram of compound 2l (scanning rate: 50 mV s⁻¹)

Figure S106 Differential pulse voltammogram of compound 21

Figure S107 Cyclic voltammogram of compound 2m (scanning rate: 50 mV s⁻¹)

Figure S108 Differential pulse voltammogram of compound 2m

Figure S109 Cyclic voltammogram of compound 2m' (scanning rate: 50 mV s⁻¹)

Figure S110 Differential pulse voltammogram of compound 2m'

Figure S111 Cyclic voltammogram of compound 2n (scanning rate: 50 mV s⁻¹)

Figure S112 Differential pulse voltammogram of compound 2n

Figure S113 Cyclic voltammogram of compound 20 (scanning rate: 50 mV s⁻¹)

Figure S114 Differential pulse voltammogram of compound 20

Figure S115 Cyclic voltammogram of compound 2p (scanning rate: 50 mV s⁻¹)

Figure S116 Differential pulse voltammogram of compound 2p

Figure S117 Cyclic voltammogram of compound 3a (scanning rate: 50 mV s⁻¹)

Figure S118 Differential pulse voltammogram of compound 3a

Figure S119 Cyclic voltammogram of compound 3b (scanning rate: 50 mV s⁻¹)

Figure S120 Differential pulse voltammogram of compound 3b

Figure S121 Cyclic voltammogram of compound 3c (scanning rate: 50 mV s⁻¹)

Figure S122 Differential pulse voltammogram of compound 3c