Generation of (*Z*)-*B*-alkenyl alkylsulfones via a coppercatalyzed decarboxylative alkylsulfonylation

Tonghao Zhu,^a Pornchai Rojsitthisak^b and Jie Wu *^{a,c}

 ^a School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
^b Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
^c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

*E-mail: jie_wu@fudan.edu.cn

Supporting Information

1.	General Information	S2
2.	General procedures for the synthesis of (Z)-vinyl sulfone derivatives	\$3
3.	Gram-scale synthesis of compound 3a	\$3
4.	Optimization of reaction conditions	S4
5.	Mechanistic studies	S5-S6
6.	References	S7
7.	Characterization data for all products	S8-S18
8.	¹ H, ¹⁹ F and ¹³ C NMR spectra of products	S19-S41

General information.

All reactions were carried out in oven dried Schlenk tubes under nitrogen atmosphere. All of *N*-tosyl acrylamides were prepared as reported in the reference.¹ DABCO·(SO₂)₂ was prepared according to the reported method.² Phenyliodine(III) dicarboxylates were freshly prepared according to the literature.³ Dry acetonitrile (MeCN) was purchased from Energy Chemical, and copper trifluoroacetate (Cu(TFA)₂) was purchased from Adamas-beta. ¹H, ¹⁹F, ¹³C NMR spectra were recorded in CDCl₃ or DMSO-*d*₆ on Bruker Avance 400 MHz spectrometers. High resolution mass spectra (HRMS) were obtained using a commercial apparatus (ESI Source). Electrospray–ionisation HRMS data were acquired on a Q–Tof mass spectrometer (Waters SYNAPT G2-Si) LC-MS TOF. NMR spectra were taken using TMS (¹H, δ = 0), CDCl₃ (¹H, δ = 7.26), CDCl₃ (¹³C, CPD δ = 77.0), DMSO-*d*₆ (¹H, δ = 2.50) and DMSO-*d*₆ (¹³C, CPD δ = 40.0) as the internal standards, respectively. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

General procedures for the synthesis of (Z)-vinyl sulfone derivatives

Phenyliodine(III) dicarboxylate **1** (0.6 mmol, 2.0 equiv), acrylamide **2** (0.3 mmol), DABCO·(SO₂)₂ (0.6 mmol, 2.0 equiv), and copper trifluoroacetate (0.015 mmol, 5 mol %) were added sequentially into Schlenk tube under nitrogen. Then MeCN (1.5 mL) was added rapidly by syringe. The resulting mixture was allowed to stir at 80 °C oil bath for 12 hours as monitored by TLC. Upon completion, solvent was concentrated under vacuum and the residue was purified by flash column chromatography using *n*-hexane/acetone as eluent to afford pure product **3**.

Gram-scale experiment

Phenyliodine(III) dicarboxylate **1a** (9.0 mmol, 2.0 equiv), *N*-tosyl acrylamide **2a** (4.5 mmol, 1.36 g), DABCO·(SO₂)₂ (9.0 mmol, 2.0 equiv), and copper trifluoroacetate (0.225 mmol, 5 mol %) were added sequentially into Schlenk tube under nitrogen. Then MeCN (20 mL) was added rapidly by syringe. The resulting mixture was allowed to stir at 80 °C oil bath for 12 hours as monitored by TLC. Upon completion, the mixture was cooled to room temperature. Then, the mixture was filtered through a Celite pad eluted with dichloromethane and concentrated under vacuum. The residue was purified by flash column chromatography using *n*-hexane/acetone (10:1 to 3:1) as eluent to afford pure product **3a** (1.29 g, 64%).

	CyCOO I—Ph F CyCOO 1a + H-	Ph O NHTs —	[Cu] (cat) solvent, T	HTs
	DABCO·(<mark>SO₂)</mark> 2	H 2a Cy	y = cyclohexyl	3a
Entry	[Cu] catalyst (mol %)	Solvent	Temperature (°C)	Yield (%) ^b
1	CuCl (10)	MeCN	80	21
2	CuBr (10)	MeCN	80	trace
3	Cul (10)	MeCN	80	trace
4	CuOAc (10)	MeCN	80	57
5	CuTc (10)	MeCN	80	52
6	CuOTf (10)	MeCN	80	42
7	Cu(MeCN) ₄ BF ₄ (10)	MeCN	80	55
8	Cu(MeCN) ₄ PF ₆ (10)	MeCN	80	54
9	Cu(OAc) ₂ (10)	MeCN	80	58
10	Cu(OTf) ₂ (10)	MeCN	80	57
11	Cu(acac) ₂ (10)	MeCN	80	60
12	CuCl ₂ (10)	MeCN	80	11
13	CuBr ₂ (10)	MeCN	80	trace
14	Cu(TFA) ₂ (10)	MeCN	80	63
13	Cu(TFA) ₂ (10)	DCE	80	17
14	Cu(TFA) ₂ (10)	EA	80	30
15	Cu(TFA) ₂ (10)	toluene	80	trace
16	Cu(TFA) ₂ (10)	DMF	80	19
17	Cu(TFA) ₂ (10)	DMSO	80	43
18	Cu(TFA) ₂ (10)	1,4-dioxane	80	23
19 ^c	Cu(TFA) ₂ (10)	MeCN	80	14
20	Cu(TFA) ₂ (5)	MeCN	80	65
21	Cu(TFA) ₂ (15)	MeCN	80	58
22	Cu(TFA) ₂ (20)	MeCN	80	57

Table S1. Optimization of reaction conditions ^{*a*}

23	Cu(TFA) ₂ (5)	MeCN	50	14
24	Cu(TFA) ₂ (5)	MeCN	rt	n.d.
25 ^d	Cu(TFA) ₂ (5)	MeCN	80	45
26 ^e	Cu(TFA) ₂ (5)	MeCN	80	80
27	Cu(TFA) ₂ (0)	MeCN	80	trace

^{*a*} Reaction conditions: phenyliodine(III) dicyclohexylcarboxylate **1a** (0.3 mmol, 1.5 equiv), *N*-tosyl acrylamide **2a** (0.2 mmol), DABCO·(SO₂)₂ (0.3 mmol, 1.5 equiv), copper catalyst, solvent (1.0 mL), sealed tube, N₂, 12 h. ^{*b* 1}H NMR yield using mesitylene as internal standard. ^{*c*} K₂S₂O₅ was used as the sulfur dioxide surrogate. ^{*d*} Phenyliodine(III) dicyclohexylcarboxylate **1a** (0.24 mmol, 1.2 equiv) and DABCO·(SO₂)₂ (0.24 mmol, 1.2 equiv) were used. ^{*e*} Phenyliodine(III) dicyclohexylcarboxylate **1a** (0.4 mmol, 2.0 equiv) and DABCO·(SO₂)₂ (0.4 mmol, 2.0 equiv) were used.

Mechanistic studies

1) Trapping experiment with 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)

Phenyliodine(III) dicarboxylate **1a** (0.4 mmol, 2.0 equiv), *N*-tosyl acrylamide **2a** (0.2 mmol), DABCO·(SO₂)₂ (0.4 mmol, 2.0 equiv), Cu(TFA)₂ (0.01 mmol, 5 mol %), and TEMPO (0.4 mmol, 2.0 equiv) were added sequentially into Schlenk tube under nitrogen. Then MeCN (1 mL) was added rapidly by syringe. The resulting mixture was allowed to stir at 80 °C oil bath for 12 hours. The resulting mixture was filtered through a Celite pad eluted with dichloromethane. The mixture was concentrated, and the crude was determined by NMR analysis using mesitylene as the internal standard.

2) Trapping experiment with ethene-1,1-diyldibenzene

Phenyliodine(III) dicarboxylate **1b** (0.4 mmol, 2.0 equiv), *N*-tosyl acrylamide **2a** (0.2 mmol), DABCO·(SO₂)₂ (0.4 mmol, 2.0 equiv) and Cu(TFA)₂ (0.01 mmol, 5 mol %) were added sequentially into Schlenk tube under nitrogen. Then ethene-1,1-diyldibenzene (0.2 mmol) and MeCN (1 mL) were added rapidly by syringe. The resulting mixture was allowed to stir at 80 °C oil bath for 12 hours. The resulting mixture was filtered through a Celite pad eluted with dichloromethane. The mixture was concentrated, and the crude was determined by NMR analysis using mesitylene as the internal standard.

References

- 1. Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2013, 52, 12414 -12417.
- 2. Mileghem, S. V.; De Borggraeve, W. M. Org. Process Res. Dev. 2017, 21, 785.
- 3. Liang, Y.; Zhang X.; MacMillan, D. W. C. *Nature*, **2018**, *559*, 83.

Characterization data for products

(*Z*)-3-(cyclohexylsulfonyl)-2-phenyl-*N*-tosylacrylamide (**3a**): 100.1 mg, yield: 75%, light yellow solid, m.p.: 197.4 – 199.5 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.46 (br, 1H), 7.97 (d, *J* = 8.2 Hz, 2H), 7.50 – 7.42 (m, 1H), 7.40 – 7.30 (m, 6H), 6.59 (s, 1H), 2.83 (tt, *J* = 11.7, 2.8 Hz, 1H), 2.46 (s, 3H), 1.99 – 1.91 (m, 2H), 1.87 – 1.76 (m, 2H), 1.69 – 1.60 (m, 1H), 1.43 – 1.29 (m, 2H), 1.26 – 1.09 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.6, 149.7, 144.8, 135.1, 131.7, 131.4, 129.2, 129.1, 128.8, 127.2, 123.8, 63.1, 24.9, 24.7, 24.6, 21.7. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₂H₂₅NNaO₅S₂⁺ 470.1066, found 470.1074.

(*Z*)-3-(cyclohexylsulfonyl)-2-(*p*-tolyl)-*N*-tosylacrylamide (**3b**): 85.8 mg, yield: 62%, light yellow solid, m.p.: 202.7 – 204.4 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.32 (s, 1H), 7.98 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.30 – 7.24 (m, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 6.55 (s, 1H), 2.81 (tt, *J* = 12.0, 3.3 Hz, 1H), 2.46 (s, 3H), 2.38 (s, 3H), 1.98 – 1.90 (m, 2H), 1.85 – 1.78 (m, 2H), 1.68 – 1.60 (m, 1H), 1.44 – 1.29 (m, 2H), 1.26 – 1.07 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.8, 149.5, 144.8, 142.2, 135.1, 129.9, 129.1, 128.9, 128.8, 127.2, 122.6, 63.2, 24.9, 24.75, 24.69, 21.7, 21.4. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₃H₂₇NNaO₅S₂⁺ 484.1223, found 484.1231.

(*Z*)-3-(cyclohexylsulfonyl)-2-(*m*-tolyl)-*N*-tosylacrylamide (**3c**): 96.5 mg, yield: 70%, light yellow solid, m.p.: 225.3 – 227.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 12.78 (s, 1H), 7.84 (d, *J* = 7.3 Hz, 2H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.31 -7.23 (m, 2H), 7.18 – 7.08 (m, 2H), 6.96 (s, 1H), 3.02 (t, *J* = 11.4 Hz, 1H), 2.44 (s, 3H), 2.19 (s, 3H), 2.02 – 1.90 (m, 2H), 1.85 – 1.73 (m, 2H), 1.67 – 1.56 (m, 1H), 1.42 – 1.06 (m, 5H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ ppm 164.5, 148.1, 144.9, 138.8, 136.4, 132.5, 132.1, 129.9, 129.4, 128.4, 127.7, 124.6, 123.8, 61.9, 25.3, 24.9, 24.8, 21.6, 21.3. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₃H₂₇NNaO₅S₂⁺ 484.1223, found 484.1232.

(*Z*)-3-(cyclohexylsulfonyl)-2-(4-fluorophenyl)-*N*-tosylacrylamide (**3d**): 94.1 mg, yield: 67%, light yellow solid, m.p.: 170.0 – 172.2 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.69 (br, 1H), 7.96 (d, *J* = 8.3 Hz, 2H), 7.41 – 7.31 (m, 4H), 7.04 (t, *J* = 8.6 Hz, 2H), 6.56 (s, 1H), 2.84 (tt, *J* = 12.0, 3.2 Hz, 1H), 2.46 (s, 3H), 2.00 – 1.92 (m, 2H), 1.87 – 1.79 (m, 2H), 1.70 – 1.60 (m, 1H), 1.45 – 1.09 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.49 (d, *J* = 252.0Hz), 163.6, 148.7, 144.9, 135.1, 129.54 (d, *J* = 8.0Hz), 129.2, 128.8, 127.86 (d, *J* = 4.0Hz), 123.4, 116.38 (d, *J* = 22.0Hz), 63.1, 24.9, 24.73, 24.66, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -107.65 - -107.35 (m). HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₂H₂₄FNNaO₅S₂⁺ 488.09723, found 488.0984.

(*Z*)-2-(4-chlorophenyl)-3-(cyclohexylsulfonyl)-*N*-tosylacrylamide (**3e**): 92.5 mg, yield: 64%, light yellow solid, m.p.: 203.8 – 205.7 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.67 (br, 1H), 7.95 (d, *J* = 8.3 Hz, 2H), 7.36 – 7.28 (m, 6H), 6.59 (s, 1H), 2.84 (tt, *J* = 12.0, 3.2 Hz, 1H), 2.47 (s, 3H), 2.01 – 1.92 (m, 2H), 1.88 – 1.77 (m, 2H), 1.70 – 1.59 (m, 1H), 1.44 – 1.31 (m, 2H), 1.27 – 1.08 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.4, 148.6, 145.0, 137.8, 135.1, 130.1, 129.5, 129.2, 128.8, 128.6, 124.1, 63.2, 24.9, 24.75, 24.69, 21.7. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₂H₂₄Cl³⁵NNaO₅S₂⁺ 504.0677, found: 504.0687; calcd for C₂₂H₂₄Cl³⁷NNaO₅S₂⁺ 506.0647, found 506.0660.

(*Z*)-2-(4-bromophenyl)-3-(cyclohexylsulfonyl)-*N*-tosylacrylamide (**3f**): 71.2 mg, yield: 45%, light yellow solid, m.p.: 204.1 – 205.8 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.70 (br, 1H), 7.95 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.6 Hz, 2H), 6.60 (s, 1H), 2.85 (tt, *J* = 11.9, 3.2 Hz, 1H), 2.47 (s, 3H), 2.00 – 1.92 (m, 2H), 1.88 – 1.78 (m, 2H), 1.72 – 1.62 (m, 1H), 1.46 – 1.29 (m, 2H), 1.18 (dt, J = 20.9, 14.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.4, 148.7, 145.0, 135.0, 132.4, 130.6, 129.2, 128.8, 128.7, 126.2, 124.1, 63.2, 24.9, 24.75, 24.69, 21.7. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₂H₂₄Br⁷⁹NNaO₅S₂⁺ 548.0171, found: 548.0175; calcd for C₂₂H₂₄Br⁸¹NNaO₅S₂⁺ 550.0151, found 550.0160.

(*Z*)-2-(4-(*tert*-butyl)phenyl)-3-(cyclohexylsulfonyl)-*N*-tosylacrylamide (**3g**): 116.9 mg, yield: 77%, light yellow solid, m.p.: 173.5 – 175.4 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.21 (s, 1H), 7.99 (d, *J* = 8.3 Hz, 2H), 7.43 – 7.29 (m, 6H), 6.56 (s, 1H), 2.80 (tt, *J* = 12.0, 3.3 Hz, 1H), 2.46 (s, 3H), 2.00 - 1.88(m, 2H), 1.86 – 1.76 (m, 2H), 1.68 – 1.89 (m, 1H), 1.42 – 1.28 (m, 11H), 1.24 – 1.07 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.7, 155.2, 149.5, 144.7, 135.2, 129.1, 128.9, 128.7, 127.0, 126.2, 122.6 63.2, 34.9, 31.0, 24.9, 24.75, 24.71, 21.7. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₆H₃₃NNaO₅S₂⁺ 526.1692, found: 526.1694.

(*Z*)-3-(cyclohexylsulfonyl)-2-(4-methoxyphenyl)-*N*-tosylacrylamide (**3h**): 96.9 mg, yield: 68%, light yellow solid, m.p.: 174.8 – 176.5 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.20 (s, 1H), 7.99 (d, *J* = 8.3 Hz, 2H), 7.37 – 7.31 (m, 4H), 6.87 (d, *J* = 8.9 Hz, 2H), 6.49 (s, 1H), 3.84 (s, 3H), 2.79 (tt, *J* = 12.0, 3.3 Hz, 1H), 2.46 (s, 3H), 1.98 – 1.89 (m, 2H), 1.86 – 1.77 (m, 2H), 1.68 – 1.60 (m, 1H), 1.41 – 1.09 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.0, 162.2, 149.1, 144.8, 135.1, 129.1, 129.0, 128.9, 123.8, 121.0, 114.7, 63.2, 55.5, 24.9, 24.8, 24.7, 21.7. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₃H₂₇NNaO₆S₂⁺ 500.1172, found: 500.1182.

(*Z*)-3-(cyclohexylsulfonyl)-*N*-tosyl-2-(4-(trifluoromethyl)phenyl)acrylamide (**3i**): 85.4 mg, yield: 55%, light yellow solid, m.p.: 189.4 – 191.3 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.84 (br, 1H), 7.94 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.2 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 6.68 (s, 1H), 2.88 (t, *J* = 11.9 Hz, 1H), 2.46 (s, 3H), 2.03 – 1.94 (m, 2H), 1.88 – 1.78 (m, 2H), 1.71 – 1.61 (m, 1H), 1.45 – 1.07 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.1, 148.5, 145.1, 135.2, 135.0, 132.89 (q, *J* = 32.7 Hz), 129.3, 128.7, 127.7, 126.10 (q, *J* = 3.7 Hz), 125.9, 123.45 (q, *J* = 271.0 Hz), 63.1, 24.9, 24.72, 24.68, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -63.03 (s). HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₃H₂₄F₃NNaO₅S₂⁺ 538.0940, found 538.0952.

(*Z*)-3-(cyclohexylsulfonyl)-2-(naphthalen-2-yl)-*N*-tosylacrylamide (**3j**): 84.8 mg, yield: 57%, light yellow solid, m.p.: 248.7 – 250.1 °C. ¹H NMR (400 MHz, DMSO-*d₆*) δ ppm 12.88 (s, 1H), 8.02 – 7.80 (m, 4H), 7.69 – 7.39 (m, 7H), 7.30 (s, 1H), 3.08 (t, *J* = 11.5 Hz, 1H), 2.50 (s, 4H), 2.10 – 1.95 (m, 2H), 1.87 – 1.74 (m, 2H), 1.67 – 1.57 (m, 1H), 1.47 – 1.09 (m, 5H). ¹³C NMR (100 MHz, DMSO-*d₆*) δ ppm 164.5, 147.9, 145.1, 136.5, 134.1, 132.6, 130.0, 129.3, 128.9, 128.5, 128.4, 128.2, 127.7, 124.3, 124.0, 61.9, 25.3, 24.9, 24.8, 21.7. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₆H₂₇NNaO₅S₂⁺ 520.1223, found: 520.1222.

(*Z*)-*N*-(3-(cyclohexylsulfonyl)-2-phenylacryloyl)benzamide (**3m**): 24.7 mg, yield: 21%, white solid, m.p.: 181.7 – 183.5 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.15 (s, 1H), 7.86 – 7.78 (m, 2H), 7.62 – 7.53 (m, 3H), 7.49 – 7.39 (m, 5H), 6.55 (s, 1H), 2.98 (tt, *J* = 12.2, 3.4 Hz, 1H), 2.26 – 2.14 (m, 2H), 1.94 – 1.82 (m, 2H), 1.73 – 1.65 (m, 1H), 1.53 (qd, *J* = 12.4, 3.1 Hz, 2H), 1.36 – 1.11 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 167.6, 164.4, 151.7, 133.4, 132.5, 131.7, 130.8, 129.1, 128.9, 127.9, 127.3, 121.6, 63.4, 25.1, 25.02, 25.01. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₂H₂₃NNaO₄S⁺ 420.1240, found: 420.1243.

tert-butyl (*Z*)-(3-(cyclohexylsulfonyl)-2-phenylacryloyl)carbamate (**3n**): 27.5 mg, yield: 23%, white solid, m.p.: 161.9 – 163.9 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.70 (s, 1H), 7.56 – 7.49 (m, 2H), 7.47 – 7.39 (m, 3H), 6.51 (s, 1H), 3.00 (tt, *J* = 12.2, 3.4 Hz, 1H), 2.25 – 2.14 (m, 2H), 1.95 – 1.85 (m, 2H), 1.74 – 1.66 (m, 1H), 1.60 – 1.49 (m, 2H), 1.41 (s, 9H), 1.36 – 1.14 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 167.0, 151.1, 149.3, 132.4, 130.9, 129.1, 127.1, 121.8, 83.7, 63.4, 27.8, 25.1, 24.98, 24.96. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₀H₂₇NNaO₅S⁺ 416.1502, found: 416.1514.

(*Z*)-*N*-butyl-3-(cyclohexylsulfonyl)-2-phenylacrylamide (**3o**): 27.5 mg, yield: 26%, (*Z/E* = 93/7), light yellow solid, m.p.: 126.9 – 128.1 °C. For major (*Z*)-isomer: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.58 – 7.50 (m, 2H), 7.49 – 7.39 (m, 3H), 6.55 (s, 1H), 5.87 (t, *J* = 5.4 Hz, 1H), 3.41 (td, *J* = 7.3, 5.9 Hz, 2H), 3.14 (tt, *J* = 12.2, 3.4 Hz, 1H), 2.24 – 2.14 (m, 2H), 1.95 – 1.85 (m, 2H), 1.78 – 1.64 (m, 1H), 1.63 – 1.53 (m, 2H), 1.43 – 1.14 (m, 7H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.4, 152.0, 133.6, 131.0, 129.1, 127.1, 123.6, 63.3, 39.8, 31.0, 25.1, 24.93, 24.91, 20.1, 13.6. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₉H₂₇NNaO₃S⁺ 372.1604, found: 372.1613.

(*Z*)-3-(cyclopentylsulfonyl)-2-phenyl-*N*-tosylacrylamide (**3q**): 91.5 mg, yield: 70%, light yellow solid, m.p.: 156.4 – 158.0 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.48 (s, 1H), 7.96 (d, *J* = 8.3 Hz, 2H), 7.49 – 7.42 (m, 1H), 7.41 – 7.34 (m, 4H), 7.32 (d, *J* = 8.1 Hz, 2H), 6.63 (s, 1H), 3.45 – 3.32 (m, 1H), 2.45 (s, 3H), 2.02 – 1.90 (m, 2H), 1.89 – 1.78 (m, 2H), 1.72 – 1.49 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.7, 148.8, 144.9, 135.0, 131.6, 131.4, 129.22, 129.18, 128.9, 127.2, 124.7, 63.5, 26.5, 25.7, 21.7. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₁H₂₃NNaO₅S₂⁺ 456.0910, found: 456.0925.

(*Z*)-3-(cyclobutylsulfonyl)-2-phenyl-*N*-tosylacrylamide (**3r**): 84.7 mg, yield: 67%, light yellow solid, m.p.: 154.1 – 155.8 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.54 (br, 1H), 7.97 (d, *J* = 8.2 Hz, 2H), 7.48 – 7.41 (m, 1H), 7.38 – 7.30 (m, 6H), 6.58 (s, 1H), 3.77 (quint, *J* = 8.1 Hz, 1H), 2.47 – 2.34 (m, 5H), 2.21 – 2.10 (m, 2H), 1.99 – 1.86 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.7, 149.4, 144.9, 135.0, 131.6, 131.4, 129.22, 129.20, 128.8, 127.2, 123.7, 56.1, 22.1, 21.7, 17.1. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₀H₂₁NNaO₅S₂⁺ 442.0753, found: 442.0760.

(*Z*)-2-phenyl-3-((tetrahydro-2H-pyran-4-yl)sulfonyl)-*N*-tosylacrylamide (**3s**): 69.8 mg, yield: 52%, light yellow solid, m.p.: 155.1 – 157.0 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.53 (s, 1H), 7.96 (d, *J* = 8.1 Hz, 2H), 7.51 – 7.44 (m, 1H), 7.41 – 7.31 (m, 6H), 6.58 (s, 1H), 4.04 – 3.94 (m, 2H), 3.35 – 3.24 (m, 2H), 3.16 – 3.03 (m, 1H), 2.46 (s, 3H), 1.85 – 1.68 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.5, 150.6, 145.1, 135.0, 131.8, 131.4, 129.4, 129.3, 128.9, 127.3, 123.1, 66.2, 60.2, 24.7, 21.8. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₁H₂₃NNaO₆S₂⁺ 472.0859, found: 472.0864.

tert-butyl (*Z*)-4-((3-((4-methylphenyl)sulfonamido)-3-oxo-2-phenylprop-1-en-1yl)sulfonyl)piperidine-1-carboxylate (**3t**): 88.9 mg, yield: 54%, light yellow solid, m.p.: $121.1 - 122.7 \,^{\circ}C. \,^{1}H$ NMR (400 MHz, CDCl₃) δ ppm 9.84 (s, 1H), 7.95 (d, *J* = 8.1 Hz, 2H), 7.50 - 7.42 (m, 1H), 7.41 - 7.29 (m, 6H), 6.60 (s, 1H), 4.25 - 3.97 (m, 2H), 3.09 - 2.94 (m, 1H), 2.76 - 2.56 (m, 2H), 2.46 (s, 3H), 1.92 - 1.82 (m, 2H), 1.65 - 1.52 (m, 2H), 1.41 (s, 9H). ^{13}C NMR (100 MHz, CDCl₃) δ ppm 163.6, 154.3, 150.6, 145.0, 135.0, 131.7, 131.4, 129.3, 129.2, 128.8, 127.2, 123.1, 80.2, 61.2, 28.3, 24.2, 21.7. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₆H₃₂N₂NaO₇S₂⁺ 571.1543, found: 571.1559.

(*Z*)-3-(cyclohex-3-en-1-ylsulfonyl)-2-phenyl-*N*-tosylacrylamide (**3u**): 80.9 mg, yield: 61%, light yellow solid, m.p.: 169.0 – 171.2 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.53 (br, 1H), 7.97 (d, *J* = 8.1 Hz, 2H), 7.49 – 7.43 (m, 1H), 7.40 – 7.29 (m, 6H), 6.62 (s, 1H), 5.63 (dd, J = 23.3, 9.5 Hz, 2H), 3.17 – 3.04 (m, 1H), 2.46 (s, 3H), 2.31 – 1.98 (m, 5H), 1.66 – 1.52 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.6, 150.0, 144.9, 135.0, 131.5, 129.3, 129.2, 128.8, 127.2, 126.7, 123.4, 123.3, 59.8, 24.0, 23.7, 21.7, 21.0. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₂H₂₃NNaO₅S₂⁺ 468.0910, found: 468.0920.

(Z)-3-(isopropylsulfonyl)-2-phenyl-*N*-tosylacrylamide (**3v**): 72.9 mg, yield: 60%, light yellow solid, m.p.: 136.4 – 137.9 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.29 (br, 1H), 7.97 (d, *J* = 8.3 Hz, 2H), 7.51 – 7.42 (m, 1H), 7.42 – 7.36 (m, 4H), 7.33 (d, *J* = 8.2 Hz, 2H), 6.62 (s, 1H), 3.17 – 3.04 (m, 1H), 2.46 (s, 3H), 1.23 (d, J = 6.9 Hz, 6H). ¹³C NMR (100

MHz, CDCl₃) δ ppm 163.6, 149.9, 144.9, 135.0, 131.6, 129.3, 129.2, 128.9, 127.2, 123.8, 55.5, 21.7, 15.0. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₉H₂₁NNaO₅S₂⁺ 430.0753, found: 430.0764.

(*Z*)-3-(methylsulfonyl)-2-phenyl-*N*-tosylacrylamide (**3w**): 84.2 mg, yield: 74%, light yellow solid, m.p.: 215.7 – 216.9 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 12.87 (s, 1H), 7.85 (d, *J* = 7.3 Hz, 2H), 7.54 – 7.38 (m, 5H), 7.34 (d, J = 7.5 Hz, 2H), 7.29 (s, 1H), 3.10 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ ppm 164.7, 146.1, 144.8, 136.5, 132.6, 131.6, 129.9, 129.7, 128.4, 127.3, 126.9, 43.6, 21.7. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₇H₁₇NNaO₅S₂⁺ 402.0440, found: 402.0447.

(*Z*)-2-phenyl-3-((3-phenylpropyl)sulfonyl)-*N*-tosylacrylamide (**3x**): 95.3 mg, yield: 66%, light yellow solid, m.p.: 192.1 – 193.8 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 12.90 (s, 1H), 7.87 (d, J = 7.0 Hz, 2H), 7.55 – 7.14 (m, 13H), 3.26 – 3.07 (m, 2H), 2.65 (t, *J* = 7.5 Hz, 2H), 2.40 (s, 3H), 2.02 – 1.87 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ ppm 164.6, 147.4, 144.9, 141.2, 136.4, 132.6, 131.6, 129.8, 129.6, 128.93, 128.92, 128.5, 127.4, 126.6, 125.5, 54.3, 33.9, 23.9, 21.6. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₅H₂₅NNaO₅S₂⁺ 506.1066, found: 506.1074.

(*Z*)-3-(but-3-en-1-ylsulfonyl)-2-phenyl-*N*-tosylacrylamide (**3y**): 54.6 mg, yield: 43%, light yellow solid, m.p.: 166.4 – 168.2 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.47 (br, 1H), 7.96 (d, *J* = 8.2 Hz, 2H), 7.50 – 7.42 (m, 1H), 7.41 – 7.30 (m, 6H), 6.63 (s, 1H), 5.76 – 5.60 (m, 1H), 5.11 – 4.96 (m, 2H), 3.15 – 3.03 (m, 2H), 2.49 – 2.37 (m, 5H).¹³C NMR (100 MHz, CDCl₃) δ ppm 163.6, 149.4, 145.0, 135.0, 133.7, 131.6, 131.3, 129.30, 129.27, 128.8, 127.3, 125.4, 117.3, 55.0, 26.0, 21.7. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₀H₂₁NNaO₅S₂⁺ 442.0753, found: 442.0758.

¹H, ¹⁹F and ¹³C NMR spectra of products

(Z)-3-(cyclohexylsulfonyl)-2-phenyl-N-tosylacrylamide (3a)

S19

(Z)-3-(cyclohexylsulfonyl)-2-(p-tolyl)-N-tosylacrylamide (**3b**)

(Z)-3-(cyclohexylsulfonyl)-2-(m-tolyl)-N-tosylacrylamide (3c)

(Z)-3-(cyclohexylsulfonyl)-2-(4-fluorophenyl)-N-tosylacrylamide (3d)

(Z)-2-(4-chlorophenyl)-3-(cyclohexylsulfonyl)-N-tosylacrylamide (3e)

(Z)-2-(4-bromophenyl)-3-(cyclohexylsulfonyl)-N-tosylacrylamide (3f)

(Z)-2-(4-(tert-butyl)phenyl)-3-(cyclohexylsulfonyl)-N-tosylacrylamide (3g)

(Z)-3-(cyclohexylsulfonyl)-2-(4-methoxyphenyl)-N-tosylacrylamide (3h)

(Z)-3-(cyclohexylsulfonyl)-N-tosyl-2-(4-(trifluoromethyl)phenyl)acrylamide (3i)

(Z)-3-(cyclohexylsulfonyl)-2-(naphthalen-2-yl)-N-tosylacrylamide (3j)

(Z)-N-(3-(cyclohexylsulfonyl)-2-phenylacryloyl)benzamide (3m)

tert-butyl (*Z*)-(3-(cyclohexylsulfonyl)-2-phenylacryloyl)carbamate (**3n**)

(Z)-N-butyl-3-(cyclohexylsulfonyl)-2-phenylacrylamide (30)

(Z)-3-(cyclopentylsulfonyl)-2-phenyl-N-tosylacrylamide (**3q**)

(Z)-3-(cyclobutylsulfonyl)-2-phenyl-N-tosylacrylamide (3r)

(Z)-2-phenyl-3-((tetrahydro-2H-pyran-4-yl)sulfonyl)-N-tosylacrylamide (3s)

tert-butyl (*Z*)-4-((3-((4-methylphenyl)sulfonamido)-3-oxo-2-phenylprop-1-en-1yl)sulfonyl)piperidine-1-carboxylate (**3t**)

(Z)-3-(cyclohex-3-en-1-ylsulfonyl)-2-phenyl-N-tosylacrylamide (3u)

(Z)-3-(isopropylsulfonyl)-2-phenyl-N-tosylacrylamide (3v)

(Z)-3-(methylsulfonyl)-2-phenyl-N-tosylacrylamide (3w)

(Z)-2-phenyl-3-((3-phenylpropyl)sulfonyl)-N-tosylacrylamide (3x)

(Z)-3-(but-3-en-1-ylsulfonyl)-2-phenyl-*N*-tosylacrylamide (**3y**)