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General Information for spectroscopic measurements

Commercial CHCl3 was first washed with deionized water three times and then dried over anhydrous Na2SO4. Fresh CHCl3 was distilled 

from P2O5 before spectroscopic measurements. CH3OH for spectroscopy measurement was distilled. UV-vis and FL spectra were recorded 

on an Olis DSM 172 spectrophotometer. Temperature was controlled using Northwest Quantum (Peltier controlled cell). 10 mm × 10 mm 

cuvettes were used. Usually data were collected at 1 nm intervals. The slitwidth was fixed at 1 mm and the integration time was set as 0.1 s. 

λex = 345 nm was used to excite pyrene fluorophore and λex = 418 nm for perylene fluorophore.

The dimerization constant was obtained by fitting the pyrene excimer intensities, using the following protocol. The excimer (λmax = 474 

nm) intensity was integrated from 470 nm to 600 nm to exclude as much of the monomer emission bands (λmax = 378 nm and λmax = 398 nm) 

as possible.S1-3
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The determination of the association constant via titration of a non-fluorescent oligomers into a pyrene labelled oligogmer was based on 

the following protocol. 
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Figure S1 FL emission spectra for Pyrene-1 ~ Pyrene-3, each 4 × 10−7 M in freshly distilled CHCl3, 25 ℃, λex = 345 nm. 
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Figure S2 (a) Concentration dependent FL emission spectra for Pyrene-2, from 2 × 10−8 M to 4 × 10−7 M in freshly distilled CH2Cl2, 20 ℃, 

λex = 345 nm. (b) Nonlinear fitting the excimer intensity data, yielding Kdim = (2.18 ± 0.17) × 107 M−1 for Pyrene-2•Pyrene-2.
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Figure S3 (a) Concentration dependent FL emission spectra for Pyrene-2, from 2 × 10−8 M to 4 × 10−7 M in freshly distilled toluene, 20 ℃, 

λex = 345 nm. (b) Nonlinear fitting the excimer intensity data, yielding Kdim = (4.73 ± 0.34) × 107 M−1 for Pyrene-2•Pyrene-2.
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Figure S4 FL emission spectra for oligomer Pyrene-2 and Pyrene-3, recorded on the same instrument conditions, each 4 × 10−7 M in 

freshly distilled CHCl3, 20 ℃, λex = 345 nm.
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Figure S5 Determining the dimerization constant for Pyrene-3•Pyrene-3 by comparing the excimer emission intensities of oligomers 

Pyrene-2 and Pyrene-3 on the same measurement conditions. The excimer emission band (λmax = 474 nm) was integrated from 470 nm to 

600 nm, to exclude as much of the monomer emission bands (λmax = 378 nm and λmax = 398 nm) as possible.
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Figure S6 Fitting the excimer intensity data according to Eq. S3, yielding Kdim = (4.35 ± 1.74) × 106 M−1 for six-hydogen-bonded 

homoduplex NonF-1•NonF-1 and Ka = (4.73 ± 0.64) × 107 M−1 for eight-hydogen-bonded heteroduplex Pyrene-2•NonF-1.



7

350 400 450 500 550 600

0

100000

200000

300000

400000

500000

0 eq of NonF-2

3 eq of NonF-2

3 eq of NonF-2

FL
 E

m
is

si
on

 In
te

ns
ity

 (a
. u

.)

Wavelength (nm)

0 eq of NonF-2

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

FL
 E

m
is

si
on

 In
te

ns
ity

 (a
. u

.)

Equivalents of NonF-2

 378 nm
 398 nm
 474 nm

(b)

0.0000000 0.0000002 0.0000004 0.0000006

20

40

60

80

100

120

0[B] [AB]

[AB]
[A]

AB
AB B 0

B
8 -1

B
9 -1

AB
2

[AB] [B] ( 1 1+8 ([B] [AB]))                Eq. S3
[A] 4

= (1.11  0.56)  10  M

= (2.36  0.56)  10  M

R  = 0.996

KK K
K

K
K

    

 

 

(c)

Figure S7 (a) FL emission spectra of Pyrene-3, 8 × 10−7 M in CHCl3, 293 K, when titrated with a non-fluorescent oligomer NonF-2 (0 ~ 3 

equivalents), λex = 345 nm, λisobestic = 430 nm. (b) FL emission intensity changes for pyrene excimer emission (λ = 474 nm) and monomer 

emission (λ = 378 nm and λ = 398 nm) during titration. (c) Fitting the excimer intensity data according to Eq. S3, yielding Kdim = (1.11 ± 

0.56) × 108 M−1 for ten-hydogen-bonded homoduplex NonF-2•NonF-2 and Ka = (2.36 ± 0.56) × 109 M−1 for twelve-hydogen-bonded 

heteroduplex Pyrene-3•NonF-2.  
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Figure S8 FL emission spectra for Pyrene-1, 4 × 10−7 M in freshly distilled CHCl3, at different temperatures.
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Figure S9 FL emission spectra for Pyrene-2, 4 × 10−7 M in freshly distilled CHCl3, at different temperatures.

350 400 450 500 550 600

0

20000

40000

60000

80000

100000

120000

140000

160000

FL
 E

m
is

si
on

 In
te

ns
ity

 (a
. u

.)

Wavelength (nm)

 278 K
 288 K
 298 K
 308 K
 318 K

Figure S10 FL emission spectra for Pyrene-3, 4 × 10−7 M in freshly distilled CHCl3, at different temperatures.
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Figure S11 (a) Pyrene monomer emission (λmax = 378 nm and λmax = 398 nm) intensity decreased with increasing of temperature, with 

temperature coefficient indicated. (b) Pyrene excimer emission (λmax = 474 nm) intensity changes with temperature, with temperature 

coefficient indicated.
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Figure S12 Normalized UV-vis absorption and FL emission spectra for pyrene (Control-1) and perylene (Control-2) labelled controls, 20 

℃. Conditions for UV-vis measurements: each 10−5 M in freshly distilled CHCl3; Conditions for FL emission measurements: each 5 × 10−6 

M in freshly distilled CHCl3, λex = 345 nm for Control-1 and λex = 418 nm for Control-2.
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Figure S13 FL emission spectra for pyrene (Control-1) and perylene (Control-2) labelled controls, 20 ℃, each 5 × 10−6 M in freshly 

distilled CHCl3, λex = 345 nm.
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Figure S14 (a) FL emission spectra for Perylene-1, 2 μM in in freshly distilled CHCl3, titrated with differnent percentage of CH3OH, λex = 

418 nm, 20 ℃. The insert shows the expanded excimer emission band. (b) FL intensity changes for perylene monomer emission at λmax = 

455 nm and λmax = 483 nm. 3.5% CH3OH in CHCl3 can recover the monomer emission completely.
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Figure S15 (a) FL emission spectra for Perylene-2, 2 μM in in freshly distilled CHCl3, titrated with differnent percentage of CH3OH, λex = 

418 nm, 20 ℃. The insert shows the expanded excimer emission band. (b) FL intensity changes for perylene monomer emission at λmax = 

455 nm and λmax = 483 nm. 4% CH3OH in CHCl3 can recover the monomer emission completely.
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Figure S16 Normalized UV-vis absorption and FL emission spectra for Pyrene-2 & Perylene-1 FRET pair, 20 ℃. Conditions for UV-vis 

measurements: each 10−5 M in freshly distilled CHCl3; Conditions for FL emission measurements: each 10−6 M in freshly distilled CHCl3, 

λex = 345 nm for Pyrene-2 and λex = 418 nm for Perylene-1.

300 350 400 450 500 550 600

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 a
bs

or
pt

io
n 

an
d 

Em
is

si
on

Wavelength (nm)

 Pyrene-3 UV-vis Absorbance
 Pyrene-3 FL Emission
 Perylene-2 UV-vis Absorbance
 Perylene-2 FL Emission

Figure S17 Normalized UV-vis absorption and FL emission spectra for Pyrene-3 & Perylene-2 FRET pair, 20 ℃. Conditions for UV-vis 

measurements: each 10−5 M in freshly distilled CHCl3; Conditions for FL emission measurements: each 10−6 M in freshly distilled CHCl3, 

λex = 345 nm for Pyrene-3 and λex = 418 nm for Perylene-2.
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Figure S18 Representation of supramolecular substitution reactions from ten-hydrogen-bonded homoduplexes to twelve-hydrogen-bonded 

heteroduplexes between oligomers Pyrene-3 & NonF-2, and Pyrene-3 & Perylene-2, leading to excimer-monomer emission transition and 

FRET respectively.
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Figure S19 (a) FL emission spectra for Pyrene-3, Perylene-2, addition spectrum for Pyrene-3 & Perylene-2, 1:1 mixture of Pyrene-3 & 

Perylene-2, and 1:1 mixture of Pyrene-3 & NonF-2, each 1 μM in CHCl3, 293 K, λex = 345 nm. (b) FL emission spectra for 1:1 mixture of 

Pyrene-3 & Perylene-2, titrated with a nonfluorescent oligomer NonF-2 (0 ~ 3 equivalents), λex = 345 nm. (c) Increase of pyrene monomer 

emission (378 nm and 398 nm) and decrease of perylene monomer emission with addition of NonF-2 (455 nm and 483 nm), λisobestic = 432 

nm.
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Figure S20 (a) FL emission spectra for 1:1 mixed Pyrene-2 & NonF-1, from 0.25 μM to 3 μM in freshly distilled CHCl3, λex = 345 nm, 20 

℃. (b) FL emission spectra for 1:1 mixed Pyrene-2 & Perylene-1, from 0.25 μM to 3 μM in freshly distilled CHCl3, λex = 345 nm, 20 ℃.  

(c) Energy transfer efficiency Φ between Pyrene-2 & Perylene-1 vs mixed concentration. Φ was measured as the fluorescence intensity 

change at λ = 398 nm.
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Figure S21 (a) FL emission spectra for 1:1 mixed Pyrene-3 & NonF-2, from 0.25 μM to 3 μM in freshly distilled CHCl3, λex = 345 nm, 20 

℃. (b) FL emission spectra for 1:1 mixed Pyrene-3 & Perylene-2, from 0.25 μM to 3 μM in freshly distilled CHCl3, λex = 345 nm, 20 ℃.  

(c) Energy transfer efficiency Φ between Pyrene-3 & Perylene-2 vs mixed concentration. Φ was measured as the fluorescence intensity 

change at λ = 398 nm.
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Figure S22 (a) FL emission spectra for Pyrene-2 & Perylene-1, 2 μM in in freshly distilled CHCl3, titrated with differnent percentage of 

CH3OH, λex = 345 nm, 20 ℃, λisobestic = 435 nm. (b) FL intensity changes for pyrene monomer emission (λmax = 378 nm and λmax = 398 nm) 

and perylene monomer emission (λmax = 455 nm and λmax = 483 nm). (c) Energy transfer efficiency Φ between Pyrene-2 and Perylene-1, 

expressed as the ratio of fluorescence intensities at λ = 455 nm (acceptor) and λ = 398 nm (donor). 3% CH3OH in CHCl3 can destroy the 

FRET process almost completely.
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Figure S23 (a) FL emission spectra for Pyrene-3 & Perylene-2, 2 μM in in freshly distilled CHCl3, titrated with differnent percentage of 

CH3OH, λex = 345 nm, 20 ℃, λisobestic = 435 nm. (b) FL intensity changes for pyrene monomer emission (λmax = 378 nm and λmax = 398 nm) 

and perylene monomer emission (λmax = 455 nm and λmax = 483 nm). (c) Energy transfer efficiency Φ between Pyrene-2 and Perylene-1, 

expressed as the ratio of fluorescence intensities at λ = 455 nm (acceptor) and λ = 398 nm (donor). 6% CH3OH in CHCl3 can destroy the 

FRET process almost completely. 
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Figure S24 (a) Temperature dependent FL emission spectra for 1:1 mixed Pyrene-2 & NonF-1, from 5 ℃ to 45 ℃, 1 μM in freshly distilled 

CHCl3, λex = 345 nm. (b) Temperature dependent FL emission spectra for 1:1 mixed Pyrene-2 & Perylene-1, from 5 ℃ to 45 ℃, 1 μM in 

freshly distilled CHCl3, λex = 345 nm. (c) Energy transfer efficiency Φ between Pyrene-2 & Perylene-1 vs temperature. Φ was measured as 

the fluorescence intensity change at λ = 398 nm.
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Figure S25 (a) Temperature dependent FL emission spectra for 1:1 mixed Pyrene-3 & NonF-2, from 5 ℃ to 45 ℃, 1 μM in freshly distilled 

CHCl3, λex = 345 nm. (b) Temperature dependent FL emission spectra for 1:1 mixed Pyrene-3 & Perylene-2, from 5 ℃ to 45 ℃, 1 μM in 

freshly distilled CHCl3, λex = 345 nm. (c) Energy transfer efficiency Φ between Pyrene-3 & Perylene-2 vs temperature. Φ was measured as 

the fluorescence intensity change at λ = 398 nm.
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