Supporting Information

Metallaphotoredox-Catalyzed C-H Activation: Regio-Selective Annulation of Allenes with Benzamide

 Jie Xia ${ }^{\text {a }}$, Wenxuan Zhang ${ }^{\text {a }}$, Chao Zhang ${ }^{\mathrm{d}^{*}}$, Weidong Pan ${ }^{\mathrm{b}^{*}}$, Song Wu $\mathrm{a}^{\mathrm{a}^{*}}$
a. State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China; b. State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; c.Guizhou University of Traditional Chinese Medicine Huaxi University town, Guiyang, Guizhou, 550025, China; d. Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.

ws@imm.ac.cn
NO Table of Contents Page
1 Materials and MethodsBenzamides substrates2-3${ }^{1} \mathrm{H}$-NMR $/{ }^{13} \mathrm{C}$-NMR Spectra41-132

Materials and Methods:

Unless otherwise indicated, all solvents and organic reagents were obtained from commercially available sources and were used without further purification. Silica gel was used for column chromatography and was performed with 60 A mesh standard grade silica gel. The reaction process was monitored using thin layer chromatography (TLC) with silica gel plates (thickness $=0.20 \mathrm{~mm}$, GF254) under UV light and LC-MS (Waters Acquity UPLC/ SQD). Mass spectra was obtained using a Waters Acquity UPLC-SQD mass spectrometer. High resolution mass spectra (HRMS) were recorded on an Agilent Technologies LC/MSD TOF spectrometer. ${ }^{1}$ H NMR spectra was recorded on a Varian Mercury- 400 or 500 MHz instrument, and ${ }^{13} \mathrm{C}$ NMR spectra was recorded at 400 or 500 MHz on a Varian Mercury using CDCl_{3} as a solvent and tetramethylsilane (TMS) as an internal standard. Chemical shifts are reported in parts per million relative to $\mathrm{CDCl}_{3}(\mathrm{~d}, 7.26), \mathrm{CD}_{3} \mathrm{OD}(\mathrm{d}, 3.31)$ and $\mathrm{DMSO}-\mathrm{d}_{6}(\mathrm{~d}, 2.50)$ for ${ }^{1} \mathrm{H}$ NMR and relative to $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ and DMSO- d_{6} for ${ }^{13} \mathrm{C}$ NMR with TMS as an internal standard. Abbreviations used for 1 H NMR splitting are as follows: $\mathrm{s}=$ singlet, $\mathrm{brs}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br} \mathrm{m}=$ broad multiplet.

Benzamides substrates:

A 100 mL round bottom flask was charged with carboxylic acid (15 mmol) to which thionyl chloride (30 mmol) was added dropwise under flow of argon at ice cold water in dry toluene as solvent. he reaction mixture was reflux at $110^{\circ} \mathrm{C}$ for $2-5 \mathrm{~h}$, then the excess SOCl_{2} was removed in vacuum to afford the crude acid chloride on one hand, whereas in another flask solution of 8-aminoquinoline (10 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(22.5 \mathrm{mmol})$ in dichloromethane $(30 \mathrm{~mL})$ was stirred for 30 minutes. Deprotonated amine was added to a solution of acid chloride at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stirred overnight (5-12 h) for complete conversion. Upon completion, it was quenched with saturated NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. These extracts were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated and the corresponding crude amide product was purified by flash column chromatography (Hexane: ethyl acetate 10:1) through silica gel.
Compound

Allenes substrates:

A number of these compounds are known and we follow the general procedure illustrated for the synthesis of buta-2,3-dienoate, the detail procedure was as following ${ }^{1,4-8}$:

Triphenyl phosphine ($26.2 \mathrm{~g}, 100 \mathrm{mmol}$) and methyl bromoacetate $(10.4 \mathrm{~mL}, 1.1$ equiv. 110 mmol$)$ dissolved in 400 mL ethyl acetate, was refluxed overnight to produce a white solid which was removed by suction filtration and wash with cold ethyl acetate. The filter cake was dried over $60^{\circ} \mathrm{C}$ at the reduce pressure, gave methoxycarbonyl methyl triphenylphosphonium bromide ($44.6 \mathrm{~g}, 91 \%$).

Benzyl(triphenylphosphoranylidene)acetate $(19.6 \mathrm{~g}, 40 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(210 \mathrm{~mL})$ in a threenecked, round-bottomed flask under nitrogen. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ as solution of $\mathrm{Et} 3 \mathrm{~N}(6.65 \mathrm{~mL}, 48.0$ mmol, 1.2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise (10 min). After 30 min , acetyl choloride ($2.84 \mathrm{~mL}, 40$ mmol, 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise over a period of 30 min . After addition, the reaction was allowed to warm to room temperature. The reaction was stirring overnight, and the clear, slight yellow solution was evaporated on a rotary evaporator at reduced pressure. A portion of ether $(200 \mathrm{~mL})$ was added to the residue and the slurry was allow to stand for 1 hour while it was shaken periodically to facilitate solidification. The precipitate was removed by filtration and the solid was washed with ether $(50 \times 2 \mathrm{~mL})$. The filtrates were combined and solvent was evaporated. The mixture was purified by chromatography $(\mathrm{PE}: \mathrm{EtOAc}=100: 0-90: 10)$ afforded the desired product $(5.6,80 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.69(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H})$.

To a solution of propargylic alcohol ($2.8 \mathrm{~g}, 50.0 \mathrm{mmol}, 0.5$ equiv.) and triethyl orthoacetate (19.3 $\mathrm{mL}, 17.1 \mathrm{~g}, 105.0 \mathrm{mmol}, 1.05$ equiv.) was dropwise added propionic acid ($298.1 \mu \mathrm{~L}, 4.0 \mathrm{mmol}, 4.0 \mathrm{~mol} \%$) at $100^{\circ} \mathrm{C}$. The reaction mixture was then heated to $160^{\circ} \mathrm{C}$ and resulting EtOH was continuously distilled off under atmospheric pressure. After 2 h , another aliquot of propargylic alcohol $(2.8 \mathrm{~g}, 50 \mathrm{mmol}, 0.5$
equiv.) was added and further heated for 3 h . After cooling to room temperature, the reaction was quenched by addition of $\mathrm{HCl}(2 \mathrm{M}, 100 \mathrm{ml})$. The phases were separated, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{ml})$ and the combined organic layers were washed with Brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. The crude product was purified by chromatography (PE: Ether $=100: 0-90: 10)$ afforded the desired product $(4.5,35 \%)^{2}$ as a as a colorless liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=5.28(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~m}$, $2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Paraformaldehyde ($4.6 \mathrm{~g}, 2.5$ equiv., 50.0 mmol), $\mathrm{CuI}(1.9 \mathrm{~g}, 0.5$ equiv., 10 mmol), dioxane (75 mL), phenylacetylene ($2.25 \mathrm{~g}, 1.0$ equiv., 20 mmol), and diisopropylamine ($5.6 \mathrm{~mL}, 2.0$ equiv., 40.0 mmol) were added sequentially into an oven-dried reaction tube equipped with a reflux condenser under an argon atmosphere. The resulting mixture was stirred under reflux. When the reaction was complete as monitored by TLC, it was cooled to rt. Water (100 mL) and ether $(100 \mathrm{~mL})$ were added and then the aqueous solution was separated and extracted with ether $(3 \times 50 \mathrm{~mL})$. The organic layer was then washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and column chromatography on silica gel (petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}$) afforded propa-1,2-dien-1-ylbenzene ($\left.531.7 \mathrm{mg}, 45 \%\right)^{3} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(d, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.

Compound ID	Structure	Compound ID	Structure
2 a		2b	
2 c		2d	
2 e		2 f	

2 g		2h	
2 i		2 j	
2k		21	

Deuteration experiments and KIE study ${ }^{9-10}$:

A sealed tube with a screw cape (PTFE) was charged with N -(quinoline-8-yl)benzamide (12.4 mg , 0.05 mmol) and N -(quinoline-8-yl)benzamide-2,3-4,5,6-d5 (12.7 mg, 0.05 mmol), KOTf ($3.76 \mathrm{mg}, 20$ $\mathrm{mol} \%, 0.02 \mathrm{mmol}), \mathrm{Co}(\mathrm{acac})_{2}(5.14 \mathrm{mmol}, 20 \mathrm{mmol} \%, 0.02 \mathrm{mmol})$, Eosin Y ($3.45 \mathrm{mg}, 5 \mathrm{~mol} \%, 0.005$ mmol), and diphenyl(propa-1,2-dien-1-yl)phosphine oxide ($48.0 \mathrm{mg}, 2.0$ equiv., 0.2 mmol) in 1.5 mL 2,2,2-trifluroethanol under oxygen atmosphere. Then, the resulted solution was placed in 15 W white LED at room temperature for 40 min , and analyzed by TLC (petroleum ether: ethyl acetate $=10: 1$, dichloromethane: acetone $=80: 20$). Intermolecular deuterium labeled competition experiment gave $[H: D]$ $=1.08$ value. The $[\mathrm{H}: \mathrm{D}]$ was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy analysis of the pure product.

3-((Diphenylphosphoryl)methyl)-2-(quinolin-8-yl)isoquinolin-1(2H)-one-5,6,7,8-d 4

A sealed tube with a screw cape (PTFE) was charged with N-(quinoline-8-yl)benzamide-2,3-4,5,6-d5 ($25.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), KOTf ($3.76 \mathrm{mg}, 20 \mathrm{~mol} \%, 0.02 \mathrm{mmol}$), $\mathrm{Co}(\mathrm{acac})_{2}(5.14 \mathrm{mmol}, 20 \mathrm{mmol} \%, 0.02$ mmol), Eosin Y ($3.45 \mathrm{mg}, 5 \mathrm{~mol} \%, 0.005 \mathrm{mmol}$), and diphenyl(propa-1,2-dien-1-yl)phosphine oxide ($48.0 \mathrm{mg}, 2.0$ equiv., 0.2 mmol) in 1.5 mL 2,2,2-trifluroethanol under oxygen atmosphere. Then, the resulted solution was placed in 15 W white LED at room temperature for 24 h , the reaction process was detected by thin-layer chromatography (TLC). Upon completion, the reaction mixture was evaporated under reduced pressure and passed through the column for purification. Dichloromethane and acetone mixture were used as an eluent. [D] $]_{4} \mathbf{- 4 i}$ is obtained as a yellow solid; $39.2 \mathrm{mg}, 80 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(400$ MHz, Chloroform-d) $\delta 8.85(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=4.0,1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-$ $7.74(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.28(\mathrm{~m}, 12 \mathrm{H}), 6.78(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J$ $=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, Chloroform- $\boldsymbol{d}) \delta 163.7$, 151.6, 144.5, 136.9, 136.5, 135.7, $134.3,134.2,133.1,132.5,132.3,132.2,132.1,131.74,131.70,131.5,131.4,131.0,130.9,130.7,129.5$, 129.3, 129.0, 128.9, 128.86, 128.78, 128.7, 126.6, 125.3, 122.0, 108.1, 35.3, 34.6. HRMS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{19} \mathrm{D}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$ for $[\mathrm{M}+\mathrm{H}]^{+} 491.1825$, found: 491.1824.

In an oven dried Schlenk tube charged with magnetic stirrer, 4-nitro- N-(quinolin-8-yl)benzamide ($0.1 \mathrm{mmol}, 1.0$ equiv. $), \mathrm{Co}(\mathrm{acac})_{2}(0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, potassium trifluoride mesylate $(0.02 \mathrm{mmol}, 20$ mol\%) and Eosin Y disodium salt ($0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were added. Freshly prepared allene was subsequently added to the reaction mixture followed by freshly distilled 2,2,2-trifluroethanol (1.2 mL)
and methanol- $\mathrm{d}_{4}(0.5 \mathrm{~mL})$ as a mixture solvent. The Schlenk tube was evacuated and purged with oxygen. Then, the resulted solution was placed in 15 W white LED at room temperature for 30 h . After the reaction, the crude purified by flash chromatography (silica gel, petroleum ether/ ethyl actate $=1: 1$ to 1:2), affording the desired product as a yellow solid ($32.1 \mathrm{mg}, 65 \%$ isolated yield). ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.85(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=4.0,1 \mathrm{H}), 8.28-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{dd}, J=8.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.45(\mathrm{~m}, 13 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Isolation of $\mathbf{C o}$ (III) intermediate:

In an oven dried Schlenk tube charged with magnetic stirrer, 4-cyano- N-(quinolin-8-yl)benzamide ($0.1 \mathrm{mmol}, 1.0$ equiv., 27.3 mg), $\operatorname{Co}(\mathrm{acac})_{2}(0.1 \mathrm{mmol}, 1.0$ equiv., 51.4 mg$)$, potassium trifluoride mesylate ($0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%, 3.76 \mathrm{mg}$) and Eosin Y disodium salt ($0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were added. Freshly prepared allene was subsequently added to the reaction mixture followed by freshly distilled 2,2,2-trifluroethanol (1.5 mL) as a mixture solvent. The Schlenk tube was evacuated and purged with oxygen. Then, the resulted solution was placed in 15 W white LED at room temperature for 40 h . After the reaction, the crude purified by flash chromatography (silica gel, petroleum ether/ ethyl actate $=1: 1$ to 1:2), affording the desired product as a green black solid ($13.3 \mathrm{mg}, \mathbf{2 5 \%}$ isolated yield). ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{4 0 0}$ MHz, Chloroform- $\boldsymbol{d}) \delta 8.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.86-7.84 (m, 2H), 7.59-7.51(m, 4H), $7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s} 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) δ 189.9, 189.0, 188.9, $188.5,151.7,149.3,147.9,138.7,131.0,130.0,130.0,129.5,123.5,121.3,118.3,112.1,98.1,97.4,29.9$, 29.5, 26.7, 26.4, 26.0, 25.7. HRMS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{CoN}_{3} \mathrm{O}_{5}$ for $[\mathrm{M}+\mathrm{H}]^{+} 530.1122$, found: 530.1119.

Experimental Section:

Typical procedure for annulation of benzamides with allenes:

In an oven dried Schlenk tube charged with magnetic stirrer, benzamide ($0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{Co}(\mathrm{acac})_{2}(0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, potassium trifluoride mesylate ($0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and Eosin Y disodium salt ($0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were added. Freshly prepared allene was subsequently added to the reaction mixture followed by freshly distilled $2,2,2$-trifluroethanol $(1.5 \mathrm{~mL})$ as solvent. The Schlenk tube was evacuated and purged with oxygen. Then, the resulted solution was placed in 15 W white LED at room temperature for 24 h . The reaction process was detected by thin-layer chromatography (TLC). Upon completion, the reaction mixture was evaporated under reduced pressure and passed through the column for purification. Petroleum ether and ethyl acetate mixture was used as an eluent.

Gram scale synthesis of dihydrisoquinolin-1(2H)-ones

3-((diphenylphosphoryl)methyl)-2-(quinolin-8-yl)-8-(trifluoromethyl)isoquinolin-1(2H)-one
(4m)

In an oven dried Schlenk tube charged with magnetic stirrer, N-(quinolin-8-yl)-2(trifluoromethyl)benzamide ($1.90 \mathrm{mmol}, 1.0$ equiv., 0.60 g), Co(acac) $)_{2}(0.38 \mathrm{mmol}, 20 \mathrm{~mol} \%, 97.7 \mathrm{mg})$, potassium trifluoride mesylate ($0.38 \mathrm{mmol}, 20 \mathrm{~mol} \%, 71.4 \mathrm{mg}$) and Eosin Y disodium salt (0.095 mmol , $5 \mathrm{~mol} \%, 66.2 \mathrm{mg}$) were added. Freshly prepared diphenyl(propa-1,2-dien-1-yl)phosphine (2.85 mmol , 1.5 equiv., 684.0 mg) was subsequently added to the reaction mixture followed by freshly distilled 2,2,2trifluroethanol (12 mL) as solvent. The Schlenk tube was evacuated and purged with oxygen. Then, the resulted solution was placed in 15 W white LED at room temperature for 35 h . The reaction process was detected by thin-layer chromatography (TLC). After the reaction, the crude purified by flash chromatography (silica gel, petroleum ether/ ethyl actate $=1: 1$ to $1: 2$), affording the desired product $\mathbf{4 m}$ as a yellow solid (864.6 mg , 79% isolated yield). ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.34(\mathrm{~m}, 15 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=15.9$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 160.7,151.5,144.4,136.5$, $136.3,135.5,132.9,132.4,131.9,131.8,131.5,131.4,131.3,131.2,130.99,130.89,130.8,129.5,129.5$, $129.0,128.9,128.86,128.8,126.8,126.4,122.5,122.1,107.4,107.38,35.18,34.52$. HRMS (ESI): calculated for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$ for $[\mathrm{M}+\mathrm{H}]^{+} 555.1451$, found: 555.1450.

3-((diphenylphosphoryl)methyl)-6-nitro-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4n)

In an oven dried Schlenk tube charged with magnetic stirrer, 4-nitro- N-(quinolin-8-yl)benzamide (4 mmol, 1.0 equiv., 1.17 g$), \mathrm{Co}(\mathrm{acac})_{2}(0.8 \mathrm{mmol}, 20 \mathrm{~mol} \%, 205.6 \mathrm{mg})$, potassium trifluoride mesylate $(0.8 \mathrm{mmol}, 20 \mathrm{~mol} \%, 150 \mathrm{mg})$ and Eosin Y disodium salt ($0.2 \mathrm{mmol}, 5 \mathrm{~mol} \%, 139.4 \mathrm{mg}$) were added. Freshly prepared diphenyl(propa-1,2-dien-1-yl)phosphine ($6 \mathrm{mmol}, 1.5$ equiv., 1.44 g) was subsequently added to the reaction mixture followed by freshly distilled 2,2,2-trifluroethanol (20 mL) as solvent. The Schlenk tube was evacuated and purged with oxygen. Then, the resulted solution was placed in 15 W white LED at room temperature for 40 h . The reaction process was detected by thin-layer chromatography (TLC). After the reaction, the crude purified by flash chromatography (silica gel, dicholormethanene $/$ acetone $=90: 10$ to $70: 30$), affording the desired product $\mathbf{4 n}$ as a yellow solid (1.91 $\mathrm{g}, 87 \%$ isolated yield). The corresponding crystal was obtained in ether : methanol (50:50). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{H} \mathbf{N M R}$ (400 MHz, Chloroform-d) $\delta 8.85(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(J=4.0,1 \mathrm{H}), 8.28-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{dd}, J$ $=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.45(\mathrm{~m}, 13 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 3 \mathrm{H})$, $6.78(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 169.4,151.6,144.6,143.3,137.3,136.5,136.5,135.8,135.3,131.5,129.6,129.4$, $128.68,128.65,128.6,128.5,128.4,126.4,125.8,123.5,122.0,108.0,67.0,40.2,22.0$. HRMS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}$ for $[\mathrm{M}+\mathrm{H}]^{+} 532.1431$, found: 532.1429.

Cyclic Voltammetry

The cyclic voltammetry was carried out with an Advances Measurement Technology Inc, 12608W and the analysis was performed with the Nova 2.0 software. A glassy-carbon electrode (3 mm -diameter, disc-electrode) was used as the working electrode, 2DPBTA+PDA on Au electrode in 0.1 M tetrabutylammonium hexafluorophosphate (TBAP) $/ \mathrm{CH}_{3} \mathrm{CN}$ solution with $\mathrm{Ag} / \mathrm{AgCl}$ as the reference electrode.

Figure S1 Cyclic voltammograms at $\mathbf{1 0 0} \mathbf{m V s}^{\mathbf{- 1}}$. General conditions: acetonitrile, 0.1 Mn -Bu4NPF6, 5 mM TfOK, $5 \mathrm{mM} \mathrm{Co(acac)} 2,5 \mathrm{mM}$ substrates 1 a and 2 a , and $100 \mathrm{mV} / \mathrm{s}$.

Crystal Data and Experimental

	Compound	B-2-41 (4n)
Formula	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$	

Table 1 Crystal data and structure refinement for B-2-41 (4n).

Identification code	B-2-41
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$
Formula weight	563.53
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	10.3471(8)
b/Å	19.4565(10)
c/Å	14.7658(9)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	107.958(7)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	2827.8(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.324
μ / mm^{-1}	1.247
$\mathrm{F}(000)$	1176.0
Crystal size/ mm^{3}	$0.31 \times 0.26 \times 0.21$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	7.762 to 135.876
Index ranges	$-11 \leq \mathrm{h} \leq 12,-23 \leq \mathrm{k} \leq 20,-17 \leq 1 \leq 17$
Reflections collected	19240
Independent reflections	$5006\left[\mathrm{R}_{\text {int }}=0.0484, \mathrm{R}_{\text {sigma }}=0.0316\right]$
Data/restraints/parameters	5006/6/372
Goodness-of-fit on F^{2}	1.039
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0722, \mathrm{wR}_{2}=0.2135$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0968, \mathrm{wR}_{2}=0.2427$
Largest diff. peak/hole / e \AA^{-3}	0.81/-0.44

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $B-2-41(4 n)$. $U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}(\mathbf{e q})$
P12	$6959.6(2)$	$2485.8(2)$	$2826.3(2)$	$63.23(5)$
O13	$6654.0(6)$	$2237.5(3)$	$3685.9(3)$	$84.38(18)$
O27	$12335.0(5)$	$4176.6(3)$	$3778.0(4)$	$82.64(18)$

O26	10768.2(8)	5137.3(4)	7823.2(4)	115.8(2)
N10	10637.6(5)	3389.6(3)	3469.6(4)	58.70(17)
C28	6202.0(7)	3307.5(4)	2424.4(5)	66.6(2)
N24	10326.4(7)	4599.8(3)	7432.3(4)	78.7(2)
C8	11066.6(7)	4105.9(3)	4866.9(4)	56.4(2)
C19	13360.7(10)	1593.3(6)	2679.4(10)	158.0(4)
O25	9727.4(8)	4185.3(4)	7771.4(4)	117.8(3)
C3	10012.7(6)	3774.0(3)	5096.8(4)	54.13(19)
C34	6362.8(7)	1906.4(3)	1830.9(5)	60.7(2)
C5	10566.8(7)	4437.3(4)	6528.8(5)	61.5(2)
C1	9538.8(7)	3082.1(3)	3678.5(5)	58.6(2)
C4	9778.1(7)	3941.5(4)	5956.0(5)	60.6(2)
C9	11409.0(7)	3913.0(4)	4012.0(5)	60.8(2)
C7	11840.1(7)	4614.4(4)	5466.7(5)	64.1(2)
C11	8746.6(7)	2551.7(4)	2968.7(5)	66.2(2)
C2	9223.2(7)	3269.4(4)	4457.8(4)	60.2(2)
C14	11162.4(7)	3074.8(4)	2767.3(5)	71.5(2)
N16	12263.7(7)	2247.7(4)	3962.9(6)	93.5(3)
C15	12000.5(7)	2485.4(4)	3052.8(6)	79.9(3)
C6	11588.4(8)	4783.1(4)	6297.4(5)	67.7(2)
C20	12511.6(8)	2178.3(5)	2370.3(7)	106.4(3)
C33	6633.5(8)	3733.3(4)	1821.3(6)	78.1(3)
C17	13047.4(10)	1705.0(5)	4205.8(11)	124.9(5)
C41	7065.1(14)	4024.4(7)	9591.8(9)	171.6(5)
C18	13616.5(11)	1366.7(6)	3572.7(13)	165.0(7)
C39	6529.3(9)	1212.3(4)	1986.3(6)	79.9(3)
C38	6100.7(10)	748.4(4)	1253.9(6)	87.0(3)
C23	10871.5(9)	3339.8(6)	1876.5(5)	93.9(3)
C37	5459.7(10)	971.7(4)	355.3(6)	90.2(3)
C29	5061.0(8)	3509.5(5)	2661.7(6)	87.4(3)
C32	5965.0(10)	4329.5(4)	1486.0(8)	94.4(3)
C21	12175.4(9)	2460.8(6)	1447.6(7)	134.4(3)
C30	4399.1(9)	4122.7(5)	2308.3(8)	105.6(3)
C31	4842.7(10)	4523.7(5)	1729.6(8)	105.1(4)
C36	5254.0(16)	1651.9(5)	195.8(7)	139.9(6)
C22	11380.0(10)	3014.1(7)	1201.5(7)	127.0(4)
C35	5715.4(14)	2122.0(5)	926.9(6)	117.3(5)
O40	8334.4(19)	4203.7(10)	9757.9(13)	273.3(3)

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for B-2-41 (4n). The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}_{11}+2 h k a^{*} b^{*} \mathbf{U}_{12}+\ldots\right]$.

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	\mathbf{U}_{12}
P12	73.95(9)	64.28(9)	56.54(8)	-15.58(7)	27.55(6)	-19.19(7)
013	107.3(3)	91.8(3)	61.8(2)	-14.6(2)	37.5(2)	-31.7(3)
027	90.4(3)	92.2(3)	72.4(3)	-15.8(3)	35.4(2)	-32.9(3)
O26	144.4(5)	116.2(4)	98.5(3)	-57.1(3)	54.8(3)	-33.2(4)
N10	59.9(3)	63.1(3)	53.6(2)	-8.7(2)	18.4(2)	-6.3(2)
C28	72.0(3)	63.5(4)	73.0(3)	-25.5(3)	35.3(2)	-19.6(3)
N24	87.4(4)	86.9(4)	61.4(3)	-20.1(3)	22.5(3)	-5.6(3)
C8	61.7(3)	51.5(3)	51.2(3)	1.2(3)	10.3(2)	1.2(3)
C19	83.9(4)	122.6(6)	292.6(10)	-118.4(6)	$94.8(5)$	-42.4(4)
O25	163.0(5)	125.3(5)	83.6(3)	-27.0(3)	65.2(3)	-42.3(4)
C3	57.4(3)	50.3(3)	51.4(3)	-0.2(3)	12.0(2)	0.7(3)
C34	70.7(3)	58.7(3)	55.2(3)	-9.9(3)	23.3(2)	-13.8(3)
C5	74.9(4)	57.8(3)	49.9(3)	-6.1(3)	16.4(3)	2.7(3)
C1	59.9(3)	55.6(3)	58.6(3)	-7.5(3)	15.7(3)	-4.5(3)
C4	65.0(3)	60.9(4)	55.7(3)	-2.8(3)	18.2(2)	-0.2(3)
C9	65.3(3)	59.0(4)	57.3(3)	-2.2(3)	17.5(3)	-7.4(3)
C7	70.8(4)	57.8(4)	61.8(3)	-5.0(3)	17.6(3)	-7.8(3)
C11	68.8(4)	66.4(4)	63.7(3)	-17.4(3)	21.1(3)	-8.4(3)
C2	62.8(3)	63.0(4)	56.0(3)	-6.4(3)	19.9(2)	-8.0(3)
C14	67.7(4)	83.0(4)	67.2(3)	-26.8(3)	26.0(3)	-15.6(3)
N16	78.7(4)	73.8(4)	125.0(5)	-16.2(4)	26.9(4)	3.0(3)
C15	62.4(3)	79.3(4)	106.3(4)	-41.8(3)	38.3(3)	-22.7(3)
C6	78.9(4)	54.9(3)	63.0(4)	-11.8(3)	12.8(3)	-3.6(3)
C20	$72.5(4)$	110.2(5)	154.4(5)	-77.8(4)	61.2(3)	-38.8(4)
C33	84.6(4)	62.3(4)	100.0(4)	-8.9(4)	46.8(3)	-9.7(3)
C17	85.5(6)	74.5(5)	206.0(11)	-15.3(7)	32.1(6)	8.1(5)
C41	235.0(9)	150.3(10)	187.0(7)	-70.7(7)	149.5(5)	-48.5(8)
C18	81.2(6)	96.3(7)	316.2(16)	-62.6(8)	59.2(7)	0.4(5)
C39	109.7(6)	60.8(4)	61.5(4)	-2.3(3)	14.9(4)	-1.0(4)
C38	115.4(6)	54.2(4)	82.1(5)	-13.2(4)	16.6(4)	-7.1(4)
C23	93.2(5)	134.7(7)	60.0(4)	-21.8(4)	32.6 (3)	-31.4(5)
C37	117.7(6)	70.2(4)	71.0(4)	-25.7(3)	11.6(4)	-5.6(5)
C29	82.2(4)	89.1(5)	105.7(4)	-33.3(4)	50.6(3)	-23.9(4)
C32	101.8(5)	64.4(4)	125.5(6)	-0.1(5)	47.6(4)	-6.0(4)
C21	107.0(4)	178.6(7)	148.4(5)	-111.1(4)	84.7(3)	-73.5(5)

C30	$85.1(4)$	$94.2(6)$	$149.2(6)$	$-42.9(5)$	$53.3(4)$	$-2.0(4)$
C31	$97.4(6)$	$69.0(5)$	$149.7(8)$	$-21.9(5)$	$39.3(5)$	$-5.5(4)$
C36	$240.1(14)$	$81.0(6)$	$58.0(5)$	$-12.1(4)$	$-13.5(7)$	$21.1(8)$
C22	$113.2(5)$	$194.3(10)$	$89.4(4)$	$-62.7(5)$	$54.8(4)$	$-59.9(6)$
C35	$206.2(11)$	$59.3(5)$	$63.8(5)$	$-7.3(4)$	$8.4(6)$	$4.8(6)$
O40	$272.8(5)$	$279.0(5)$	$268.5(5)$	$-5.6(4)$	$84.2(4)$	$1.4(4)$

Table 4 Bond Lengths for B-2-41 (4n).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
P12	O13	$1.4805(6)$	C5	C6	$1.3818(12)$
P12	C28	$1.7988(7)$	C1	C11	$1.5185(9)$
P12	C34	$1.8036(7)$	C1	C2	$1.3399(11)$
P12	C11	$1.7999(8)$	C7	C6	$1.3701(11)$
O27	C9	$1.2266(10)$	C14	C15	$1.4210(11)$
O26	N24	$1.2138(9)$	C14	C23	$1.3574(11)$
N10	C1	$1.4007(10)$	N16	C15	$1.3668(12)$
N10	C9	$1.3861(8)$	N16	C17	$1.3122(12)$
N10	C14	$1.4466(10)$	C15	C20	$1.4075(14)$
C28	C33	$1.3870(12)$	C20	C21	$1.4097(14)$
C28	C29	$1.3880(12)$	C33	C32	$1.3630(11)$
N24	O25	$1.2151(11)$	C17	C18	$1.412(2)$
N24	C5	$1.4650(10)$	C41	O40	$1.307(2)$
C8	C3	$1.3963(10)$	C39	C38	$1.3730(11)$
C8	C9	$1.4614(11)$	C38	C37	$1.3589(12)$
C8	C7	$1.4025(9)$	C23	C22	$1.4124(15)$
C19	C20	$1.4242(13)$	C37	C36	$1.3496(13)$
C19	C18	$1.338(2)$	C29	C30	$1.3944(13)$
C3	C4	$1.4016(10)$	C32	C31	$1.3705(16)$
C3	C2	$1.4304(9)$	C21	C22	$1.3356(16)$
C34	C39	$1.3717(10)$	C30	C31	$1.3384(17)$
C34	C35	$1.3621(11)$	C36	C35	$1.3828(13)$
C5	C4	$1.3734(9)$			

Table 5 Bond Angles for B-2-41 (4n).

Atom	Atom	Atom	Angle $/{ }^{\circ}$	Atom	Atom	Atom	Angle $/^{\circ}$
013	P12	C28	112.73(4)	027	C9	N10	120.34(7)
013	P12	C34	112.62(3)	O27	C9	C8	123.67(6)
013	P12	C11	113.98(3)	N10	C9	C8	115.97(6)
C28	P12	C34	106.37(3)	C6	C7	C8	120.36(7)
C28	P12	C11	107.62(3)	C1	C11	P12	116.46(6)
C11	P12	C34	102.77(4)	C1	C2	C3	120.82(7)
C1	N10	C14	119.11(6)	C15	C14	N10	117.30(7)
C9	N10	C1	123.26(6)	C23	C14	N10	120.91(7)
C9	N10	C14	116.66(6)	C23	C14	C15	121.78(8)
C33	C28	P12	123.29(6)	C17	N16	C15	117.39(10)
C33	C28	C29	117.40(7)	N16	C15	C14	118.89(8)
C29	C28	P12	119.11(6)	N16	C15	C20	123.73(7)
O26	N24	O25	122.76(8)	C20	C15	C14	117.38(8)
O26	N24	C5	118.31(7)	C7	C6	C5	118.41(6)
O25	N24	C5	118.90(6)	C15	C20	C19	116.14(10)
C3	C8	C9	120.45(6)	C15	C20	C21	119.42(8)
C3	C8	C7	120.61(7)	C21	C20	C19	124.44(10)
C7	C8	C9	118.92(7)	C32	C33	C28	120.92(9)
C18	C19	C20	119.64(12)	N16	C17	C18	122.89(13)
C8	C3	C4	118.60(6)	C19	C18	C17	120.21(11)
C8	C3	C2	119.14(6)	C34	C39	C38	121.47(7)
C4	C3	C2	122.25(7)	C37	C38	C39	120.05(8)
C39	C34	P12	119.03(5)	C14	C23	C22	119.59(9)
C35	C34	P12	123.19(6)	C36	C37	C38	119.16(8)
C35	C34	C39	117.75(7)	C28	C29	C30	120.37(9)
C4	C5	N24	118.48(7)	C33	C32	C31	121.03(10)
C4	C5	C6	122.98(7)	C22	C21	C20	121.67(10)
C6	C5	N24	118.54(6)	C31	C30	C29	120.81(10)
N10	C1	C11	116.13(6)	C30	C31	C32	119.46(9)
C2	C1	N10	120.15(6)	C37	C36	C35	120.96(9)
C2	C1	C11	123.71(7)	C21	C22	C23	120.14(9)
C5	C4	C3	119.01(7)	C34	C35	C36	120.56(8)

Table 6 Torsion Angles for B-2-41 (4n).

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
P12	C28	C33	C32	175.47(6)	C9	C8	C3	C4	175.69(6)
P12	C28	C29	C30	-175.75(6)	C9	C8	C3	C2	-3.44(9)
P12	C34	C39	C38	-179.65(8)	C9	C8	C7	C6	-176.79(6)
P12	C34	C35	C36	-178.56(11)	C7	C8	C3	C4	-2.35(9)
013	P12	C28	C33	161.09(6)	C7	C8	C3	C2	178.52(6)
013	P12	C28	C29	-24.18(7)	C7	C8	C9	O 27	-0.77(10)
013	P12	C34	C39	-41.73(8)	C7	C8	C9	N10	177.68(6)
013	P12	C34	C35	136.43(9)	C11	P12	C28	C33	34.55(7)
013	P12	C11	C1	-65.56(6)	C11	P12	C28	C29	-150.71(6)
026	N24	C5	C4	-162.27(7)	C11	P12	C34	C39	81.35(8)
026	N24	C5	C6	18.58(10)	C11	P12	C34	C35	-100.49(10)
N10	C1	C11	P12	-148.16(5)	C11	C1	C2	C3	-179.90(6)
N10	C1	C2	C3	-1.21(10)	C2	C3	C4	C5	-179.23(6)
N10	C14	C15	N16	0.11(10)	C2	C1	C11	P12	30.57(9)
N10	C14	C15	C20	179.98(6)	C14	N10	C1	C11	-15.79(8)
N10	C14	C23	C22	-178.93(8)	C14	N10	C1	C2	165.43(6)
C28	P12	C34	C39	-165.69(7)	C14	N10	C9	O 27	13.51(9)
C28	P12	C34	C35	12.46(10)	C14	N10	C9	C8	-164.99(6)
C28	P12	C11	C1	60.24(6)	C14	C15	C20	C19	179.32(7)
C28	C33	C32	C31	-0.41(13)	C14	C15	C20	C21	-0.18(11)
C28	C29	C30	C31	0.55(13)	C14	C23	C22	C21	-1.99(15)
N24	C5	C4	C3	-179.01(6)	N16	C15	C20	C19	-0.82(12)
N24	C5	C6	C7	177.92(6)	N16	C15	C20	C21	179.68(8)
C8	C3	C4	C5	1.66(9)	N16	C17	C18	C19	-0.39(16)
C8	C3	C2	C1	4.33(9)	C15	C14	C23	C22	1.75(13)
C8	C7	C6	C5	0.49 (10)	C15	N16	C17	C18	0.10 (14)
C19	C20	C21	C22	-179.53(10)	C15	C20	C21	C22	-0.08(14)
025	N24	C5	C4	19.66(10)	C6	C5	C4	C3	0.10(10)
O25	N24	C5	C6	-159.50(7)	C20	C19	C18	C17	$0.06(16)$
C3	C8	C9	O27	-178.84(6)	C20	C21	C22	C23	1.16(16)
C3	C8	C9	N10	-0.39(9)	C33	C28	C29	C30	-0.71(11)
C3	C8	C7	C6	1.28(10)	C33	C32	C31	C30	0.22(15)
C34	P12	C28	C33	-75.02(6)	C17	N16	C15	C14	-179.61(8)
C34	P12	C28	C29	99.72(6)	C17	N16	C15	C20	$0.53(12)$
C34	P12	C11	C1	172.27(5)	C18	C19	C20	C15	0.50(13)
C34	C39	C38	C37	-1.97(16)	C18	C19	C20	C21	179.97(10)
C1	N10	C9	O27	-177.84(6)	C39	C34	C35	C36	-0.39(19)

C1	N10	C9	C8	$3.67(9)$	C39	C38	C37	C36	$0.06(18)$
C1	N10	C14	C15	$-77.29(8)$	C38	C37	C36	C35	$1.6(2)$
C1	N10	C14	C23	$103.36(9)$	C23	C14	C15	N16	$179.45(8)$
C4	C3	C2	C1	$-174.77(6)$	C23	C14	C15	C20	$-0.68(11)$
C4	C5	C6	C7	$-1.19(10)$	C37	C36	C35	C34	$-1.5(2)$
C9	N10	C1	C11	$175.83(6)$	C29	C28	C33	C32	$0.65(11)$
C9	N10	C1	C2	$-2.95(9)$	C29	C30	C31	C32	$-0.29(15)$
C9	N10	C14	C15	$91.85(8)$	C35	C34	C39	C38	$2.09(15)$
C9	N10	C14	C23	$-87.50(8)$					

Table 7 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters ($\AA^{2} \times 10^{3}$) for B-2-41 (4n).

Atom	\boldsymbol{x}	y	z	$\mathbf{U}(\mathrm{eq})$
H19	13735.09	1370.03	2262.46	190
H4	9098.57	3720.25	6135.5	73
H7	12527.65	4838.34	5299.69	77
H11A	9157.23	2105.36	3160.89	79
H11B	8850.05	2656.75	2352.57	79
H2	8481.59	3068.94	4584.79	72
H6	12092.97	5122.23	6696	81
H33	7389.44	3610.37	1643.33	94
H17	13236.18	1535.72	4821.97	150
H41A	6620.85	4348.73	9886.07	257
H41B	7024.21	3574.92	9849.69	257
H41C	6618	4017.86	8917.41	257
H18	14171.09	985.09	3777.49	198
H39	6941.78	1052.37	2601.39	96
H38	6249.21	280.95	1372.92	104
H23	10340.65	3733.38	1711.54	113
H37	5166.46	659.74	-143.39	108
H29	4736.04	3234.4	3058.81	105
H32	6275.32	4608.81	1085.7	113
H21	12516.02	2256.8	998.8	161
H30	3640.11	4254.62	2476.64	127
H31	4392.94	4930.88	1494.69	126
H36	4795.29	1806.72	-414.74	168
H22	11160.51	3185.27	584.52	152

H35	5582.6	2589.37	800.26	141
H40	8381.07	4621.04	9697.54	410

Benzyl 2-(1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (4a)

Compound $\mathbf{4 a}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $36.4 \mathrm{mg}, 87 \%$ yield.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=7.7,3.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.42(\mathrm{dd}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H})$, $6.63(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}$ (101 MHz, Chloroform-d) $\delta 169.4,163.6,151.6,137.1,136.5,136.4,135.7,135.2,132.7,131.0,129.7$, 129.4, 128.0, 128.7, 128.6, 128.6, 128.4, 126.8, 126.3, 126.0, 125.7, 122.0.108.1, 67.0, 40.1. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 421.1547$, found 421.1549.

Benzyl 2-(8-fluoro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (4b)

Compound $\mathbf{4 b}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $37.2 \mathrm{mg}, 85 \%$ yield.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 8.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.2$
$\mathrm{Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.43(\mathrm{dt}, J=8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}$,
1H), $7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 1}$

MHz, Chloroform- \boldsymbol{d}) δ 169.1, 164.2, 161.5, 151.4, 144.3, 139.8, 137.7, 136.6, 135.2, 135.1, 133.6, $133.5,131.6,129.7,129.4,128.6,126.3,122.0,121.9,121.8,113.8,113.5,107.3,107.3,67.0,40.0$. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 439.1453$, found: 439.1455 .

Benzyl 2-(8-bromo-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3c)

Compound $3 \mathbf{c}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $40.6 \mathrm{mg}, 83 \%$ yield.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.85(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=7.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{q}, J=7.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.37$ $(\mathrm{d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, Chloroform-d) $\delta 169.0,161.8,151.4,144.2,140.1,137.4,136.6,135.4,135.1,133.9,132.6,131.5$, 129.6, 129.4, 128.6, 128.6, 126.4, 126.1, 123.6, 122.9, 122.1, 107.7, 67.0, 40.0. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{Na}]^{+} 521.0482$, found: 521.0479.

Benzyl 2-(1-oxo-2-(quinolin-8-yl)-8-(trifluoromethyl)-1,2-dihydroisoquinolin-3-yl)acetate

Compound 3d was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $43.3 \mathrm{mg}, 89 \%$ yield.

${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.88(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.16$ $(\mathrm{m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 169.0,160.6,151.5,144.2$, $139.8,138.3,136.5,135.4,135.1,131.5,131.5,131.0,129.7,129.5,128.7,128.6,126.5,126.5,126.4$, 122.8, 122.1, 107.4, 67.1, 39.9. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 489.1424$, found: 489.1427.

Benzyl 2-(8-methoxy-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3e)

Compound $\mathbf{3 e}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid;
 $32.8 \mathrm{mg}, 73 \%$ yield.
${ }^{1} H$ NMR (400 MHz, Chloroform-d) $\delta 8.88-8.83(\mathrm{~m}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.15$ $(\mathrm{m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.96-4.80(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$,
$3.37(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 169.3$, $162.1,161.5,151.5,144.7,140.3,137.1,136.4$ ', 136.0, 135.3, 133.4, 131.7, 129.4, 129.4, 128.7, 128.6, $128.6,126.26,121.9,118.4,115.1,108.6,107.7,77.5,77.2,76.8,67.0,56.1,40.1$. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+} 451.1661$, found: 451.1659 .

Benzyl 2-(6-fluoro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3f)

Compound $3 \mathbf{f}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $38.5 \mathrm{mg}, 88 \%$ yield.

${ }^{1} \mathbf{H}$-NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.85(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $3 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J$ $=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}(101 \mathrm{MHz}$, Chloroform-d) $\delta 164.7,164.4,149.8$, $146.9,138.3,137.9,135.3,132.1,132.0,131.4,130.1,128.8,128.7,128.7,128.5,128.4,128.2,127.2$, $121.8,119.6,118.1,117.8,117.5,111.8,111.6,88.1,78.9,67.0,66.8$. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+}$439.1453, found: 439.1457.

Benzyl 2-(6-chloro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3g)

Compound $\mathbf{3 g}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $41.0 \mathrm{mg}, 91 \%$ yield.

${ }^{1} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, Chloroform- $\boldsymbol{d}) \delta 8.85(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.40$ $(\mathrm{d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 169.0,151.5$, $144.1,139.1,138.3,138.0,136.6,135.2,135.1,131.3,130.2,129.8,129.4,128.6,128.6,127.3,126.3$,
125.2, 124.0, 122.1, 107.0, 67.0, 40.1. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]+455.1159$, found: 455.1161.

Benzyl 2-(6-bromo-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3h)

Compound $\mathbf{3 h}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $42.8 \mathrm{mg}, 86 \%$ yield.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 8.84(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.23$ (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=10.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.17$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 169.0,163.9,151.6,144.7$, $144.4,140.2,137.7,136.5,135.7,135.1,132.6,131.4,129.6,129.5,128.6,128.6,126.7,126.7,126.4$, 122.8, 122.1, 107.3, 67.0, 40.0. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{Na}]^{+} 521.0482$, found: 521.0480 .

Benzyl 2-(6-acetyl-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3i)

Compound $\mathbf{3 i}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; 41.6
 $\mathrm{mg}, 90 \%$ yield.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 8.84$ (d, $\left.J=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.46(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{dd}, J=8.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H})$, $3.43(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- $\boldsymbol{d})$ $\delta 198.0,169.1,163.0,151.6,144.2,140.1,137.7,137.1,136.6,135.3,135.1,131.2,129.9,129.4,129.0$, 128.7, 128.6, 128.4, 126.6, 126.3, 125.5, 122.1, 108.1, 67.1, 40.1, 27.2. HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 463.1656$, found: 463.1659 .

Benzyl 2-(6-cyano-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3j)

Compound $\mathbf{3 j}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70-50: 50$). It is obtained as a yellow solid; $41.4 \mathrm{mg}, 93 \%$ yield.

${ }^{1} \mathbf{H}-$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.83(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{dd}, J=8.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2 \mathrm{H})$, $6.62(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C} \mathbf{C}=\mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 168.8,162.5,151.7,144.0,139.1,137.1,136.6,135.0,134.9,131.1,130.6,130.0$, $129.5,129.4,128.7,128.7,128.5,128.0,126.3,122.2,118.3,116.1,106.7,67.2,40.0$. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 446.1548$, found: 446.1551.

Benzyl 2-(6-methyl-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3k)

Compound $\mathbf{3 k}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $36.0 \mathrm{mg}, 83 \%$ yield.
 $=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 169.2,162.1,161.3,151.4,144.7$, $140.2,137.1,136.4,135.9,135.2,133.4,131.7,129.4,129.3,128.6,128.6,128.5,126.2,121.8,118.4$, 115.1, 108.2, 107.6, 67.0, 56.0, 40.0. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 435.1705$, found: 435.1703 .

Benzyl 2-(6-cyclohexyl-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (31)

Compound $\mathbf{3 1}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; 40.5 $\mathrm{mg}, 81 \%$ yield.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 8.84(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.3,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 5 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.18$ $(\mathrm{d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 1.91(\mathrm{dd}, J=25.1,11.6 \mathrm{~Hz}, 5 \mathrm{H}), 1.78(\mathrm{~d}, J$ $=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.37(\mathrm{~m}, 5 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 169.4$, $163.6,153.2,151.4,144.4,137.3,136.6,136.2,135.7,135.2,131.6,129.5,129.4,128.6,128.5,128.4$, $126.5,126.4,123.8,123.7,122.0,108.3,67.0,58.6,45.0,40.1,34.3,26.9,26.2,18.5$. HRMS (ESI): calculated for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 503.2341$, found: 503.2339.

Benzyl 2-(6-methoxy-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3m)

Compound $\mathbf{3 m}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70-50: 50$). It is obtained as a yellow solid; $35.6 \mathrm{mg}, 79 \%$ yield.

${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.85(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $3 \mathrm{H}), 7.17(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}$, $1 \mathrm{H}), 4.90(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) $\delta 169.3,163.2,151.5,144.5,139.2,137.1,136.5,135.7,135.2,131.5,130.5$, 129.6, 129.4, 128.6, 128.5, 126.3, 121.9, 119.5, 116.2, 107.8, 107.0, 67.0, 55.6, 40.1. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 451.1661$, found: 451.1663.

Benzyl 2-(7-chloro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3n)

 Benzyl 2-(5-chloro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3n')Compound $\mathbf{3 n}$ and $\mathbf{3 n}$ ' was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid which contained two isomers, and further purified by flash column chromatography (Ether: hecane $=30: 70-100: 0)$ to give the desired products $\mathbf{3 n}(21 \mathrm{mg})$ in 46% yield and $\mathbf{3 n} \mathbf{n}^{\prime}(14 \mathrm{mg})$ in 31% yield.

Benzyl 2-(7-chloro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3n)

${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(400-\mathrm{MHz}$, Chloroform- $\boldsymbol{d}) \delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 4 \mathrm{H}), 7.37(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.95$ (m, 2H), $3.44(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$-NMR (101$\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 169.2,164.1,151.7,144.4,139.2,138.0,136.6,136.3,135.2,134.4,132.6,132.3,131.3$, 129.7, 129.6, 128.7, 128.71, 128.5, 128.4, 127.5, 126.5, 126.3, 124.9, 122.1, 119.0, 108.8, 67.1, 40.2 . HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 445.1159$, found: 445.1163.

Benzyl 2-(5-chloro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (3n')

H-NMR (400-MHz, Chloroform-d) $\delta 8.94$ (s, 1H), 8.31 (s, 1H), 8.22 (d, $J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.95-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29$ (m, 4H), 7.20-7.17 (m, 2H), $6.60(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.17(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 1 - M H z}, \mathbf{C D C l}_{3}\right) \delta 169.3,163.2,151.7$, $144.6,138.1,136.5,135.4,135.2,132.4,131.5,129.6,128.7,128.3,128.1,127.3,126.3,124.9,122.1$, 120.9, 106.8, 77.5, 76.8, 67.4, 40.5. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 445.1159$, found: 445.1162 .

Benzyl 2-(6-bromo-8-methyl-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (30)

Compound 30 was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $33.2 \mathrm{mg}, 65 \%$ yield.

${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.86(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H})$, $7.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H})$,
$7.17(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(101 \mathrm{MHz}$, Chloroform-d) $\delta 169.0$, 163.9, 151.6, 144.7, 144.3, 140.2, 137.6, 136.6, 135.7, 135.1, 132.6, 131.4, 129.6, 129.5, 128.6, 128.6, 126.7, 126.7, 126.4, 122.8, 122.1, 107.3, 67.0, 39.9, 23.6. HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 513.0811$, found: 513.0798.

Benzyl 2-(1-oxo-2-(quinolin-8-yl)-1,2-dihydrobenzo[h]isoquinolin-3-yl)acetate (3p)

Compound $\mathbf{3 p}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $33.4 \mathrm{mg}, 71 \%$ yield.

${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 10.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=3.8$
$\mathrm{Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$
$(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.19$ $(\mathrm{d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 1} \mathrm{MHz}$, Chloroform-d) δ 169.1, 164.1, 151.7, 144.3, 139.1, 137.9, 136.6, 136.2, $135.2,134.3,132.6,132.2,131.3,129.6,129.5,128.7,128.6,128.4,128.3,127.4,126.4,126.3,124.8$, 122.1, 118.9, 108.8, 67.1, 40.1. HRMS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 471.1712$, found: 471.1710.

Methyl 2-(6-methyl-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (4a)

Compound $\mathbf{4 a}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $26.9 \mathrm{mg}, 75 \%$ yield.

${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 8.86(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.26-8.21(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=16.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101-MHz, Chloroform-d) $\delta 169.8,151.5,144.6,143.3,137.3,136.5$, $135.9,131.4,129.7,129.4,128.4,128.3,126.2,125.8,123.4,122.0,107.9,52.1,40.0,22.0$. HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 359.1421$, found: 359.1420.

Methyl 2-(6-methoxy-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (4b)

Compound $\mathbf{4 b}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $27.0 \mathrm{mg}, 72 \%$ yield.

${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 8.87(\mathrm{dd}, \boldsymbol{J}=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}$, 3H), 3.43 (s, 3H), $3.35\left(\mathrm{~d}, ~ J=16.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $3.09(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 169.8,163.3,163.2,151.5,144.5,139.2,137.2,136.6,135.8,131.4,130.5,129.7$, 129.4, 126.2, 122.0, 119.5, 116.2, 107.8, 107.0, 55.6, 52.2, 40.0. HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{Na}]^{+} 375.1345$, found: 375.1347 .

Ethyl 2-(1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (4c)

Compound $4 \mathbf{c}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=40: 60-60: 40$). It is obtained as a yellow solid; $22.4 \mathrm{mg}, 65 \%$ yield.

${ }^{1} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, Chloroform- $\boldsymbol{d}) \delta 8.91(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.50$ $-7.46(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.13(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(101 \mathrm{MHz}$, Chloroform-d) $\delta 169.4,163.6,151.5,144.4,137.1,136.6,136.4,135.7,132.6,131.3,129.6,129.3$, 128.3, 126.7, 126.2, 125.9, 125.5, 121.9, 107.9, 61.1, 40.1, 13.9. HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$ for $[\mathrm{M}+\mathrm{H}]^{+} 359.1341$, found: 359.1339.

Ethyl 2-(6-methoxy-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (4d)

Compound $\mathbf{4 d}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid;
 $29.4 \mathrm{mg}, 76 \%$ yield.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- $\boldsymbol{d}) \delta 8.91(\mathrm{dd}, J=4.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.35$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J$
$=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroformd) $169.5,163.7,151.7,144.6,137.2,136.7,136.5,135.9,132.7,131.5,129.7,129.5,128.4,126.8,126.3$, 126.1, 125.7, 122.1, 108.0, 61.3, 40.2, 29.8, 14.1. HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+}$ 389.1486, found: 389.1489 .

Ethyl 2-(6-cyano-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (4e)

Compound $\mathbf{4 e}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $27.6 \mathrm{mg}, 72 \%$ yield.
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 8.90$ (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.52 (d, J $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}$, $1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dt}, J=7.7,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, $3.96(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (101 MHz, Chloroform-d) $\delta 168.9,162.4,151.6,144.0,139.2,137.1,136.5,135.0,131.0,130.5$, 130.0, 129.5, 129.4, 128.4, 127.9, 126.2, 122.1, 118.3, 116.1, 106.6, 61.3, 40.0, 13.9. HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 406.1173$, found: 406.1169 .

Phenyl 2-(6-methoxy-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (4f)

Compound $4 \mathbf{f}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $37.1 \mathrm{mg}, 85 \%$ yield.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 8.89(\mathrm{dd}, J=4.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.33(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 168.0,163.4,163.3,151.8,150.4$, $144.7,139.2,136.7,136.6,135.9,131.8,130.6,129.9,129.6,129.6,129.5,126.5,126.16,122.1,121.2$, 119.6, 116.4, 108.1, 107.1, 55.7, 40.2. HRMS (ESI): calculated for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+} 437.1493$, found: 437.1502.

Phenyl 2-(1-oxo-2-(quinolin-8-yl)-1,2-dihydrobenzo[g]isoquinolin-3-yl)acetate (4g)

Compound 4 g was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $45.6 \mathrm{mg}, 82 \%$ yield.

${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, Chloroform-d) $\delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.06(\mathrm{~m}, 4 \mathrm{H}), 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 168.2,164.2,151.8,150.4,144.8,136.7,135.8,134.9,133.0132 .1,131.9,129.9,129.9,129.8$, 129.6, 129.5, 128.3, 127.7, 126.5, 126.1, 126.0, 124.3, 124.2, 122.2, 121.3, 108.5, 77.5, 77.2, 76.8, 40.3 . HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 457.1549$, found: 457.1551 .

Phenyl 2-(4-oxo-5-(quinolin-8-yl)-4,5-dihydrothieno[3,2-c]pyridin-6-yl)acetate (4h)

Compound $\mathbf{4 h}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $25.7 \mathrm{mg}, 62 \%$ yield.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.08(\mathrm{~m}$, $4 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR
(101 MHz, Chloroform-d) $\delta 167.8,159.5,151.7,150.2,145.2,144.3,137.4,136.5,135.2,133.9,131.6$, 130.0, 129.7, 129.4, 129.4, 126.3, 126.0, 124.4, 122.1, 121.1, 105.3, 40.1. HRMS (ESI): calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ for $[\mathrm{M}+\mathrm{H}]^{+} 415.1110$, found:415.1109.

3-((Diphenylphosphoryl)methyl)-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4i)

Compound $4 \mathbf{i}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=40: 60-60: 40$). It is obtained as a yellow solid; $40.0 \mathrm{mg}, 83 \%$ yield.

${ }^{1} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, Chloroform- $\boldsymbol{d}) \delta 8.84(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J$ $=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.32(\mathrm{~m}, 11 \mathrm{H}), 7.19(\mathrm{dd}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{ddd}, J=15.9,14.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.0,12.6 \mathrm{~Hz}$, 1H). ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 163.7,151.6,144.5,136.7,135.7$, $134.2,134.1,132.7,132.3,132.3,132.2,132.2,132.0,131.7,131.5,131.4,131.0,130.9,129.4,129.3$, $128.9,128.8,128.8,128.7,128.2,126.7,126.6,126.2,125.4,122.0,108.1(\mathrm{~d}), 35.2,34.6$. HRMS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$ for $[\mathrm{M}+\mathrm{H}]^{+} 509.1416$, found: 509.1412 .

3-((Diphenylphosphoryl)methyl)-6-methoxy-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4j)

Compound $\mathbf{4} \mathbf{j}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=40: 60-60: 40$). It is obtained as a yellow solid; $47.5 \mathrm{mg}, 92 \%$ yield.

${ }^{1} \mathbf{H}-$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.85(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.27-$ $8.20(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.46-7.40$ (m, 4H), $7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{dd}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.9$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=7.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.34(\mathrm{~m}, 1 \mathrm{H})$, 3.01 (dd, $J=16.1,12.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 163.2,163.0,151.4,144.4$, $136.3,135.6,134.6,132.2,132.2,132.1,132.1,131.5,131.5,131.3,131.2,130.9,130.8,130.1,129.2$, 129.1, 128.7, 128.7, 128.6, 128.6, 126.4, 121.9, 119.1, 116.2, 107.9, 107.8, 106.8, 55.5, 35.0, 34.4. HRMS (ESI): calculated for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$ for $[\mathrm{M}+\mathrm{H}]^{+} 539.1495$, found: 539.1498 .

6-Cyclohexyl-3-((diphenylphosphoryl)methyl)-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4k)

Compound $\mathbf{4} \mathbf{k}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=40: 60-60: 40$). It is obtained as aellow solid; $48.3 \mathrm{mg}, 85 \%$ yield.

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(400 \mathrm{MHz}$, Chloroform-d) $\delta 8.87$ (dd, $J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.29(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.3$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.41(\mathrm{~m}$, $5 \mathrm{H}), 7.37(\mathrm{ddd}, J=10.6,5.8,2.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.25(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=16.0,12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61(\mathrm{ddd}, J=11.7,8.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.36(\mathrm{~m}, 5 \mathrm{H})$, 1.32-1.23 (m, 3H). ${ }^{13} \mathbf{C}$-NMR (101 MHz, Chloroform-d) δ 163.6, 153.1, 150.86, 137.3, 137.0, 135.2, 133.7, 132.3, 132.2, 132.21, 132.1, 132.1, 132.0, 131.4, 131.4, 131.3, 131.3, 130.9, 130.8, 129.2, 129.2, $128.8,128.77,128.7,128.6,128.5,128.4,128.1,126.8,126.3,123.7,123.3,121.9,108.5,108.4,44.8$, 35.1, 34.4, 34.1, 26.8, 26.1. HRMS (ESI): calculated for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$ for $[\mathrm{M}+\mathrm{H}]^{+} 591.2203$, found: 591.2205.

6-Bromo-3-((diphenylphosphoryl)methyl)-8-methyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (41)
Compound $\mathbf{4 1}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=40: 60-60: 40$). It is obtained as a yellow solid; $45.7 \mathrm{mg}, 79 \%$ yield.

${ }^{1} \mathbf{H}$-NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.86$ (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.25 (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.70(\mathrm{~m}, 4 \mathrm{H})$, $7.62-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.46(\mathrm{dd}, J=8.6,4.5,2.9 \mathrm{~Hz}, 7 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H})$, $7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{td}, J=6.8,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.89(\mathrm{dd}, J=11.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=15.9,12.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.74 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 151.3,144.4,144.0,136.8,135.5,132.9$, $132.3,132.3,132.2,132.1,132.0,132.0,131.9,131.4,131.3,131.3,131.2,130.8,130.7,129.3,129.2$, $128.8,128.8,128.7,128.6,128.5,128.4,126.7,126.6,126.5,122.4,122.0,107.2,107.1,85.1,84.0,35.1$, 34.4, 23.5. HRMS (ESI): calculated for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{P}$ for $[\mathrm{M}+\mathrm{Na}]^{+}$601.0662, found: 601.0659.

3-((diphenylphosphoryl)methyl)-2-(quinolin-8-yl)-8-(trifluoromethyl)isoquinolin-1(2H)-one (4m)

Compound $\mathbf{4 m}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (silica gel, petroleum ether/ ethyl actate $=1: 1$ to $1: 2$). It is obtained as a yellow solid; $46.1 \mathrm{mg}, 83 \%$ yield.

${ }^{1} \mathbf{H}$-NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.34(\mathrm{~m}, 15 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}$, $1 \mathrm{H}), 3.37(\mathrm{dd}, J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}$
($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 160.7,151.5,144.4,136.5,136.3,135.5,132.9,132.4,131.9,131.8,131.5,131.4$, $131.3,131.2,130.99,130.89,130.8,129.5,129.5,129.0,128.9,128.86,128.8,126.8,126.4,122.5,122.1$, 107.4, 107.38, 35.18, 34.52. HRMS (ESI): calculated for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$ for $[\mathrm{M}+\mathrm{H}]^{+} 555.1451$, found: 555.1450.

3-((Diphenylphosphoryl)methyl)-6-nitro-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4n)

Compound $\mathbf{4 n}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (silica gel, petroleum ether/ ethyl actate $=1: 1$ to $1: 2$). It is obtained as a yellow solid; $48.3 \mathrm{mg}, 91 \%$ yield.

${ }^{1} \mathbf{H}$-NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.85(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(J=$ $4.0,1 \mathrm{H}), 8.28-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.45(\mathrm{~m}, 13 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.78$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.4,151.6,144.6,143.3,137.3$, $136.5,136.5,135.8,135.3,131.5,129.6,129.4,128.68,128.65,128.6,128.5,128.4,126.4,125.8,123.5$, 122.0, 108.0, 67.0, 40.2, 22.0. HRMS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}$ for $[\mathrm{M}+\mathrm{H}]^{+} 532.1431$, found: 532.1429.

Ethyl 3-(1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)propanoate (4o)

Compound 40 was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=40: 60$). It is obtained as a yellow solid; $22.7 \mathrm{mg}, 61 \%$ yield.

${ }^{1} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, Chloroform- $\boldsymbol{d}) \delta 8.89(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ - $7.68(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=8.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H})$, $6.45(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{qd}, J=7.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.36(\mathrm{~m}, 7 \mathrm{H}), 1.16(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- $\boldsymbol{d}) \delta 172.2,163.9,150.9,143.3,142.2,137.5,131.3$, 129.7, 129.5, 128.3, 128.2, 127.1, 125.7, 123.0, 122.1, 104.7, 77.5, 77.2, 76.8, 60.8, 32.6, 28.4, 22.0, 14.3. HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 373.1557$, found: 373.1555 .

Ethyl 3-(6-methoxy-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)propanoate (4p)

Compound $\mathbf{4 p}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=40: 60$). It is obtained as a yellow solid; $26.1 \mathrm{mg}, 65 \%$ yield.

${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C h l o r o f o r m}-\boldsymbol{d}) \delta 8.90-8.84(\mathrm{~m}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J$
$=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$
$-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.08-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.93$ ($\mathrm{s}, 3 \mathrm{H}$), $2.58-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- $\boldsymbol{d}) \delta 172.2$, $163.5,163.2,151.2,143.0,139.5,137.4,136.1,131.1,130.5,129.6,129.5,126.9,122.1,119.1,115.9$, $106.8,104.5,77.5,77.4,77.2,76.8,60.8,55.6,32.7,28.5,14.2$. HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+} 403.1665$, found: 403.1668 .

Ethyl (E)-2-(1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(2H)-ylidene)propanoate (4q)

Compound $\mathbf{5 g}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=50: 50$). It is obtained as a yellow solid;
 $27.0 \mathrm{mg}, 73 \%$ yield.
${ }^{1}$ H NMR (400 MHz, Chloroform-d) $\delta 8.99$ (s, 1H), 8.32 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ $(\mathrm{q}, J=7.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.27-$ $1.24(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 169.3,164.5,150.2,148.7,143.6,138.5,137.7,136.3$, $132.7,131.2,129.2,128.8,128.7,127.6,127.1,126.8,125.9,121.5,116.2,77.5,77.2,76.8,60.7,34.9$, 15.9, 14.3. HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 373.1547$, found: 373.1550.

Ethyl (E)-2-(8-fluoro-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(2H)-ylidene)propanoate (4r)

Compound $\mathbf{5} \mathbf{h}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $25.4 \mathrm{mg}, 65 \%$ yield.

${ }^{1} \mathbf{H}-$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.87(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.2$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 169.0,163.9,151.6,144.7,144.4,140.2,137.7,136.5,135.7,135.1,132.2,131.4$, $129.6,129.5,128.6,128.6,126.7,126.7,126.4,122.8,122.1,107.3,77.4,77.1,76.8,67.0,40.0,23.6$. HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+} 391.1465$, found: 391.1461 .

Ethyl (E)-2-(1-oxo-2-(quinolin-8-yl)-8-(trifluoromethyl)-1,4-dihydroisoquinolin-3(2H)-ylidene) propanoate (4s)

Compound $\mathbf{5 i}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=50: 50$). It is obtained as a yellow solid; 34.3 $\mathrm{mg}, 78 \%$ yield.

${ }^{1}$ H-NMR (400 MHz, Chloroform-d) $\delta 8.87(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.2,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $168.3,149.9,149.6,147.0,143.1,139.2,137.8,135.9,131.3,130.42,130.35,128.9,127.5,125.8,125.6$, 121.3, 116.1, 60.2, 35.3, 30.0, 15.2, 13.7. HRMS (ESI): calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+}$ 441.1432, found: 441.1429 .

6-Methyl-4-methylene-3-phenyl-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (5a)

Compound 5a was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (EtOAc: hexane $=30: 70$). It is obtained as a yellow solid; $22.8 \mathrm{mg}, 63 \%$ yield.

${ }^{1} \mathbf{H}-$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 8.96(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.19$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.41$ (m, 6H), 7.24-7.18 $(\mathrm{m}, 5 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 163.9,150.8,144.3,141.5,141.2,136.5,135.4,132.6,130.5,129.8,129.0$, $128.9,128.7,128.2,128.1,127.9,126.7,126.2,124.3,121.6,113.8,77.5,77.4,77.2,76.8,69.8$. HRMS (ESI): calculated for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ for $[\mathrm{M}+\mathrm{H}]^{+} 363.1618$, found: 363.1617.

6-Methoxy-4-methylene-3-phenyl-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (5b)

Compound $\mathbf{5 b}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (hexane : $\mathrm{EtOAc}=70: 30$). It is obtained as a yellow solid; $23.9 \mathrm{mg}, 61 \%$ yield.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 8.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=$ $4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41$ (m, 3H), 7.26-7.19 (m, 5H), 7.01-6.99 (m, 2H), $5.82(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.43$ (s, 1H), 3.87 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}$-NMR (101-MHz, Chloroform-d) δ 163.7, 162.9, $150.5,144.0,141.5,141.1,138.4,137.0,136.5,130.9,130.4,129.6,128.5,127.9,127.8,127.7,126.5$, 126.0, 121.3, 121.2, 114.9, 113.7, 108.5, 69.7, 55.4. HRMS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ for $[\mathrm{M}+\mathrm{Na}]^{+} 415.1415$, found: 415.1417 .

4-methylene-1-oxo-3-phenyl-2-(quinolin-8-yl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile (5c)

Compound $\mathbf{5 c}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (hexane : $\mathrm{EtOAc}=70: 30$). It is obtained as a yellow solid;
 $20.8 \mathrm{mg}, 55 \%$ yield.
${ }^{1}$ H NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 9.01(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{dd}, J=$ $4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=4.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H})$, $5.56(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(101-\mathrm{MHz}$, Chloroform-d) $\delta 162.5,150.4,139.6,136.4,132.0,131.5,130.5$, 129.8, 129.8, 129.0, 128.5, 128.48, 128.3, 126.6, 121.8, 118.2, 116.3, 69.6. HRMS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ for $[\mathrm{M}+\mathrm{H}]^{+} 388.1443$, found: 388.1446 .

6-cyclohexyl-4-methylene-3-phenyl-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (5d)

Compound 5d was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (hexane : $\mathrm{EtOAc}=70: 30$). It is obtained as a yellow solid; $25.3 \mathrm{mg}, 57 \%$ yield.

${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.95(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38$ $(\mathrm{m}, 4 \mathrm{H}), 7.33(\mathrm{dd}, J=4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.72$ $(\mathrm{s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.75(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.26$, $0.87(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 1}-\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 153.0,150.9,141.9,136.5,135.3,129.8,129.1,128.8$, $128.1,127.9,127.9,126.9,126.3,126.0,122.6,121.6,113.4,77.6,77.5,77.3,76.9,70.0,45.1,34.4$, 34.4, 30.0, 27.0, 26.3. HRMS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ for $[\mathrm{M}+\mathrm{H}]^{+} 445.2275$, found: 445.2276 .

4-methylene-5-phenyl-6-(quinolin-8-yl)-5,6-dihydrothieno[2,3-c]pyridin-7(4H)-one (5e)

Compound $\mathbf{5 e}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (hexane : $\mathrm{EtOAc}=70: 30$). It is obtained as a yellow solid; $16.5 \mathrm{mg}, 45 \%$ yield.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 9.01(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{dd}, J=4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H})$, 7.40-7.38 (m, 1H), 7.25, 7.24-7.19 (m, 6H), 6.02 ($\mathrm{s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (101-MHz, Chloroform- \boldsymbol{d}) $\delta 160.4,150.7,144.4,141.9,138.8,136.5$, $132.9,132.4,132.3,131.4,129.7,129.5,129.2,129.0,128.9,128.7,128.4,128.3,128.1,123.0,127.2$, 127.0, 126.6, 126.6, 126.1, 124.1, 121.5, 113.1, 77.5, 77.2, 76.8, 70.8, 29.8. HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ for $[\mathrm{M}+\mathrm{H}]^{+}$369.1093, found: 369.1089.

4-methylene-3-phenyl-2-(quinolin-8-yl)-3,4-dihydrobenzo[g]isoquinolin-1(2H)-one (5f)

Compound $\mathbf{5 f}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (hexane : $\mathrm{EtOAc}=70: 30$). It is obtained as a yellow solid; $19.3 \mathrm{mg}, 45 \%$ yield.

${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H})$, $8.21(\mathrm{dd}, J=4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}$, $2 \mathrm{H}), 7.17,7.16-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (101-MHz, Chloroform-d) $\delta 164.2,150.8,144.3,141.8,141.1,136.5$, $135.4,133.3,132.3,130.3,130.1,129.8,129.7,128.7,128.21,128.16,128.02,127.8,126.8,126.6$, $126.58,126.3,126.2,123.7,121.6,113.5,70.3$. HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ for $[\mathrm{M}+\mathrm{H}]^{+}$ 413.1652, found:413.1654.

3-(4-fluorophenyl)-4-methylene-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (5g)

Compound $\mathbf{5 g}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (petroleum ether : EtOAc $=70: 30$). It is obtained as a yellow solid; $21.4 \mathrm{mg}, 56 \%$ yield.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (m, 3H), 7.19 (t, J=8.0 Hz, 2H), 6.86 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H})$, $5.39(\mathrm{~s}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 163.5,150.4,141.0,136.7,136.3$, $134.9,132.4,130.2,129.4,128.8,128.6,128.1,128.0,127.9,127.7,125.9,124.0,121.3,115.3,115.1$, 113.7, 68.8. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}$ 381.1398; found 381.1391 .

6-fluoro-3-(4-fluorophenyl)-4-methylene-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (5h)

Compound 5h was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (petroleum ether : EtOAc $=70: 30$). It is obtained as a yellow solid; $21.0 \mathrm{mg}, 52 \%$ yield.

${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}$, $\mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 1H), 7.17 (t, J=8.0 Hz, 2H), 6.89(t, J=8.0 Hz, 2H), $5.82(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H})$, $5.50(\mathrm{~s}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 163.8,163.6,161.2,161.1,150.7$ $144.1,141.2,138.2,136.6,136.1,133.9,133.8,130.4,129.8,128.3,128.3,128.2,126.2,121.6,120.6$,
$120.5,117.8,117.5,116.5,116.4,115.7,115.4,115.1,68.9$. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}$ 399.1416; found 399.1413.

3-(4-chlorophenyl)-4-methylene-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (5i)

Compound $\mathbf{5 i}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (petroleum ether : EtOAc $=70: 30$). It is obtained as a yellow solid; $22.7 \mathrm{mg}, 57 \%$ yield.

${ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 1 \mathrm{H}), 7.76,7.55-7.43(\mathrm{~m}, 9 \mathrm{H}), 7.16(\mathrm{~m}, 4 \mathrm{H}), 5.84(\mathrm{~s}$, $1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,150.8$, 144.1, 141.1, 139.7, 136.6, 135.1, 133.7, 132.7, 130.4, 129.8, 129.3, 129.1, $128.9,128.8,128.7,128.7,128.5,128.4,128.3,128.1,128.0,127.9,126.2$, 124.3, 121.7, 121.6, 114.0, 69.2. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}$ 397.1242; found 397.1243.

3-(4-chlorophenyl)-6-methoxy-4-methylene-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one

 (5j)Compound $\mathbf{5 j}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (petroleum ether : EtOAc $=50: 50$). It is obtained as a yellow solid; $21.7 \mathrm{mg}, 51 \%$ yield.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ $(\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77,7.75,7.45,7.45,7.43,7.41,7.40,7.26,7.19,7.18$, $7.17,7.15,7.01,7.00,5.85,5.70,5.42,3.87 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,150.8,144.1,141.1,139.7,136.6,135.1,133.6,132.8,130.4$, $129.8,129.3,129.1,128.9,128.8,128.7,128.7,128.5,128.4,128.3,128.1,128.0,127.9,126.2,124.3$, 121.7, 121.6, 114.0, 69.2, 55.6. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{2} 427.1259$; found 427.1261.

3-(4-methoxyphenyl)-4-methylene-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (5k)

Compound $\mathbf{5 k}$ was prepared by the typical procedure in 0.1 mmol scale and the reaction mixture was purified by flash column chromatography (petroleum ether : EtOAc $=50: 50$). It is obtained as a 41
yellow solid; $23.5 \mathrm{mg}, 60 \%$ yield.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.97(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{t}$, $\mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C}$ NMR (100 MHz, CDCl3) $\delta 163.6,159.0,150.5,144.0,141.5,136.3,135.2$, 133.1, 132.4, 130.3, 129.5, 128.7, 128.6, 127.8, 127.6, 125.9, 124.1, 121.3, 113.7, 113.3, 69.0, 55.0. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} 393.1718$; found 393.1721.

(E)-2-(quinolin-8-yl)-3-styryl-8-(trifluoromethyl)isoquinolin-1(2H)-one (6)

The reaction was carried out in a 10 mL round-bottom flask and the compound $4 \mathrm{~m}(0.1 \mathrm{mmol})$ was dissolved in 3 mL anhydrous DMF under argon atmosphere. $60 \% \mathrm{NaH}$ (1.2 equiv.) was added slowly at $0^{\circ} \mathrm{C}$, then followed by the addition of aldehyde $(0.12 \mathrm{mmol})$. The resulting mixture was allowed to warm to room temperature and stirred for overnight. The mixture was quenched with ice and extracted with CH 2 Cl 2 three times. The organic phase was combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent in vacuo, the crude product was purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=50: 50)$ through silica gel.

${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 160.4,150.5,140.3,134.0135 .6,133.9,131.9,131.7,131.4,130.2,129.9,129.7,129.6$, $128.83,128.80,127.5,127.1,126.5,126.4,122.6,122.3,121.7,104.1,29.8$. LRMS (ESI) calcd. for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O} 443.15$; found 443.26.

Reference:

1. Org. Lett., 2017, 19, 13, 3524-3527
2. Angew. Chem. Int. Ed., 2016, 55, 5765-5769.
3. J. Org. Chem., 2009, 74, 763-1765.
4. Org. Lett., 2017, 19, 3524-3527.
5. Chem. Comm., 2018, 54, 12389-12392.
6. J. Am. Chem. Soc., 2009, 131, 6105-6107.
7. J. Am. Chem. Soc., 2019, 141, 1135-1140.
8. J. Org. Chem., 1962, 27, 1828-33.
9. Angew. Chem. Int. Ed., 2016, 55, 12361-12365.
10. ACS Catal., 2018, 8, 8115-8120.

${ }^{1}$ H-NMR Spectra and ${ }^{13}$ C-NMR Spectra

 ソ

51

V

53

1 ソ

58
(

60

61

答登
官

62

63

65

66

68

74

76

78

81

83

[^0]

86

88

89

96

98

100

оо	190	180	170	160	150	140	130	120	110	100	${ }_{90}$	${ }_{80}$	${ }_{70}$	60	50	40	30	20	10	${ }_{0}$
00		180	170	160	150	140	130	120	110	${ }_{f 1} 100$	90	80	70	60	50	40	30	20		


```
| \
******
nc
cccc
~
```


112

「

116

118

 ソ

119

ぶ

	1		1		1				1122	1	1	1	1			1	1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

123

125

131

133

134

かֻ

137

138

C-9-1-2F \#1 195 RT: 4.44 AV: 1 NL: 3.03E6
T: FTMS + CESI Full ms [100.0000-1000.0000]

$\stackrel{\text { l }}{\text { l }}$

isolated yield: 80\%

143

[^0]:

