Supporting Information

Photoredox-catalyzed Chemoselective Aerobic Ca-H Oxidation of Propargylamine: Synthesis of Substituted 2-Ynamide and Oxazolo[2,3aJisoquinolinone derivatives

Mandapati Bhargava Reddy,^a Nalladhambi Neerathilingam,^a Ramasamy Anandhan^{*a}

^aDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. E-mail: ananthanramasamy@gmail.com; Tel: +91 044 22202881.

<u>S. No</u>	Table of contents	Pages
1	General	S2
2	General Procedure A for the Synthesis of Propargylamine	S 3
3	General Procedure B for the Synthesis of 2-ynamide compounds and NMR data(2aa-2wa and 2ab-2kb)	S3-S18
4	General Procedure C for the Synthesis of Oxazolo[2,3- a]isoquinolinonen and NMR data(2ac-2vc)	S19-S31
5	X-Ray Crystallographic Studies of compound 2oc	\$32-\$33
6	References	S34
7	Copies of ¹ H and ¹³ C NMR and HRMS	S35-S124

1. General Experimental Details:

The ¹H and ¹³C NMR spectra were recorded in CDCl₃ on Bruker spectrometers 300, 400MHz NMR spectrometer spectrometer (300, 400 MHz for ¹H NMR and 75, 100MHz for ¹³C NMR) respectively with TMS as an internal standard. Mass spectra were recorded on Xevo G2S Q-TOF spectrometer. TLC was performed on using Merck pre-coated TLC plates (Merck 60 F254) and detected under UV light. Column chromatography was carried out with silica gel (100-200 mesh). Reagents and solvents were purified as per standard procedures.

Fig 1: Reaction setup for synthesis of 2-ynamides and Oxazolo[2,3-a]isoquinolinone.

2. General procedure A for synthesis of propargylamine

Propargylamine were synthesized using the modified literature procedure.¹

Reaction tube was charged with amine (0.57 mmol), paraformaldehyde (0.62 mmol), alkyne (0.62 mmol) and CuI (5 mol%) in ACN. The reaction mixture was stirred at 70 °C for 6 hours. After the reaction completion, solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using EtOAc/Hexane as eluent to furnish the corresponding Propargylamine compounds.

3. General procedure B for synthesis of 2-ynamides

Reaction tube was charged with 2-propynyl-tertiary amines (0.5 mmol), DBU (0.5 mmol) and rose bengal (2 mol%) in ACN (4 mL). The reaction mixture was stirred in the presence of O_2 (balloon) under blue light for 3 hours. After the reaction completion, solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using EtOAc/Hexane as eluent to furnish the corresponding 2-ynamide compounds.

1-morpholino-3-phenylprop-2-yn-1-one 2aa²

2aa (102 mg) was obtained from **1aa** (101 mg) following general procedure **B**; colorless oily liquid; 94% yield (eluent: EtOAc/Hexanes= 3:7);

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.69 (s, 4H), 3.72-3.75 (m, 2H), 3.81-3.84 (m, 2H), 7.33-7.41 (m, 3H), 7.51-7.55 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 42.0, 47.3, 66.4, 66.8, 80.8, 91.0, 120.4, 128.5, 130.0, 132.3, 153.1.

1-morpholino-3-(p-tolyl)prop-2-yn-1-one 2ba³

2ba (105 mg) was obtained from **1ba** (108 mg) following general procedure **B**; white solid; 91% yield (eluent: EtOAc/Hexanes= 3:7); mp: 87-89 °C;

¹H NMR (300 MHz, CDCl₃): δ_H 2.36 (s, 3H), 3.68 (s, 4H), 3.71-3.74 (m, 2H), 3.81-3.84 (m, 2H), 7.16 (d, *J*= 7.8 Hz,2H), 7.42 (d, *J*= 8.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ_C 21.5, 42.0, 47.3, 66.4, 66.8, 80.4, 91.5, 117.3, 129.2, 132.3, 140.6, 153.3.

3-(4-(tert-butyl)phenyl)-1-morpholinoprop-2-yn-1-one 2ca²

2ca (123 mg) was obtained from 1ca (129 mg) following general procedure B; yellow solid;
91% yield (eluent: EtOAc/Hexanes= 3:7); mp: 149-151 °C;

¹H NMR (**300** MHz, CDCl₃): δ_H 1.31 (s, 9H), 3.68 (s, 4H), 3.71-3.74 (m, 2H), 3.81-3.84 (m, 2H), 7.38 (d, *J*= 8.1 Hz, 2H), 7.47 (d, *J*= 8.4 Hz, 2H); ¹³C NMR (**75** MHz, CDCl₃): δ_C 31.0, 34.9, 42.0, 47.3, 66.4, 66.8, 80.4, 91.4, 117.2, 125.5, 132.1, 153.3, 153.8.

3-(4-methoxyphenyl)-1-morpholinoprop-2-yn-1-one 2da

2da (108 mg) was obtained from **1da** (116 mg) following general procedure **B**; colorless oily liquid; 88% yield (eluent: EtOAc/Hexanes= 3:7);

¹**H** NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.68 (s, 4H), 3.71-3.74 (m, 2H), 3.80-3.86 (s, 5H), 6.87 (d, *J*= 8.7 Hz, 2H), 7.47 (d, *J*= 9.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 41.9, 47.3, 55.3, 66.5, 66.8, 80.1, 91.7, 112.2, 114.3, 134.1, 153.5, 161.2; **IR** (KBr) v: 2973, 2224, 1616, 1556, 1113, 1046; **HRMS**: (M+H)⁺ calculated for C₁₄H₁₆NO₃: 246.1130, Found: 246.1088.

3-(3-aminophenyl)-1-morpholinoprop-2-yn-1-one 2ea

2ea (86 mg) was obtained from 1ea (108 mg) following general procedure B; yellow oily liquid;
75% yield (eluent: EtOAc/Hexanes= 1:1);

¹**H** NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.68 (s, 4H), 3.70-3.74 (m, 2H), 3.79-3.82 (m, 2H), 6.69-6.73 (m, 1H), 6.82 (s, 1H), 6.91 (d, *J*= 7.8Hz, 2H), 7.09-7.14 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 42.0, 47.3, 66.4, 66.8, 80.2, 91.5, 117.0, 118.2, 120.9, 122.5, 129.4, 146.5, 153.3; **IR** (**KBr**) v: 3546, 2989, 2211, 1621, 1570, 1117, 1050; **HRMS:** (M+H)⁺ calculated for C₁₃H₁₄N₂O₂: 231.1133, Found: 231.1135.

3-(2-chlorophenyl)-1-morpholinoprop-2-yn-1-one 2fa

2fa (100 mg) was obtained from **1fa** (118 mg) following general procedure **B**; colorless oily liquid; 80% yield (eluent: EtOAc/Hexanes= 3:7);

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.69 (s, 4H), 3.73-3.76 (m, 2H), 3.89-3.93 (m, 2H), 7.24-7.29 (m, 1H), 7.33 (dt, *J*= 1.8, 6.8 Hz, 1H), 7.43 (d, *J*= 7.5 Hz, 1H), 7.60 (dd, *J*= 1.2, 6.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 42.0, 47.3, 66.4, 66.8, 85.4, 87.1, 120.6, 126.7, 129.4, 131.1, 134.4, 136.7, 152.8; HRMS: (M+H)⁺ calculated for C₁₃H₁₃ClNO₂: 250.0635, Found: 250.0593.

3-(4-chlorophenyl)-1-morpholinoprop-2-yn-1-one 2ga²

2ga (112 mg) was obtained from **1ga** (118 mg) following general procedure **B**; white solid; 90% yield (eluent: EtOAc/Hexanes= 3:7); mp: 110-112 °C;

¹H NMR (300 MHz, CDCl₃): δ_H 3.68 (s, 4H), 3.71-3.74 (m, 2H), 3.79-3.81 (m, 2H), 7.34 (d, *J*= 8.4 Hz, 2H), 7.46 (m, *J*= 8.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ_C42.0, 47.2, 66.4, 66.8, 81.7, 89.7, 118.8, 128.9, 133.5, 136.5, 152.8.

3-(4-bromophenyl)-1-morpholinoprop-2-yn-1-one 2ha

2ha (129 mg) was obtained from **1ha** (140 mg) following general procedure **B**; pale yellow solid; 88% yield (eluent: EtOAc/Hexanes= 3:7); mp: 110-112 °C;

¹**H** NMR (300 MHz, CDCl₃): $\delta_{\rm H}3.69$ (s, 4H), 3.71-3.75 (m, 2H), 3.79-3.82 (m, 2H), 7.39 (d, J= 8.4 Hz, 2H), 7.51 (m, J= 6.3 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}42.0$, 47.3, 66.4, 66.8, 81.8, 89.8, 119.3, 124.8, 131.9, 133.6, 152.9; HRMS: (M+H)⁺ calculated for C₁₃H₁₃BrNO₂: 294.0129, Found: 294.0097.

1-morpholino-3-(4-nitrophenyl)prop-2-yn-1-one 2ia

2ia (108 mg) was obtained from **1ia** (123 mg) following general procedure **B**; yellow solid; 83% yield (eluent: EtOAc/Hexanes= 4:6); mp: 194-196 °C;

¹**H** NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.71 (s, 4H), 3.74-3.77 (m, 2H), 3.80-3.83 (m, 2H), 7.69 (d, *J*= 8.7Hz, 2H), 8.22 (d, *J*= 9Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 42.1, 47.3, 66.4, 66.8, 84.6, 88.1, 123.6, 126.9, 133.0, 148.3, 152.2; **IR** (**KBr**) **v**: 2978, 2225, 1620, 1569, 1113, 1050; **HRMS:** (M+H)⁺ calculated for C₁₃H₁₃N₂O₄: 261.0875, Found: 261.0835.

2-(3-morpholino-3-oxoprop-1-yn-1-yl)benzonitrile 2ja²

2ja (98 mg) was obtained from **1ja** (113 mg) following general procedure **B**; pale yellow solid; 82% yield (eluent: EtOAc/Hexanes= 4:6); mp: 108-110 °C;

¹**H NMR (300 MHz, CDCl₃):** δ_H 3.71 (s, 4H), 3.75-3.79 (m, 2H), 3.96-3.99 (m, 2H), 7.51-7.55 (m, 1H), 7.60-7.66 (m, 1H), 7.69-7.75 (m, 2H); ¹³**C NMR (75 MHz, CDCl₃):** δ_C40.0, 47.3, 66.1, 66.7, 85.5, 85.9, 115.7, 116.9, 124.3, 130.0, 132.4, 133.5, 151.9.

4-(3-morpholino-3-oxoprop-1-yn-1-yl)benzonitrile 2ka³

2ka (102 mg) was obtained from **1ka** (113 mg) following general procedure **B**; white solid; 85% yield (eluent: EtOAc/Hexanes= 4:6); mp: 197-199 °C;

¹**H NMR (300 MHz, CDCl₃):** δ_H3.70 (s, 4H), 3.72-3.75 (m, 2H), 3.78-3.81 (m, 2H), 7.60-7.67 (m, 4H); ¹³**C NMR (75 MHz, CDCl₃):** δ_C42.1, 47.3, 66.4, 66.7, 84.1, 88.5, 113.7, 117.7, 125.1, 132.1, 132.7, 152.3.

Methyl 4-(3-morpholino-3-oxoprop-1-yn-1-yl)benzoate 2la³

2la (109 mg) was obtained from **1la** (130 mg) following general procedure **B**; white solid; 80% yield (eluent: EtOAc/Hexanes= 4:6); mp: 124-126 °C;

¹**H NMR (300 MHz, CDCl₃):** δ_H 3.69 (s, 4H), 3.73-3.76 (m, 2H), 3.81-3.84 (m, 2H), 3.92(s, 3H), 7.59 (d, *J*= 8.4Hz, 2H), 8.02 (d, *J*= 8.4Hz, 2H); ¹³**C NMR (75 MHz, CDCl₃):** δ_C42.0, 47.3, 52.3, 66.4, 66.8, 82.9, 89.7, 124.8, 129.5, 131.4, 132.1, 152.7, 165.9.

3-(4-benzoylphenyl)-1-morpholinoprop-2-yn-1-one 2ma

2ma (135 mg) was obtained from **1ma** (153 mg) following general procedure **B**; pale yellow oily liquid; 85% yield (eluent: EtOAc/Hexanes= 4:6);

¹**H** NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.70 (s, 4H), 3.73-3.77 (m, 2H), 3.82-3.85 (m, 2H), 6.45-6.50 (m, 2H), 7.58 (d, *J*= 7.5Hz, 1H), 7.64 (d, *J*= 8.4Hz, 2H), 7.75-7.80 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 42.0, 47.3, 66.4, 66.8, 83.0, 89.8, 124.2, 128.4, 129.8, 132.1, 132.7, 137.0, 138.6, 152.7, 195.3; HRMS: (M+H)⁺ calculated for C₂₀H₁₇NO₃: 320.1287, Found: 320.1295.

1-morpholino-3-(pyridin-2-yl)prop-2-yn-1-one 2na

2na (76 mg) was obtained from **1na** (101 mg) following general procedure **B**; brown solid; 70% yield (eluent: EtOAc/Hexanes= 1:1); mp: 59-61 °C;

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.69 (s, 4H), 3.71-3.75 (m, 2H), 3.85-3.88 (m, 2H), 7.31-7.35 (m, 1H), 6.59 (d, *J*= 7.8Hz, 1H), 7.69-7.75 (m, 1H), 8.63 (d, *J*= 4.2Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 42.0, 47.3, 66.3, 66.8, 79.4, 89.1, 124.2, 128.3, 136.2, 141.0, 150.2, 152.4; HRMS: (M+H)⁺ calculated for C₁₂H₁₃N₂O₂: 217.0977, Found: 217.0983.

3-([1,1'-biphenyl]-4-yl)-1-morpholinoprop-2-yn-1-one 20a³

20a (131 mg) was obtained from **10a** (139 mg) following general procedure B; white solid; 90% yield (eluent: EtOAc/Hexanes= 3:7); mp: 128-130 °C;

¹**H NMR (300 MHz, CDCl₃):** δ_H 3.69 (s, 4H), 3.72-3.75 (m, 2H), 3.83-3.85 (m, 2H), 7.36-7.46 (m, 3H), 7.56-7.59 (m, 6h); ¹³**C NMR (75 MHz, CDCl₃):** δ_C42.0, 47.3, 66.4, 66.8, 81.4, 91.0, 119.1, 127.0, 127.1, 128.0, 128.9, 132.8, 139.8, 143.0, 153.2.

1-morpholino-3-(naphthalen-1-yl)prop-2-yn-1-one 2pa²

2pa (114 mg) was obtained from **1pa** (126 mg) following general procedure B; yellow solid; 86% yield (eluent: EtOAc/Hexanes= 3:7); mp: 133-135 °C;

¹H NMR (300 MHz, CDCl₃): δ_H3.72 (s, 4H), 3.75-3.78 (m, 2H), 3.91-3.94 (m, 2H), 7.40-7.46 (m, 1H), 7.50-7.61 (m, 2H), 7.78 (d, *J*= 7.2Hz, 1H), 7.84-7.91 (m, 2H), 8.27 (d, *J*= 8.1Hz, 1H);
¹³C NMR (75 MHz, CDCl₃): δ_C42.1, 47.4, 66.5, 66.8, 85.5, 89.5, 118.0, 125.0, 125.6, 126.7, 127.4, 128.4, 130.7, 132.0, 133.1, 133.3, 153.2.

1-morpholino-3-(pyren-1-yl)prop-2-yn-1-one 2qa

2qa (121 mg) was obtained from **1qa** (164 mg) following general procedure B; brown solid; 71% yield (eluent: EtOAc/Hexanes= 3:7); mp: 138-140 °C;

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}3.67$ (s, 4H), 3.68-3.75 (m, 2H), 3.90-3.93 (m, 2H), 7.88-7.97 (m, 4H), 8.01-7.12 (m, 4H), 8.37 (d, *J*= 9Hz, 1H); ¹³**C NMR (75 MHz, CDCl₃):** $\delta_{\rm C}42.1$, 47.5, 66.5, 66.9, 86.2, 90.7, 114.2, 124.0, 124.3, 124.4, 124.8, 126.1, 126.2, 126.4, 127.0, 129.1, 129.2, 130.2, 130.8, 131.1, 132.6, 132.9, 153.4; **HRMS:** (M+H)⁺ calculated for C₂₃H₁₈NO₂: 340.1337, Found: 340.1389.

1-morpholinohept-2-yn-1-one 2ra

2ra (74 mg) was obtained from 1ra (91 mg) following general procedure B; colorless oily liquid;
76% yield (eluent: EtOAc/Hexanes= 3:7);

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 0.95 (t, *J*= 7.2Hz, 3H), 1.42-1.44 (m, 2H), 1.54-1.57 (m, 2H), 2.35 (t, *J*= 6.9Hz, 2H), 3.63 (s, 4H), 3.67-3.69 (m, 2H), 3.72-3.74 (m, 2H); ¹³**C NMR (75 MHz, CDCl₃):** $\delta_{\rm C}$ 13.3, 18.5, 21.9, 29.80, 41.8, 47.1, 66.4, 66.8, 73.3, 94.0, 153.3; **HRMS:** (M+H)⁺ calculated for C₁₁H₁₈NO₂: 196.1337, Found: 196.1290.

1-morpholinonon-2-yn-1-one 2sa

2sa (84 mg) was obtained from **1sa** (105 mg) following general procedure B; colorless oily liquid; 76% yield (eluent: EtOAc/Hexanes= 3:7);

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 0.96 (t, *J*= 7.2Hz, 3H),1.28-1.31 (m, 4H), 1.35-1.43 (m, 2H), 1.53-1.60 (m, 2H), 2.35 (t, *J*= 6.9Hz, 2H), 3.63 (s, 4H), 3.66-3.68 (m, 2H), 3.69-3.73 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 13.8, 18.8, 22.3, 27.7, 28.4, 31.1, 41.8, 47.1, 66.4, 66.8, 73.3, 94.0, 153.3; HRMS: (M+H)⁺ calculated for C₁₃H₂₂NO₂: 224.1650, Found: 224.1604.

3,3'-([1,1'-biphenyl]-4,4'-diyl)bis(1-morpholinoprop-2-yn-1-one) 2ta

2ta (91 mg) was obtained from 1ta (100 mg) following general procedure B; pale yellow solid;
85% yield (eluent: EtOAc/Hexanes= 1:1); mp: 231-233 °C;

¹**H** NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.70 (s, 8H), 3.73-3.76 (m, 4H), 3.83-3.86 (m, 4H), 7.61 (s, 8H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 42.1, 47.4, 66.5, 66.9, 81.9, 90.7, 120.1, 127.2, 133.0, 141.6, 153.1; **IR (KBr) v:** 2876, 2218, 1621, 1562, 1113, 1039; **HRMS:** (M+H)⁺ calculated for C₂₆H₂₄N₂O₄: 429.1814, Found: 429.1829.

3,3'-(1,4-phenylene)bis(1-morpholinoprop-2-yn-1-one) 2ua

2ua (137 mg) was obtained from 1ua (162 mg) following general procedure B; brown solid;
78% yield (eluent: EtOAc/Hexanes= 1:1); mp: 238-240 °C;

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.69 (s, 8H), 3.72-3.75 (m, 4H), 3.79-3.82 (m, 4H), 7.53 (s, 4H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 42.0, 47.3, 66.4, 66.8, 83.0, 89.7, 122.0, 132.3, 152.7; HRMS: (M+H)⁺ calculated for C₂₀H₂₀N₂O₄: 353.1501, Found: 353.1509.

3,3'-(1,3-phenylene)bis(1-morpholinoprop-2-yn-1-one) 2va

2va (123 mg) was obtained from **1va** (162 mg) following general procedure B; colorless oily liquid; 75% yield (eluent: EtOAc/Hexanes= 1:1);

¹**H** NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.62 (s, 8H), 3.66-3.69 (m, 4H), 3.73-3.76 (m, 4H), 7.29-7.34 (m, 1H), 7.51 (d, *J*= 7.8Hz, 2H), 7.63 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 42.0, 47.3, 66.4, 66.8, 81.75, 89.25, 121.1, 128.9, 133.5, 135.8, 152.7; HRMS: (M+H)⁺ calculated for C₂₀H₂₀N₂O₄: 353.1501, Found: 353.1510.

3-phenyl-1-(piperidin-1-yl)prop-2-yn-1-one 2ab²

2ab (97 mg) was obtained from **1ab** (100 mg) following general procedure B; white solid; 91% yield (eluent: EtOAc/Hexanes= 2:8); mp: 96-98 °C;

¹**H NMR (300 MHz, CDCl₃):** δ_H 1.57-1.66 (m, 6H), 3.60-3.64 (m, 2H), 3.75-3.78 (m, 2H), 7.34-7.39 (m, 3H), 7.52-7.54 (m, 2H); ¹³**C NMR (75 MHz, CDCl₃):** δ_C24.5, 25.3, 26.4, 42.3, 48.1, 81.6, 90.1, 120.8, 128.4, 129.7, 132.2, 152.9.

3-phenyl-1-(2,2,6,6-tetramethylpiperidin-1-yl)prop-2-yn-1-one 2bb

2bb (112 mg) was obtained from **1bb** (128 mg) following general procedure B; yellow liquid; 83% yield (eluent: EtOAc/Hexanes= 1:9);

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 1.68 (s, 12H), 1.74-1.79 (m, 6H), 7.37-7.39 (m, 3H), 7.54-7.56 (m, 2H); ¹³**C NMR (75 MHz, CDCl₃):** $\delta_{\rm C}$ 15.0, 29.8, 39.3, 57.0, 87.2, 88.5, 121.6, 128.2, 129.2, 131.6, 155.9; **HRMS:** (M+H)⁺ calculated for C₁₈H₂₄NO: 270.1859, Found: 270.1819.

N,N-diethyl-3-phenylpropiolamide 2cb²

2cb (60 mg) was obtained from **1cb** (94 mg) following general procedure B; yellow liquid; 60% yield (eluent: EtOAc/Hexanes= 1:9);

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 1.10 (t, *J*= 6.9Hz, 3H), 1.21 (t, *J*= 6.9Hz, 3H), 3.37-3.44 (m, 2H), 3.55-3.62 (m, 2H), 7.25-7.33 (m, 3H), 7.44-7.47 (m, 2H); ¹³**C NMR (75 MHz, CDCl₃):** $\delta_{\rm C}$ 12.7, 14.3, 39.3, 43.5, 82.0, 88.9, 120.9, 128.4, 129.7, 132.2, 153.9.

N,N-dibutyl-3-phenylpropiolamide 2db⁴

2db (83 mg) was obtained from 1db (122 mg) following general procedure B; yellow liquid;
65% yield (eluent: EtOAc/Hexanes= 1:9);

¹H NMR (**300** MHz, CDCl₃): δ_H 0.84-0.92 (m, 6H), 1.19-1.36 (m, 4H), 1.44-1.60 (m, 4H), 3.30-3.35 (m, 2H), 3.49-3.54 (m, 2H), 7.25-7.32 (m, 3H), 7.43-7.45 (m, 2H); ¹³C NMR (**75** MHz, CDCl₃): δ_C13.7, 19.9, 20.1, 29.6, 31.0, 44.6, 48.9, 82.3, 89.1, 120.9, 128.4, 129.7, 132.2, 154.4. N,N-dinonyl-3-phenylpropiolamide 2eb

2eb (102 mg) was obtained from **1eb** (179 mg) following general procedure B; colorless oily liquid; 55% yield (eluent: EtOAc/Hexanes= 1:9);

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 0.76-0.82 (m, 6H), 1.14-1.31 (m, 20H), 1.48-1.61 (m, 4H), 3.29-3.34 (m, 2H), 3.48-3.53 (m, 2H), 7.24-7.32 (m, 3H), 7.43-7.45 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 13.9, 22.5, 22.6, 26.7, 26.9, 27.5, 28.9, 29.1, 29.2, 29.3, 31.7, 31.8, 44.9, 49.1, 82.3, 89.1, 121.0, 128.4, 129.7, 132.2, 154.3; HRMS: (M+H)⁺ calculated for C₂₅H₄₀NO: 370.3109, Found: 370.3081.

1-(azepan-1-yl)-3-phenylprop-2-yn-1-one 2fb³

2fb (100 mg) was obtained from **1fb** (107 mg) following general procedure B; colorless oily liquid; 88% yield (eluent: EtOAc/Hexanes= 1:9);

¹H NMR (**300** MHz, CDCl₃): δ_H 1.90 (s, 4H), 2.06-2.11 (m, 4H), 3.86-3.90 (m, 2H), 4.04-4.08 (m, 2H), 7.63-7.68 (m, 3H), 7.80-7.8.3 (m, 2H); ¹³C NMR (**75** MHz, CDCl₃): δ_C26.9, 27.1, 27.2, 29.2, 45.3, 49.1, 82.1, 89.5, 120.9, 128.4, 129.7, 132.2, 154.4.

3-phenyl-1-(4-phenylpiperazin-1-yl)prop-2-yn-1-one 2gb

2gb (134 mg) was obtained from **1gb** (138 mg) following general procedure B; pale yellow solid; 93% yield (eluent: EtOAc/Hexanes= 2:8); mp: 95-97 °C;

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.18 (t, *J*= 5.1Hz, 2H), 3.24 (t, *J*= 4.8Hz, 2H), 3.82-3.85 (m, 2H), 3.95-3.99 (m, 2H), 6.90-6.94 (m, 3H), 7.25-7.41 (m, 5H), 7.55 (d, *J*= 7.2Hz,2H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 41.5, 46.9, 49.3, 50.0, 81.1, 90.8, 116.9, 120.5, 120.7, 128.5, 129.2, 130.0, 132.3, 150.9, 153.0; HRMS: (M+H)⁺ calculated for C₁₉H₁₈N₂O: 291.1497, Found: 291.1501.

N-benzyl-N-cyclohexyl-3-phenylpropiolamide 2hb

2hb (103 mg) was obtained from **1hb** (151 mg) following general procedure B; white solid; 65% yield (eluent: EtOAc/Hexanes= 1:9); mp: 88-90 °C;

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 1.26-1.45 (m, 5H), 1.57-1.82 (m, 5H), 4.34-4.35 (m, 1H), 4.65 (s, 1H), 4.83 (s, 1H), 7.24-7.41 (m, 9H), 7.53-7.56 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 25.3, 25.5, 25.9, 26.2, 29.7, 30.7, 32.2, 44.8, 49.5, 54.8, 59.8, 82.2, 82.9, 89.5, 90.4, 115.9, 120.8, 121.0, 126.8, 126.9, 127.3, 127.4, 128.4, 128.5, 128.6, 129.8, 130.0, 132.3, 132.4, 138.7, 138.8, 155.2, 155.4; HRMS: (M+H)⁺ calculated for C₂₂H₂₄NO: 318.1857, Found: 318.1824.

3-phenyl-1-(4-(3-phenylprop-2-yn-1-yl)piperazin-1-yl)prop-2-yn-1-one 2jb

2jb (116 mg) was obtained from **1jb** (157 mg) following general procedure B; white solid; 71% yield (eluent: EtOAc/Hexanes= 2:8); mp: 86-88 °C;

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 2.58 (t, *J*= 5.1Hz, 2H), 2.64 (t, *J*= 5.1Hz, 2H), 3.50 (s, 2H), 3.67-3.71 (m, 2H), 3.81-3.84 (m, 2H), 7.18-7.24 (m, 3H), 7.27-7.36 (m, 5H), 7.44-7.47 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 41.3, 46.8, 47.6, 51.3, 52.1, 81.1, 83.4, 85.9, 90.7, 120.5, 122.8, 128.2, 128.4, 129.9, 131.7, 132.3, 153.0; **IR (KBr) v:** 2999, 2876, 2220, 1616, 1125, 1056; **HRMS:** (M+H)⁺ calculated for C₂₂H₂₁N₂O: 329.1653, Found: 329.1619.

3-(p-tolyl)-1-(4-(3-(p-tolyl)prop-2-yn-1-yl)piperazin-1-yl)prop-2-yn-1-one 2kb

2kb (133 mg) was obtained from 1kb (171 mg) following general procedure B; white

solid; 75% yield (eluent: EtOAc/Hexanes= 2:8); mp: 87-89 °C;

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 2.36 (s, 3H), 2.37 (s, 3H), 2.65 (t, *J*= 5.1Hz, 2H), 2.70 (t, *J*= 5.1Hz, 2H), 3.56 (s, 2H), 3.74-3.78 (m, 2H), 3.88-3.92 (m, 2H), 7.09 (d, *J*= 7.8Hz, 2H), 7.14-7.18 (m, 2H), 7.30 (d, *J*= 8.1HZ, 2H), 7.41-7.45 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 21.3, 21.5, 41.2, 48.8, 47.7, 51.4, 52.1, 80.7, 82.6, 88.1, 91.1, 117.4, 119.7, 128.9, 129.2, 131.5, 132.2, 138.3, 140.4, 153.1; HRMS: (M+H)⁺ calculated for C₂₄H₂₅N₂O: 357.1966, Found: 357.1962.

4. General procedure C for synthesis of Oxazolo[2,3-a]isoquinolinone

Reaction tube was charged with phenylpropynyltetrahydroisoquinoline (0.3 mmol), DBU (0.3 mmol), Rose bengal (2 mol%) and Ag(OTf) (10 mol%) in ACN 4 mL. The reaction mixture was stirred in the presence of O_2 (balloon) under blue light for 2 hours. After the reaction completion, solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using EtOAc/Hexane as eluent to furnish the corresponding Oxazolo[2,3-a]isoquinolinone compounds.

(Z)-2-benzylidene-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-one 2ac

2ac (51 mg) was obtained from **1ac** (74 mg) following general procedure C; yellow liquid; 61% yield (eluent: EtOAc/Hexanes= 3:7);

¹**H NMR (300 MHz, CDCl₃):** δ_H 2.81-2.88 (m, 1H), 3.09-3.16 (m, 1H), 3.44-3.52 (m, 1H), 4.37-4.45 (m, 1H), 6.32 (s, 1H), 6.55 (s, 1H), 7.20 (d, *J*= 6.6Hz, 1H), 7.27-7.29 (m, 1H), 7.34-7.41 (m, 4H), 7.63-7.65 (m, 1H), 7.74 (d, *J*= 7.2Hz, 2H); ¹³**C NMR (75 MHz, CDCl₃):** δ_C 27.5, 37.7, 87.1, 103.7, 125.8, 127.2, 127.4, 128.4, 128.8, 129.1, 129.2, 133.2, 133.8, 133.9, 144.1, 161.8; **IR (KBr) v:** 2935, 1562, 1158, 967; **HRMS:** (M+H)⁺ calculated for C₁₈H₁₆NO₂: 278.1181, Found: 278.1184.

(Z)-2-(2-chlorobenzylidene)-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-one 2bc

2bc (52 mg) was obtained from **1bc** (85 mg) following general procedure C; white solid; 55% yield (eluent: EtOAc/Hexanes= 3:7); mp: 128-130 °C;

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 2.79-2.86 (m, 1H), 3.00-3.17 (m, 1H), 3.43-3.52 (m, 1H), 4.39-4.46 (m, 1H), 6.55 (s, 1H), 6.74 (s, 1H), 7.15-7.20 (m, 2H), 7.27-7.40 (m, 4H), 7.57-760 (m, 1H), 8.17 (d, *J*= 6Hz, 1H); ¹³**C NMR (101 MHz, CDCl₃):** $\delta_{\rm C}$ 27.6, 37.9, 87.3, 99.0, 125.9, 126.7, 127.3, 128.4, 129.0, 129.3, 129.6, 130.1, 131.7, 132.8, 133.6, 133.9, 145.5, 161.4; **IR** (**KBr**) **v**: 2932, 2876, 1562, 1153, 973; **HRMS:** (M+H)⁺ calculated for C₁₈H₁₅ClNO₂: 312.0791, Found: 312.0795.

(Z)-2-(3-chlorobenzylidene)-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-one 2cc

2cc (42 mg) was obtained from **1cc** (85 mg) following general procedure C; white solid; 45% yield (eluent: EtOAc/Hexanes= 3:7); mp: 123-125 °C;

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 2.83-2.88 (m, 1H), 3.12-3.19 (m, 1H), 3.46-3.55 (m, 1H), 4.42-4.44 (m, 1H), 6.25 (s, 1H), 6.57 (s, 1H), 7.20-7.30 (m, 3H), 7.33-7.40 (m, 2H), 7.56 (d, *J*= 6.9Hz, 1H), 7.64 (d, *J*= 6.6Hz, 1H), 7.77 (s, 1H); ¹³**C NMR (75 MHz, CDCl₃):** $\delta_{\rm C}$ 27.6, 37.8, 87.4, 102.2, 125.8, 127.3, 127.4, 127.5, 128.9, 129.3, 129.6, 132.9, 133.9, 134.4, 134.6, 135.7, 145.1, 161.4; **HRMS:** (M+H)⁺ calculated for C₁₈H₁₅ClNO₂: 312.0791, Found: 312.0784. (Z)-2-(4-chlorobenzylidene)-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-one 2dc

2dc (61 mg) was obtained from **1dc** (85 mg) following general procedure C; white solid; 65% yield (eluent: EtOAc/Hexanes= 3:7); mp: 118-120 °C;

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 2.80-2.88 (m, 1H), 3.07-3.18 (m, 1H), 3.44-3.53 (m, 1H), 4.38-4.45 (m, 1H), 6.26 (s, 1H), 6.55 (s, 1H), 7.21 (d, *J*= 6.6Hz, 1H), 7.28-7.41 (m, 4H), 7.60-7.67 (m, 3H); ¹³**C NMR (75 MHz, CDCl₃):** $\delta_{\rm C}$ 27.6, 37.8, 87.3, 1024, 125.8, 127.3, 128.7, 128.9, 129.3, 130.3, 132.4, 133.0, 133.1, 133.9, 144.6, 161.5; **HRMS:** (M+H)⁺ calculated for C₁₈H₁₅ClNO₂: 312.0791, Found: 312.0789.

(Z)-2-(3-bromobenzylidene)-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-one 2ec

2ec (55 mg) was obtained from **1ec** (98 mg) following general procedure C; brown solid; 52% yield (eluent: EtOAc/Hexanes= 3:7); mp: 130-132 °C;

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 2.93-2.77 (m, 1H), 3.06-3.17 (m, 1H), 3.44-3.54 (m, 1H), 4.38-4.45 (m, 1H), 6.21 (s, 1H), 6.57 (s, 1H), 7.16-7.266 (m, 2H), 7.31-7.46 (m, 3H), 7.60 (d, *J*= 7.4Hz, 2H), 7.90 (s, 1H); ¹³**C NMR (75 MHz, CDCl₃):** 27.6, 37.9, 87.4, 102.1, 122.6, 125.9, 127.3, 127.7, 129.9, 129.4, 130.0, 130.3, 131.8, 132.7, 133.8, 135.9, 145.1, 161.4; **HRMS:** (M+H)⁺ calculated for C₁₈H₁₅BrNO₂: 356.0286, Found: 356.0287.

(Z)-2-(4-bromobenzylidene)-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-one 2fc

2fc (62 mg) was obtained from **1fc** (98 mg) following general procedure C; brown solid; 58% yield (eluent: EtOAc/Hexanes= 3:7); mp: 185-187 °C;

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 2.80-2.86 (m, 1H), 3.07-3.15 (m, 1H), 3.44-3.51 (m, 1H), 4.38-4.44 (m, 1H), 6.22 (s, 1H), 6.55 (s, 1H), 7.19 (d, *J* = 7.0Hz, 1H), 7.32-7.41 (m, 2H), 7.46-7.52 (m, 2H), 7.55-7.63 (m, 3H); ¹³**C NMR (75 MHz, CDCl₃):** $\delta_{\rm C}$ 27.6, 37.8, 87.3, 102.4, 121.2, 125.9, 127.3, 129.0, 129.3, 130.6, 131.7, 132.7, 132.8, 133.9, 144.7, 161.6; **HRMS:** (M+H)⁺ calculated for C₁₈H₁₅BrNO₂: 356.0286, Found: 356.0286.

(Z)-2-([1,1'-biphenyl]-4-ylmethylene)-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-

one 2gc

S22

2gc (51 mg) was obtained from **1gc** (97 mg) following general procedure C; white solid; 48% yield (eluent: EtOAc/Hexanes= 3:7); mp: 212-214 °C;

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 2.81-2.86 (m, 1H), 3.00-3.17 (m, 1H), 3.43-3.53 (m, 1H), 4.38-4.43 (m, 1H), 6.34 (s, 1H), 6.57 (s, 1H), 7.19 (d, *J*= 6.7Hz, 1H), 7.32-7.36 (m, 2H), 7.47-7.47 (m, 3H), 7.57-7.63 (m, 5H), 7.80 (d, *J*= 8Hz, 2H); ¹³**C NMR (101 MHz, CDCl₃):** $\delta_{\rm C}$ 27.6, 37.8, 87.2, 103.3, 125.9, 127.0, 127.2, 127.3, 127.4, 128.8, 128.9, 129.2, 129.6, 132.8, 133.0, 133.9, 140.1, 140.7, 144.3, 161.8; **HRMS:** (M+H)⁺ calculated for C₂₄H₂₀NO₂: 354.1494, Found: 354.1496.

(Z)-2-((3-oxo-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinolin-2-

ylidene)methyl)benzonitrile 2hc

2hc (56 mg) was obtained from **1hc** (82 mg) following general procedure C; white solid; 62% yield (eluent: EtOAc/Hexanes= 3:7); mp: 155-157 °C;

¹**H NMR (400 MHz, CDCl₃):** δ_H 2.74-2.79 (m, 1H), 3.00-3.07 (m, 1H), 3.37-3.45 (m, 1H), 4.30-4.40 (m, 1H), 6.52 (s, 1H), 6.58 (s, 1H), 7.13 (d, *J*= 4.8Hz, 1H), 7.18-7.29 (m, 3H), 7.50-7.56 (m, 3H), 8.18 (d, J= 6Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ_C 27.6, 37.9, 87.7, 98.7, 111.7, 117.7, 125.9, 127.2, 127.3, 129.1, 129.2, 129.5, 132.3, 132.6, 133.1, 134.0, 136.9, 147.1, 160.7;
IR (KBr) v: 2932, 2343, 1562, 1155, 961; HRMS: (M+H)⁺ calculated for C₁₉H₁₅N₂O₂: 303.1133, Found: 303.1097.

(Z)-4-((3-oxo-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinolin-2-

ylidene)methyl)benzonitrile 2ic

2ic (62 mg) was obtained from **1ic** (82 mg) following general procedure C; white solid; 69% yield (eluent: EtOAc/Hexanes= 3:7); mp: 195-197 °C;

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 2.83-2.91 (m, 1H), 3.09-3.20 (m, 1H), 3.47-3.57 (m, 1H), 4.41-4.48 (m, 1H), 6.30 (s, 1H), 6.61 (s, 1H), 7.23 (d, *J*= 6.6Hz, 1H), 7.35-7.43 (m, 2H), 7.63 (T, *J*= 7.2Hz, 3H), 7.79 (d, *J*= 6Hz, 2H); ¹³**C NMR (75 MHz, CDCl₃):** $\delta_{\rm C}$ 27.2, 37.6, 87.4, 101.3, 110.0, 118.5, 125.5, 127.0, 128.7, 129.0, 129.1, 131.8, 132.1, 133.5, 138.2, 146.3, 160.6; HRMS: (M+H)+ calculated for C₁₉H₁₅N₂O₂: 303.1133, Found: 303.1098.

(Z)-2-(3-nitrobenzylidene)-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-one 2jc

2jc (62 mg) was obtained from **1jc** (88 mg) following general procedure C; yellow liquid; 65% yield (eluent: EtOAc/Hexanes= 4:6);

¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 2.84-2.91 (m, 1H), 3.09-3.20 (m, 1H), 3.47-3.53 (m, 1H), 4.41-4.48 (m, 1H), 6.34 (s, 1H), 6.62 (s, 1H), 7.22 (d, *J*= 7.2Hz, 1H), 7.34-7.44 (m, 2H), 7.52 (t, *J*= 7.8Hz, 1H), 7.66 (d, *J*= 7.5Hz, 1H), 7.90 (d, *J*= 7.5Hz, 1H), 8.09 (d, *J*= 7.5Hz, 1H), 8.70 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 27.6, 37.9, 87.7, 101.1, 121.8, 123.4, 125.9, 127.5, 129.0, 129.3, 129.5, 132.6, 133.8, 134.6, 135.6, 146.3, 148.7, 160.9; HRMS: (M+H)⁺ calculated for C₁₈H₁₅N₂O₄: 323.1031, Found: 323.0996.

(Z)-2-(4-benzoylbenzylidene)-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-one 2kc

2kc (58 mg) was obtained from **1kc** (105 mg) following general procedure C; yellow liquid; 51% yield (eluent: EtOAc/Hexanes= 4:6);

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 2.85-2.90 (m, 1H), 3.13-3.20 (m, 1H), 3.48-3.56 (m, 1H), 4.41-4.48 (m, 1H), 6.37 (s, 1H), 6.60 (s, 1H), 7.23 (d, *J*= 6.6Hz, 1H), 7.37-7.39 (m, 2H), 7.47-7.52 (m, 2H), 7.57-7.64 (m, 2H), 7.80-7.84 (m, 6H); ¹³**C NMR (75 MHz, CDCl₃):** $\delta_{\rm C}$ 27.6, 37.9, 87.5, 102.5, 125.8, 127.3, 128.2, 128.8, 128.9, 129.3, 129.8, 130.3, 132.1, 132.8, 133.9, 136.0, 137.9, 138.1, 145.9, 161.3, 195.9; **HRMS:** (M+H)⁺ calculated for C₂₅H₂₀NO₃: 382.1443, Found: 382.1412.

(Z)-methyl 4-((3-oxo-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinolin-2-

ylidene)methyl)benzoate 2lc

2lc (67 mg) was obtained from **1lc** (91 mg) following general procedure C; white solid; 67% yield (eluent: EtOAc/Hexanes= 4:6); mp: 202-204 °C;

¹**H NMR (400 MHz, CDCl₃):** $\delta_{\rm H}$ 2.75-2.78 (m, 1H), 3.00-3.07 (m, 1H), 3.38-3.44 (m, 1H), 4.32-4.36 (m, 1H), 6.23 (s, 1H), 6.50 (s, 1H), 7.10 (d, *J*= 6.6Hz, 1H), 7.26-7.32 (m, 2H), 7.54 (d, *J*= 3Hz, 1H), 7.68 (d, *J*= 6Hz, 2H), 7.95 (d, *J*= 6Hz, 2H); ¹³**C NMR (100 MHz, CDCl₃):** $\delta_{\rm C}$ 27.6, 37.9, 52.1, 87.5, 102.4, 125.9, 127.3, 128.5, 128.9, 129.0, 129.4, 129.7, 132.6, 133.8, 138.4, 145.8, 161.3, 166.8; **IR (KBr) v:** 2847, 1712, 1556, 1153, 954; **HRMS:** (M+H)⁺ calculated for $C_{20}H_{18}NO_4$: 336.1236, Found: 336.1234.

2oc (68 mg) was obtained from **1oc** (88 mg) following general procedure B; yellow solid; 71% yield (eluent: EtOAc/Hexanes= 4:6); mp: 220-222 °C;

¹H NMR (300 MHz, CDCl₃): δ_H 2.85-2.90 (m, 1H), 3.10-3.25 (m, 1H), 3.52-3.56 (m, 1H), 4.43-4.49 (m, 1H), 6.35 (s, 1H), 6.63 (s, 1H), 7.23 (d, *J*= 6.6Hz, 1H), 7.36-7.41 (m, 2H), 7.62-7.65 (m, 1H), 7.85 (d, *J*= 8.7Hz, 2H), 8.23 (d, *J*= 8.7Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ_C 27.6, 38.0, 87.8, 101.2, 123.8, 125.8, 127.4, 129.0, 129.4, 129.5, 132.4, 133.9, 140.5, 146.4, 147.1, 160.8; HRMS: (M+H)⁺ calculated for C₁₈H₁₅N₂O₄: 323.1031, Found: 323.1031.

(Z)-2-(naphthalen-1-ylmethylene)-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-one 2pc

2pc (51 mg) was obtained from **1pc** (89 mg) following general procedure C; yellow liquid; 52% yield (eluent: EtOAc/Hexanes= 3:7);

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 2.82-2.91 (m, 1H), 3.11-3.22 (m, 1H), 3.47-3.57 (m, 1H), 4.42-4.50 (m, 1H), 6.58 (s, 1H), 7.08 (s, 1H), 7.20-7.23 (m, 1H), 7.35-7.41 (m, 2H), 7.50-7.58 (m, 3H), 7.62-7.65 (m, 1H), 7.79-7.88 (m, 2H), 8.26 (d, *J*= 7.2Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 27.6, 37.8, 87.1, 99.3, 123.8, 125.4, 125.7, 125.9, 126.2, 127.2, 127.3, 128.0, 128.6, 128.9, 129.2, 129.8, 131.6, 133.2, 133.8, 133.9, 145.1, 161.8; HRMS: (M+H)⁺ calculated for $C_{22}H_{18}NO_2$: 328.1337, Found: 328.1335.

(Z)-2-(phenanthren-9-ylmethylene)-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-one 2qc

2qc (57 mg) was obtained from **1qc** (104 mg) following general procedure C; yellow liquid; 50% yield (eluent: EtOAc/Hexanes= 3:7);

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 2.85-2.91 (m, 1H), 3.16-3.24 (m, 1H), 3.49-3.59 (m, 1H), 4.44-4.51 (m, 1H), 6.62 (s, 1H), 7.07 (s, 1H), 7.21-7.39 (m, 3H), 7.60-7.68 (m, 5H), 7.95 (d, *J*= 6.9Hz, 1H), 8.31 (d, *J*= 7.2Hz, 1H), 8.49 (s, 1H), 8.68 (d, *J*= 7.5Hz, 1H), 8.75 (d, *J*= 8.4Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 27.6, 37.9, 87.2, 99.5, 122.5, 123.08, 124.5, 125.9, 126.4, 126.6, 126.7, 126.8, 127.3, 128.2, 128.4, 128.7, 128.9, 129.2, 130.2, 130.6, 130.1, 131.7, 133.3, 134.0, 145.6, 161.7; HRMS: (M+H)⁺ calculated for C₂₆H₂₀NO₂: 378.1494, Found: 378.1466. (Z)-2-(pyren-1-ylmethylene)-6,10b-dihydro-5H-oxazolo[2,3-a]isoquinolin-3(2H)-one 2rc

2rc (61 mg) was obtained from 1rc (111 mg) following general procedure C; brown semi solid; 49% yield (eluent: EtOAc/Hexanes= 3:7);

¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 2.77-2.96 (m, 1H), 3.13-3.22 (m, 1H), 3.50-3.57 (m, 1H), 4.37-4.55 (m, 1H), 6.64 (s, 1H), 7.21 (d, *J*= 7.3Hz, 1H), 7.30-7.44 (m, 3H), 7.69 (d, *J*= 7.3Hz, 1H), 7.96-8.07 (m, 3H), 8.10-8.23 (m, 4H), 8.51 (d, *J*= 9.3 Hz, 1H), 8.78 (d, *J*= 8.2Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 27.7, 37.9, 87.2, 99.9, 123.2, 124.8, 124.9, 125.2, 125.3, 126.0, 126.9, 127.3, 127.4, 127.5, 127.6, 127.7, 128.9, 129.3, 130.7, 130.9, 131.4, 133.1, 134.0, 145.1, 161.9; HRMS: (M+H)⁺ calculated for C₂₈H₂₀NO₂: 402.1494, Found: 402.1486

(Z)-2-((4,4"-dimethyl-[1,1':3',1"-terphenyl]-5'-yl)methylene)-5,6-dihydro-2H-oxazolo[2,3-a]isoquinolin-3(10bH)-one 2sc

2sc (61 mg) was obtained from **1sc** (128 mg) following general procedure B; yellow liquid; 45% yield (eluent: EtOAc/Hexanes= 3:7);

¹**H NMR (400 MHz, CDCl₃):** $\delta_{\rm H}$ 2.45 (s, 6H), 2.83-2.90 (m, 1H), 3.10-3.19 (m, 1H), 3.47-3.56 (m, 1H), 4.39-4.47 (m, 1H), 6.44 (s, 1H), 6.58 (S, 1H), 7.21 (d, *J*= 7.2Hz, 1H), 7.28-7.38 (m, 6H), 7.59-7.61 (m, 5H), 7.69 (s, 1H), 7.94 (d, *J*= 1.2Hz, 2H); ¹³**C NMR (101 MHz, CDCl₃):** $\delta_{\rm C}$ 21.1, 27.6, 37.8, 87.2, 103.8, 125.0, 125.7, 126.6, 127.1, 127.3, 128.9, 129.2, 129.5, 133.3, 134.0, 134.6, 137.2, 138.4, 141.9, 144.6, 161.8; **HRMS:** (M+H)⁺ calculated for C₃₂H₂₈NO₂: 458.2120, Found: 458.2101.

(Z)-2-benzylidene-9-nitro-6,10b-dihydro-5H-oxazolo[2,3-a]isoquinolin-3(2H)-one 2tc

2tc (56 mg) was obtained from **1tc** (88 mg) following general procedure B; yellow liquid; 59% yield (eluent: EtOAc/Hexanes= 3:7);

¹**H NMR (300 MHz, CDCl₃):** $\delta_{\rm H}$ 2.94-3.00 (m, 1H), 3.15-3.26 (m, 1H), 3.47-3.57 (m, 1H), 4.45-4.51 (m, 1H), 6.37 (s, 1H), 6.58 (S, 1H), 7.32 (d, *J*= 7.5Hz, 1H), 7.38-7.44 (m, 3H), 7.73 (d, *J*= 1.2Hz, 2H), 8.21 (d, J= 8.4Hz, 1H), 8.50 (s, 1H); ¹³**C NMR (75 MHz, CDCl₃):** $\delta_{\rm C}$ 27.7, 37.1, 86.1, 105.1, 121.5, 124.0, 128.0, 128.7, 129.4, 130.2, 133.2, 134.8, 141.3, 143.2, 147.4, 161.6; **HRMS:** (M+H)⁺ calculated for C₁₈H₁₅N₂O₄: 323.1032, Found: 323.1039.

2-(3-phenylprop-2-yn-1-yl)-3,4-dihydroisoquinolin-1(2H)-one 2ad

2ad (20 mg) was obtained from **1ad** (74 mg) following general procedure B; yellow liquid; 25% yield (eluent: EtOAc/Hexanes= 1:9);

¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 3.04 (t, *J*= 6.6Hz, 2H), 3.74 (t, *J*= 6.6Hz, 2H), 4.65 (s, 2H), 7.17 (d, *J*= 6.6Hz, 1H), 7.24-7.38 (m, 4H), 7.40-7.43 (m, 3H), 8.11 (d, *J*= 7.8Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 28.0, 36.6, 45.1, 83.8, 84.0, 122.8, 126.9, 127.0, 128.2, 128.3, 128.5, 129.2, 129.8, 131.7, 138.1, 164.1; HRMS: (M+H)⁺ calculated for C₁₈H₁₆NO: 262.1231, Found: 262.1248.

5. X-Ray Crystallographic Studies of compound 2oc

Figure 2. ORTEP structure of compound 2oc (CCDC 1988860).

Table	1. Crystal	data and	structure	refinement	for	Compound	2oc .
-------	------------	----------	-----------	------------	-----	----------	--------------

Identification code	2oc			
Chemical formula	$C_{18}H_{14}N_2O_4$			
Formula weight	322.31 g/mol			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal size	0.100 x 0.110 x 0.150 mm			
Crystal habit	clear light yellow Block			
Crystal system	Monoclinic			
Space group	P 1 n 1			
Unit cell dimensions	a = 6.3537(8) Å	$\alpha = 90^{\circ}$		
	b = 5.0200(6) Å	$\beta = 90.173(4)^{\circ}$		
	c = 23.596(3) Å	$\gamma = 90^{\circ}$		
Volume	752.60(16) Å ³			
Ζ	2			
Density (calculated)	1.422 g/cm ³			
Absorption coefficient	0.102 mm ⁻¹			
F(000)	336			

Theta range for data collection	3.32 to 24.70°			
Index ranges Reflections collected	-5<=h<=7, -5<=k<=5, -27<=l<=27 3980			
Independent reflections	2005 [R(int) = 0.0421]			
Coverage of independent reflections	99.8%			
Absorption correction	multi-scan			
Max. and min. transmission	0.9900 and 0.9850			
Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)			
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$			
Data / restraints / parameters	2005 / 2 / 218			
Goodness-of-fit on F ²	1.032			
Final R indices	1414 data; I>2σ(I)	R1 = 0.0420, wR2 = 0.0778		
	all data	R1 = 0.0730, wR2 = 0.0913		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0305P) ² +0.0216P] where P=(F_o^2 +2 F_c^2)/3			
Absolute structure parameter	-0.8(10)			
Extinction coefficient	0.0310(40)			
Largest diff. peak and hole	0.161 and -0.164 eÅ ⁻³			
R.M.S. deviation from mean	0.039 eÅ ⁻³			

6. References:

- 1. L. W. Bieber and M. F. da silva, Mild and efficient synthesis of propargylamines by copper-catalyzed Mannich reaction, *Tetrahedron Lett.*, 2004, **45**, 8281-8283.
- 2. Y. Dong, S. Sun, F. Yang, Y. Zhu, W. Zhu, H. Qiao, Y. Wu and Y. Wu, Pd-catalyzed aminocarbonylation of alkynes with amines using Co₂(CO)₈ as a carbonyl source, *Org. Chem. Front.*, 2016, **3**, 720-724.
- 3. J. Hwang, J. Choi, K. Park, W. Kim, K. H. Song and S. Lee, Palladium-Catalyzed Oxidative Aminocarbonylation by Decarboxylative Coupling: Synthesis of Alkynyl Amides, *Eur. J. Org. Chem.*, 2015, 2015, 2235-2243.
- R. S. Mane and B. M. Bhanage, Palladium-Catalyzed Oxidative N-Dealkylation/Carbonylation of Tertiary Amines with Alkynes to α,β-Alkynylamides, *J. Org. Chem.*, 2016, 81, 4974-4980.

S35

¹H&¹³C spectra of compound 2ba

HRMS Spectrum of Compound 2da

HRMS spectrum of compound 2ea

HRMS Spectrum of Compound 2fa

HRMS Spectrum of Compound 2ha

HRMS spectrum of compound 2ia

HRMS spectrum of compound 2ma

HRMS spectrum of compound 2na

HRMS spectrum of compound 2qa

HRMS Spectrum of Copmpound 2ra

HRMS Spectrum of Compound 2sa

HRMS spectrum of compound 2ua

HRMS spectrum of compound 2ua

HRMS spectrum of compound 2va

HRMS Spectrum of compound 2bb

HRMS spectrum of compound 2eb

HRMS spectrum of compound 2gb

HRMS Spectrum of compound 2hb

HRMS Spectrum of compound 2jb

HRMS spectrum of compound 2kb

DEPT-135 spectra of compound 2ac

HRMS spectrum of compound 2ac

HRMS spectrum of compound 2bc

HRMS spectrum of compound 2cc

HRMS spectrum of compound 2ec

HRMS spectrum of compound 2fc

HRMS spectrum of compound 2gc

HRMS Spectrum of compound 2hc

MS Spectrum of Compound 2ic

HRMS Spectrum of Compound 2jc

HRMS Spectrum of Copmound 2kc

HRMS spectrum of compound 2lc

S113

HRMS spectrum of compound 2pc

HRMS Spectrum of copound 2qc

HRMS spectrum of compound 2rc

HRMS Spectrum of Compound 2sc

Compound Details

Cpd. 1: C18 H14 N2 O4

Compound Spectra (overlaid)

Cpd	Formula	Mass (Tgt)	Calc. Mass	Mass	Species	Diff(Tgt.ppm)	mDa	
1	C18 H14 N2 O4	322.0954	322.0956	323.1039 345.0848	(M+H)+ (M+Na)+	0.79	0.25	

HRMS Spectrum of Compound 2tc

S123

HRMS spectrum of compound 2ad