Supporting Information

Potassium Methoxide/Disilane-Mediated Formylation of Aryl Iodides with DMF at Room Temperature

Haiyang Wang, Xiaogang Tong, Yanman Huo, Jiaying Tang, and Chengfeng Xia*

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, 2 North Cuihu Road, Kunming 650091, China.

Table of Contents

1.	General Information	2
2.	General Procedure for Formylation of Aryl Halides	2
3.	Gram-Scale reaction	2
4.	Procedures for Mechanistic Experiments	3
5.	Identification of compounds	.28
6.	References:	.39
7.	¹ H-NMR and ¹³ C-NMR Spectral Data	.41

1. General Information

All reactions were performed under argon atmosphere using flame-dried glassware unless otherwise noted. DMF was distilled over CaH_2 and rigorously degassed by freeze/pump/thaw. All reagents were commercially available and used without further purification unless indicated otherwise. Thin layer chromatographies were carried out on GF254 plates. Flash chromatography was performed with 200-300 mesh silica gels. Visualization of the developed chromatogram was performed by fluorescence quenching or by ceric ammonium molybdate, or KMnO₄ stain. Yields reported were for isolated, spectroscopically pure compounds.

¹H and ¹³C NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer . Chemical shifts (δ) are expressed in ppm., and *J*-values are given in Hz. The residual solvent protons (¹H) or the solvent carbons (¹³C) were used as internal standards. ESIMS and HRESIMS were taken on Agilent 6540 Q-TOF spectrometer.

2. General Procedure for Formylation of Aryl Halides

To an oven dried 10 mL glass tube with a magnetic stirring bar was added aryl halides (0.5 mmol, 1 equiv), KOMe (0.6 mmol, 1.2 equiv) and Mg(OTf)₂ (0.025 mmol, 0.05 eq). Then the reaction tube was allowed to be vacuumed and purged with argon for three times. DMF (2.0 mL) were carefully added under argon and TMS-TMS (0.6 mmol, 1.2 equiv) were added dropwise at room temperature. The reaction mixture was stirred for 4 to 12 hours. The reaction was quenched by water (5 mL), extracted with ethyl acetate (15 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated. The crude product was subjected to column chromatography (ethyl acetate/petroleum ether) on silica gel to afford the product.

3. Gram-Scale reaction

To an oven dried 50 mL round-bottom flask with a magnetic stirring bar was added 1-iodo-4methoxybenzene (2.34g, 10 mmol), KOMe (0.84g, 12 mmol,) and Mg(OTf)₂ (0.16g, 0.5 mmol). Then the reaction tube was allowed to be vacuumed and purged with argon for three times. DMF (20.0 mL) were carefully added under argon and TMS-TMS (1.2 mL, 12 mmol) were added dropwise at room temperature. The reaction mixture was stirred for 8 hours. The reaction was quenched by water (20 mL), extracted with ethyl acetate (20 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated. The crude product was subjected to column chromatography (ethyl acetate/petroleum ether = 1:30) on silica gel to afford 0.76 g of product **11** in 56% yield.

4. Procedures for Mechanistic Experiments

To an oven dried 10 mL glass tube with a magnetic stirring bar was added 1-tert-butyl-4iodobenzene **1** (130.0 mg, 0.5 mmol), TEMPO (78.2 mg, 0.5 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq) and KOMe (42.1 mg, 0.6 mmol). Then the reaction tube was allowed to be vacuumed and purged with argon for three times. DMF (2.0 mL) were carefully added under Argon and TMS-TMS (122.8 μ L, 0.6 mmol) were added dropwise at room temperature. The reaction mixture was stirred for 4 hours. The reaction was quenched by water (5 mL), extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated. The crude product was subjected to column chromatography (ethyl acetate/petroleum ether=1:50) on silica gel to afford **2** as a colorless oil (47.0 mg, 58% yield).

Intramolecular Radical Cyclization Experiment

To an oven dried 10 mL glass tube with a magnetic stirring bar was added **27** (144.0 mg, 0.5 mmol), $Mg(OTf)_2$ (8.0 mg, 0.05 eq) and KOMe (42.1 mg, 0.6 mmol). Then the reaction tube was allowed to be vacuumed and purged with Argon for three times. DMF (2.0 mL) were carefully added under argon and TMS-TMS (122.8 µL, 0.6 mmol) were added dropwise at room temperature. The reaction mixture was stirred for 4 hours. The reaction was quenched by water (5 mL), extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated. The crude product was subjected to column chromatography (ethyl acetate/petroleum ether=1:150) on silica gel to afford **28** as a colorless oil (59.8 mg, 63% yield).

Preparation of unsymmetrical disilane

To an oven dried 100 mL round-bottom flask with a magnetic stirring bar was added Iodobenzene (204 mg, 1 mmol). Then the reaction tube was allowed to be vacuumed and purged with argon for three times. THF (30.0 mL) were carefully added under argon. The *n*-BuLi (2.5 M in in hexanes, 0.6 mL, 1.5 mmol) were added dropwise at -78°C. Then chloropentamethyldisilane (166.8 mg, 1 mmol) were added dropwise after 30 min. The reaction mixture was warmed up to room temperature and stirred for 12 hours. The reaction was quenched by water (10 mL), extracted with Et₂O (20 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated. The crude product was subjected to column chromatography using hexanes on silica gel to afford 187.2 mg of product **30** in 90% yield¹. ¹H NMR (600 MHz, DMF) δ 7.51 (d, *J* = 6.5 Hz, 2H), 7.44 – 7.32 (m, 3H), 0.36 (s, 6H), 0.07 (s, 9H). ¹³C NMR (151 MHz, DMF) δ 134.8, 129.6, 129.0, -1.7, -3.4. ²⁹Si NMR (119 MHz, DMF) δ -19.42, -21.68.

¹H, ¹³C, and ²⁹Si NMR Spectroscopic Studies

The ¹H NMR spectra of TMS-TMS (14.6 mg, 0.1 mmol) in 0.5 mL of dried DMF-d7 in NMR tube was recorded using a Bruker AM-600NMR spectrometer at room temperature. The ¹H NMR spectra of KO*t*Bu (11.2 mg, 0.1 mmol) and Me₃SiSiMe₂Ph (10.4 mg, 0.05 mmol) were also recorded by the same method.

The ¹H NMR analysis of silane intermediate was conducted as following: To a NMR tube containing 0.5 mL of dried DMF-d7 were added TMS-TMS (14.6 mg, 0.1 mmol) and KOMe (7.0 mg, 0.1 mmol) under argon. Then the ¹H NMR spectra was recorded after 10 min, 30 min, 1 h and 4 h.

The¹³C NMR spectra of *t*-butoxytrimethylsilane (14.6 mg, 0.1 mmol) in 0.5 mL of dried DMF-d7 in NMR tube was recorded using a Bruker AM-600NMR spectrometer at room temperature. The ¹³C NMR spectra of ethoxytrimethylsilane (11.8 mg, 0.1 mmol), trimethylmethoxysilane (10.4 mg, 0.1 mmol), and TMS-TMS(14.6 mg, 0.1 mmol) were also recorded by the same method.

The ¹³C NMR analysis of silane intermediate was conducted as following: To a NMR tube containing 0.5 mL of dried DMF-d7 were added TMS-TMS (14.6 mg, 0.1 mmol) and KOtBu (11.2 mg, 0.1 mmol) under argon. Then the ¹³C NMR spectra was recorded after 10 min, 30 min, 1 h and 4 h. Other alkali alkoxides KOEt, KOMe, LiOMe and NaOMe (0.1 mmol) were also recorded by the ¹³C NMR under the same conditions.

The ²⁹Si NMR spectra of TMS-TMS (14.6 mg, 0.1 mmol) in 0.5 mL of dried DMF-d7 in Teflon NMR tube was recorded using a Bruker AM-600NMR spectrometer at room temperature. The ²⁹Si NMR spectra of Me₃SiSiMe₂Ph (10.4 mg, 0.05 mmol) were also recorded by the same method.

The ²⁹Si NMR analysis of silane intermediate was conducted as following: To a Teflon NMR tube containing 0.5 mL of dried DMF-d7 were added TMS-TMS (14.6 mg, 0.1 mmol) and KOMe (7.0 mg, 0.1 mmol) under argon. Then the ²⁹Si NMR spectra was recorded after 1 h using a Bruker AM-600NMR spectrometer at room temperature. Me₃SiSiMe₂Ph (10.4 mg, 0.05 mmol) were also recorded by the ²⁹Si NMR under the same conditions.

TMS-TMS(²⁹Si NMR)

TMS-TMS+ KOEt (10 min)

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

-10 90 80 fl (ppm)

TMS-TMS + TMSOTMS + KOMe (10 min)

TMS-TMS+KOMe(²⁹Si NMR)

«																			
45	40	35	30	25	20	15	10	5	0 f1 (ppm)	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50

The ¹H and ¹³C NMR NMR spectra of 4-tert-Butyliodobenzene (13.0 mg, 0.05 mmol) in 0.5 mL of dried DMF-d7 in NMR tube was recorded using a Bruker AM-600NMR spectrometer at room temperature.

The ¹H NMR and ¹³C NMR analysis of silane intermediate was conducted as following: To a NMR tube containing 0.5 mL of dried DMF-d7 were added TMS-TMS (14.6 mg, 0.1 mmol), KOMe (7.0 mg, 0.1 mmol) and 4-tert-Butyliodobenzene (26.0 mg, 0.1 mmol) under argon. Then the ¹H NMR and ¹³C NMR spectra was recorded after 10 min.

In situ NMR studies with the addition of substrates were helpful to provide information about the nature of the peak (2.56 ppm) which was significantly less.

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

5. Identification of compounds

4-tert-Butylbenzaldehyde (2)²

Prepared according to the general procedure using 1-*tert*-butyl-4-iodobenzene **1** (130.1 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:50) to afford the product **2** as a colorless oil (56.7mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.82 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 8.2 Hz, 2H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 158.6, 134.2, 129.8, 126.1, 35.5, 31.2.

Benzaldehyde (3)³

Prepared according to the general procedure using iodobenzene (102.1 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:100) to afford the product **3** as a colorless oil (25.4 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 7.88 (d, *J* = 6.7 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 136.6, 134.6, 129.9, 129.1.

4-Methylbenzaldehyde (4)³

Prepared according to the general procedure using 1-iodo-4-methylbenzene (109.5 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:60) to afford the product **4** as a colorless oil (37.9 mg, 63% yield). ¹H NMR

(400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.77 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 145.7, 134.3, 130.0, 129.9, 22.0.

CHO

4-Ethylbenzaldehyde (5)⁴

Prepared according to the general procedure using 1-iodo-4-ethylbenzene (116.0 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:50) to afford the product **5** as a colorless oil (45.5 mg, 67% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.97 (s, 1H), 7.80 (d, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 2.73 (q, *J* = 7.6 Hz, 2H), 1.27 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 192.06, 151.79, 134.62, 130.08, 128.66, 29.27, 15.21.

4-Isopropylbenzaldehyde (6)⁵

Prepared according to the general procedure using 1-iodo-4-isopropylbenzene (123.2 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:40) to afford the product **6** as a colorless oil (40.8 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.97 (s, 1H), 7.81 (d, *J* = 7.8 Hz, 2H), 7.39 (d, *J* = 7.8 Hz, 2H), 2.99 (m, 1H), 1.28 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 156.4, 134.7, 130.2, 127.3, 34.6, 23.8.

3,5-Dimethylbenzaldehyde (7)⁶

Prepared according to the general procedure using 3,5-Dimethyliodobenzene (116.0 mg, 0.5 mmol),

KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:40) to afford the product 7 as a colorless oil (41.5 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.53 (s, 2H), 7.31 (s, 1H), 2.44 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 192.8, 138.8, 136.7, 136.3, 127.6, 21.2.

2,6-Dimethyl-4-tert-butylbenzaldehyde (8)⁷

Prepared according to the general procedure using 5-tert-butyl-2-iodo-1,3-dimethylbenzene (144.1 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂(8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:80) to afford the product **8** as a colorless oil (43.7 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.58 (s, 1H), 7.09 (s, 2H), 2.62 (s, 6H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 156.8, 141.3, 130.2, 127.0, 35.0, 31.1, 21.0; HR-ESI-MS (*m/z*): calcd. for C₁₃H₁₉O [M + H]⁺, 191.1430, found 191.1434.

СНО

2-Methoxybenzaldehyd (9)⁸

Prepared according to the general procedure using 1-iodo-2-methoxybenzene (117.1 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:40) to afford the product **9** as a colorless oil (36.0 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.47 (s, 1H), 7.82 (dd, *J*=7.7, 1.9, 1H), 7.55 (m, 1H), 7.06 – 6.95 (m, 2H), 3.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 162.0, 136.1, 128.7, 125.0, 120.8, 111.8, 55.7.

3-Methoxybenzaldehyde (10)⁹

Prepared according to the general procedure using 1-iodo-3-methoxybenzene (117.1 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:40) to afford the product **10** as a colorless oil (40.1 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.97 (s, 1H), 7.48 – 7.42 (m, 2H), 7.38 (s, 1H), 7.17 (m, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 160.3, 138.0, 130.2, 123.6, 121.6, 112.2, 55.6.

4-Methoxybenzaldehyde (11)¹⁰

Prepared according to the general procedure using 1-iodo-4-methoxybenzene (117.1 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:40) to afford the product **11** as a colorless oil (X=I, 46.2 mg, 68% yield; X=Br, 31.3 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.88 (s, 1H), 7.89 – 7.78 (m, 2H), 7.06 – 6.94 (m, 2H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 164.8, 132.1, 130.1, 114.5, 55.7.

4-tert-Butyloxybenzaldehyde (12)¹¹

Prepared according to the general procedure using 4-tert-Butoxybromobenzene (114.5 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:50) to afford the product **12** as a colorless oil (53.4 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.80 (d, *J* = 8.6 Hz, 2H), 7.09 (d, *J* = 8.6 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 161.9, 131.4, 122.5, 80.1, 29.0; HR-ESI-MS (*m/z*): calcd. for C₁₁H₁₄O₂Na [M + Na]⁺, 201.0886, found 201.0888.

3,5-Dimethoxybenzaldehyde (13)¹²

Prepared according to the general procedure using 1-iodo-3,5-dimethoxybenzene (132.1 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:40) to afford the product **13** as a colorless oil (50.2 mg, 60% yield).¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.00 (d, *J* = 2.4 Hz, 2H), 6.69 (s, 1H), 3.83 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 161.4, 138.5, 107.3, 107.3, 55.7.

1,4-Benzodioxane-6-aldehyde (14)¹³

Prepared according to the general procedure using 6-iodo-2,3-dihydrobenzo[b][1,4]dioxine (131.1 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂(8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:10) to afford the product **14** as a colorless oil (52.0 mg, 63% yield). ¹H NMR (400 MHz,CDCl₃) δ 9.81 (s, 1H), 7.39 (m, *J* = 2.0 Hz, 2H), 6.97 (d, *J* = 8.7 Hz, 1H), 4.32 (d, *J* = 4.5 Hz, 2H), 4.29 (d, *J* = 4.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 149.4, 144.1, 130.8, 124.3, 118.5, 117.9, 64.8, 64.2; HR-ESI-MS (*m*/*z*): calcd. for C₉H₉O₃ [M + H]⁺, 165.0546, found 165.0547.

но

4-Hydroxybenzaldehyde (15)¹⁴

Prepared according to the general procedure using 1-Iodo-4-hydroxybenzene (110.0 mg, 0.5 mmol),

KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:3) to afford the product **15** as a colorless oil (25.2 mg, 41% yield). ¹H NMR (400 MHz, Acetone-*d*₆) δ 9.85 (s, 1H), 9.40 (s, 1H), 7.80 (d, *J* = 8.5 Hz, 2H), 7.01 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (100 MHz, Acetone-*d*₆) δ 206.30, 191.01, 163.86, 132.80, 130.47, 116.68.

4-(Dimethylamino)benzaldehyde (16)¹⁵

Prepared according to the general procedure using 4-iodo-N,N-dimethylaniline (123.5 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 12 hours. temperature: -10 °C. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:20) to afford the product **16** as a colorless oil (36.5 mg, 49% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 1H), 7.73 (d, *J* = 8.8 Hz, 2H), 6.70 (d, *J* = 8.7 Hz, 2H), 3.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 190.5, 154.5, 132.1, 125.3, 111.1, 40.2.

2-Naphthaldehyde (17)¹⁶

Prepared according to the general procedure using 2-iodonaphthalene (127.0 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:40) to afford the product **17** as a colorless oil (51.5 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H), 8.32 (s, 1H), 8.01 – 7.87 (m, 4H), 7.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 136.6, 134.6, 134.3, 132.8, 129.6, 129.2, 129.2, 128.2, 127.2, 122.9; HR-ESI-MS (*m/z*): calcd. for C₁₁H₉O [M + H]⁺, 157.0648, found 157.0650.

1-Naphthaldehyde (18)¹⁷

Prepared according to the general procedure using 1-iodonaphthalene (127.0 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:40) to afford the product **18** as a colorless oil (51.5 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.40 (s, 1H), 9.26 (d, *J* = 8.6 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.98 (d, *J* = 7.0 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.69 (t, *J* = 7.7 Hz, 1H), 7.61 (dd, *J* = 16.8, 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.62, 136.75, 135.38, 133.83, 131.52, 130.64, 129.17, 128.58, 127.06, 124.98; HR-ESI-MS (*m/z*): calcd. for C₁₁H₉O [M + H]⁺, 157.0648, found 157.0652.

9-Phenanthrenecarboxaldehyde (19)

Prepared according to the general procedure using 9-Iodophenanthrene (152.0 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂(8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:40) to afford the product **19** as a colorless oil (64.9 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.38 (s, 1H), 9.37 (dd, *J* = 6.3, 3.3 Hz, 1H), 8.69 (dd, *J* = 12.9, 6.3 Hz, 2H), 8.24 (s, 1H), 8.02 (d, *J* = 7.9 Hz, 1H), 7.81 (t, *J* = 7.7 Hz, 1H), 7.73 (dd, *J* = 6.2, 3.4 Hz, 2H), 7.67 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.71, 141.35, 133.12, 130.78, 130.64, 130.50, 130.35, 130.27, 128.40, 128.36, 127.76, 127.42, 126.09, 123.05, 122.86; HR-ESI-MS (*m*/*z*): calcd. for C₁₅H₁₁O [M + H]⁺, 207.0804, found 207.0806; for C₁₅H₁₀NaO [M + Na]⁺, 229.0624, found 229.0619.

Dibenzothiophene-4-carbaldehyde (20)¹⁸

Prepared according to the general procedure using 4-Iododibenzothiophene (155.0 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl

acetate/petroleum ether 1:40) to afford the product **20** as a colorless oil (72.0 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.26 (s, 1H), 8.37 (d, *J* = 7.8 Hz, 1H), 8.18 (d, *J* = 6.8 Hz, 1H), 7.94 (d, *J* = 7.4 Hz, 2H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.57 – 7.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 191.37, 141.72, 138.24, 137.41, 133.63, 132.98, 130.75, 127.50, 127.03, 124.89, 124.47, 123.12, 121.60; HR-ESI-MS (*m/z*): calcd. for C₁₃H₉OS [M + H]⁺, 213.0369, found 213.0369.

4-Dibenzofurancarboxaldehyde (21)¹⁹

Prepared according to the general procedure using 4-Iododibenzofuran (147.0 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂(8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:50) to afford the product **21** as a colorless oil (59.2 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.58 (s, 1H), 8.17 (d, *J* = 7.6 Hz, 1H), 7.96 (dd, *J* = 11.8, 7.7 Hz, 2H), 7.68 (d, *J* = 8.3 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 188.55, 156.73, 156.04, 128.24, 127.58, 126.77, 126.14, 123.65, 123.04, 122.94, 121.39, 120.92, 112.28; HR-ESI-MS (*m*/*z*): calcd. for C₁₃H₉O₂ [M + H]⁺, 197.0597, found 197.0602; for C₁₃H₈NaO₂ [M + Na]⁺, 219.0417, found 219.0417.

1-Methylindole-3-carbaldehyde (22)²⁰

Prepared according to the general procedure using 3-iodo-1-methyl-1H-indole (128.5 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:15) to afford the product **22** as a colorless oil (48.5 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.35 – 8.24 (m, 1H), 7.57 (t, *J* = 3.6 Hz, 1H), 7.31 (dd, *J* = 4.4, 2.1

Hz, 3H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 184.4, 139.4, 137.9, 125.2, 124.0, 122.9, 122.0, 118.0, 109.9, 33.6; HR-ESI-MS (*m/z*): calcd. for C₁₀H₁₀NO [M + H]⁺, 160.0757, found 160.0756.

1-Allyl-1H-indole-5-carbaldehyde (23)

Prepared according to the general procedure using 1-allyl-5-iodo-1H-indole (141.5 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:10) to afford the product **23** as a colorless oil (51.8 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 8.16 (s, 1H), 7.78 (d, *J* = 8.6 Hz, 1H), 7.40 (d, *J* = 8.6 Hz, 1H), 7.19 (d, *J* = 3.2 Hz, 1H), 6.68 (d, *J* = 3.2 Hz, 1H), 6.00 (m, 1H), 5.24 (d, *J* = 10.3 Hz, 1H), 5.08 (d, *J* = 17.0 Hz, 1H), 4.77 (d, *J* = 5.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 139.5, 132.8, 129.9, 129.6, 128.6, 126.6, 122.0, 118.0, 110.3, 103.8, 49.2; HR-ESI-MS (*m*/*z*): calcd. for C₁₂H₁₂NO [M + H]⁺, 186.0913, found 186.0916.

1-Benzylindole-5-carboxaldehyde (24)²¹

Prepared according to the general procedure using 1-benzyl-5-iodo-1H-indole (166.5 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:10) to afford the product **24** as a colorless oil (61.1 mg, 52% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 10.03 (s, 1H), 8.18 (s, 1H), 7.75 (d, *J* = 8.7 Hz, 1H), 7.38 (d, *J* = 8.6 Hz, 1H), 7.31 (d, *J* = 7.4 Hz, 3H), 7.23 (d, *J* = 3.2 Hz, 1H), 7.11 (d, *J* = 7.9 Hz, 2H), 6.72 (d, *J* = 3.2 Hz, 1H), 5.36 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 139.7, 136.7, 130.3, 129.7, 129.1, 128.6, 128.1, 126.9, 126.6, 122.2, 110.4, 104.0, 50.5; HR-ESI-MS (*m*/*z*): calcd. for C₁₆H₁₃NONa [M + Na]⁺, 258.0889, found 258.0888.

Indole-3-carboxaldehyde (25)²²

Prepared according to the general procedure using 3-iodo-1H-indole (121.5 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂(8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 12 hours. temperature: -10 °C. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:2) to afford the product **25** as a colorless oil (38.2 mg, 53% yield). ¹H NMR (400 MHz, DMSO-d6) δ 12.16 (s, 1H), 9.94 (s, 1H), 8.29 (s, 1H), 8.10 (d, *J* = 7.5 Hz, 1H), 7.59 – 7.43 (m, 1H), 7.24 (m, 2H); ¹³C NMR (100 MHz, DMSO-d6) δ 185.0, 138.5, 137.1, 124.2, 123.5, 122.2, 120.9, 118.2, 112.5.

1H-Indole-5-carboxaldehyde (26)²³

Prepared according to the general procedure using 5-iodo-1H-indole (121.5 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 12 hours. temperature: -10 °C. The crude mixture was purified by silica gel chromatography (ethyl acetate/petroleum ether 1:4) to afford the product **26** as a colorless oil (36.2 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 8.81 (s, 1H), 8.19 (s, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.49 (d, *J* = 8.5 Hz, 1H), 7.33 (s, 1H), 6.72 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.9, 139.5, 129.8, 127.9, 126.5, 126.3, 122.4, 111.9, 104.6.

2-(3-Methylbut-2-enoxy)benzaldehyde (28)²⁴

Prepared according to the general procedure using 1-Iodo-2-(prenyloxy)benzene **27** (144.0 mg, 0.5 mmol), KOMe (42.1 mg, 0.6 mmol), Mg(OTf)₂ (8.0 mg, 0.05 eq), TMS-TMS (122.8 μ L, 0.6 mmol), and DMF (2.0 mL). Time of reaction: 4 hours. The crude mixture was purified by silica gel chromatography S37

(ethyl acetate/petroleum ether 1:150) to afford the product **28** as a colorless oil (59.8 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 7.83 (d, *J* = 6.6 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.05 – 6.95 (m, 2H), 5.50 (t, *J* = 6.5 Hz, 1H), 4.63 (d, *J* = 6.6 Hz, 2H), 1.80 (s, 3H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.11, 161.51, 138.83, 135.90, 128.43, 125.34, 120.70, 119.14, 113.13, 65.64, 25.88, 18.41; HR-ESI-MS (*m/z*): calcd. for C₁₂H₁₄O₂Na [M + Na]⁺, 213.0886, found 213.0883.

6. References:

1. M. Ahmad, A.-C. Gaumont, M. Durandetti and J. Maddaluno, Direct Syn Addition of Two Silicon Atoms to a C≡C Triple Bond by Si–Si Bond Activation: Access to Reactive Disilylated Olefins, *Angew. Chem. Int. Ed.*, 2017, **56**, 2464.

2. K. Lee and R. E. Maleczka, Pd(0)-Catalyzed PMHS Reductions of Aromatic Acid Chlorides to Aldehydes, *Org. Lett.*, 2006, **8**, 1887.

3. N. Jiang and A. J. Ragauskas, Copper(II)-Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes in Ionic Liquid [bmpy]PF6, *Org. Lett.*, 2005, **7**, 3689.

4. A. Schmidt, T. Habeck, B. Snovydovych and W. Eisfeld, Addition Reactions and Redox Esterifications of Carbonyl Compounds by N-Heterocyclic Carbenes of Indazole, *Org. Lett.*, 2007, **9**, 3515.

5. C. Han and S. L. Buchwald, Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides, *J. Am. Chem. Soc.*, 2009, **131**, 7532.

 R. Hilgraf and A. Pfaltz, Chiral Bis(N-sulfonylamino)phosphine- and TADDOL-Phosphite-Oxazoline Ligands: Synthesis and Application in Asymmetric Catalysis, *Adv. Synth. Catal.*, 2005, 347, 61.

7. M. Tashiro and T. Yamato, Metacyclophanes and related compounds. 8. Preparation and reactions of 8,16-diformyl[2.2]metacyclophanes, *J. Org. Chem.*, 1983, **48**, 1461.

8. M. Maddani and K. R. Prabhu, A chemoselective aerobic oxidation of benzylic azides catalyzed by molybdenum xanthate in an aqueous medium, *Tetrahedron Lett.*, 2008, **49**, 4526.

9. M. Dabrowski, P. Kurach, S. Lulinski and J. Serwatowski, An ortho-lithiated derivative of protected phenylboronic acid: an approach to ortho-functionalized arylboronic acids and 1,3-dihydro-1-hydroxybenzo[c][2,1]oxaboroles, *Appl. Organomet. Chem.*, 2007, **21**, 234.

10. S. Velusamy, M. Ahamed and T. Punniyamurthy, Novel Polyaniline-Supported Molybdenum-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones, *Org. Lett.*, 2004, **6**, 4821.

11. M. Paventi and A. S. Hay, Synthesis, structure and stability of E/Z-isomers of novel conjugated enamines prepared from 9-arylmethyl- or 9-arylpropenyl-9H-carbazole with arylmethyleneanilines, *J. Chem. Soc., Perkin Trans. 1*, 1997, 1059.

12. A. Takada, Y. Hashimoto, H. Takikawa, K. Hikita and K. Suzuki, Total Synthesis and Absolute Stereochemistry of Seragakinone A, *Angew. Chem., Int. Ed.*, 2011, **50**, 2297.

13. C. Huang, Y. Li, Y. Song, Y. Li, H. Liu and D. Zhu, Ordered Nanosphere Alignment of Porphyrin for the Improvement of Nonlinear Optical Properties, *Adv. Mater. (Weinheim, Ger.)*, 2010, **22**, 3532.

14. H. Kim, J. Ralph, F. Lu, S. A. Ralph, A.-M. Boudet, J. J. MacKay, R. R. Sederoff, T. Ito, S. Kawai, H. Ohashi and T. Higuchi, NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins, *Org. Biomol. Chem.*, 2003, **1**, 268.

15. B. Jiang, S.-J. Tu, P. Kaur, W. Wever and G. Li, Four-Component Domino Reaction Leading to Multifunctionalized Quinazolines, *J. Am. Chem. Soc.*, 2009, **131**, 11660.

16. B. Guan, D. Xing, G. Cai, X. Wan, N. Yu, Z. Fang, L. Yang and Z. Shi, Highly Selective Aerobic Oxidation of Alcohol Catalyzed by a Gold(I) Complex with an Anionic Ligand, *J. Am. Chem. Soc.*, 2005, **127**, 18004.

17. K. Lee and R. E. Maleczka, Jr., Pd(0)-Catalyzed PMHS reductions of aromatic acid chlorides to aldehydes, *Org. Lett.*, 2006, **8**, 1887.

18. L. V. Dunkerton, B. C. Barot and A. Nigam, Synthesis of multisulfur containing substituted dibenzothiophenes, *J. Heterocycl. Chem.*, 1987, **24**, 749.

19. N. Lakshminarayana, Y. R. Prasad, L. Gharat, A. Thomas, S. Narayanan, A. Raghuram, C. V. Srinivasan and B. Gopalan, Synthesis and evaluation of some novel dibenzo[b,d]furan carboxylic acids as potential anti-diabetic agents, *Eur. J. Med. Chem.*, 2010, **45**, 3709.

20. T. Kurihara, T. Fujimoto, S. Harusawa and R. Yoneda, Simple N-alkylation and N-acylation of 3-acetylindole and 3-indolecarboxaldehyde, *Synthesis*, 1987, DOI: 10.1055/s-1987-27960, 396.

21. L. Poszavacz, G. Simig, J. Fetter and F. Bertha, New synthesis of naratriptan, *Heterocycles*, 2006, **68**, 713.

22. N. Duarte and M.-J. U. Ferreira, Lagaspholones A and B: Two New Jatropholane-Type Diterpenes from Euphorbia lagascae, *Org. Lett.*, 2007, **9**, 489.

23. J. Fetter, F. Bertha, L. Poszavacz and G. Simig, New practical synthesis of 5-formylindole, *J. Heterocycl. Chem.*, 2005, **42**, 137.

24. E. Tyrrell, K. H. Tesfa, J. Millet and C. Muller, Enantioselective alkynylation reactions to aldehydes: the effects of aromatic substituents upon the enantioselectivity, *Synthesis*, 2006, 3099.

7. ¹H-NMR and ¹³C-NMR Spectral Data

S41

3, 400MHz, CDCl₃

S43

 $\mathbf{5}$, 100MHz, CDCl₃

S49

14, 400MHz, CDCl₃

 $\textbf{17},\,400\text{ MHz},\,\text{CDCI}_3$

18, 400 MHz, CDCl₃

18, 100 MHz, CDCl₃

19, 400 MHz, CDCl₃

20, 400 MHz, CDCI₃

- 10.58

21, 400 MHz, CDCI3

21, 100 MHz, CDCI3

