Electronic Supplementary Information

PEGylated N-heterocyclic carbene-gold(I) complex: an efficient catalyst for cyclization reaction in water

Bijin Lin, ${ }^{\text {ab }}$ Xumu Zhang, ${ }^{\text {b }}$ Cong-Ying Zhou*a† and Chi-Ming Che*ab
${ }^{\text {a }}$ State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
${ }^{\mathrm{b}}$ Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
${ }^{\dagger}$ Present address: College of Chemistry and Materials Science, Jinan University, Guangzhou, China
Email: cmche@hku.hk, zhoucy2018@jnu.edu.cn

Table of Contents

1. Experimental section S2
1.1 General information S2
1.2 Synthesis of PEGylated-imidazolium salts S2
1.3 Synthesis of PEGylated NHC-gold(I) complexes. S4
1.4 Preparation of alkynoic acids 55
1.5 General procedure for gold(I)-catalyzed cyclization of alkynoic acid into enol lactones S10
1.6 General procedure for gold(I)-catalyzed synthesis of fused polycyclic indoles S14
1.7 Procedure for recycling PEGylated NHC-gold(I) catalyst for cyclization of alkynoic acid into enol lactones S15
1.8 Catalytic comparison of L 4 AuCl and other gold catalysts for cyclization of alkynoic acids S16
1.9 Detection of gold nanoparticles in reaction solution S18
2. References S21
3. ${ }^{1} \mathrm{H}$ NMR and MOLDI-TOF mass spectra of PEGylated NHC ligands and gold complexes S22
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S27

1. Experimental section

1.1 General information

Commercially available reagents were used without purification. 4-Pentynoic acid (1b), 2ethynylbenzoic acid (1f) and 5-hexynoic acid (11) are commercially available chemicals. 1,2Dichloromethane (ACS Reagent grade), hexanes (AR grade), ethyl acetate (AR grade), diethyl ether (AR) were used without further purification. Anhydrous dichloromethane and tetrahydrofuran were obtained from solvent purification system. Deionized water was used in all reactions. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Column chromatography was performed over Merck silica gel $60 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on Bruker DPX- 400 MHz , DPX-500 MHz and Bruker Avance 600 MHz spectrometers at 298 K . Chemical shifts are reported in ppm, and the residual solvent or tetramethylsilane (TMS) peak was used as internal standard. Mass spectra of new products were recorded on a Finnigan MAT 95 mass spectrometer. Matrix-assisted laser desorption/ionization time-of-flight (MOLDI-TOF) mass analysis were conducted on a Bruker Daltonics flexAnalysis using α-cyano-4-hydroxycinnamic acid matrix.

1.2 Synthesis of PEGylated-imidazolium salts

Scheme S1. Synthetic route 1 for PEGylated-imidazolium salts.
Ligands $\mathbf{L} 1$ and $\mathbf{L} 2$ were synthesized according to the known procedure with modification. ${ }^{1}$
Synthesis of mPEG $\mathbf{2 0 0 0}^{-O M s}$ ($\mathbf{S 1}$): $\mathrm{MeO}-\mathrm{PEG}_{2000} \mathrm{OH}(5 \mathrm{mmol})$ and triethylamine (10 mmol) were dissolved in 300 mL dry DCM at an ice-water bath, followed by adding dropwise a solution of methanesulfonyl chloride (MsCl) in 200 mL dry DCM . The mixture was warmed to room temperature and stirred for 24 h . The reaction was quenched with 500 mL ice water and adjusted to pH 7 using 10% NaOH solution. Then the organic layer was separated, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residual was precipitated with diethyl ether to afford $\mathrm{MeO}-\mathrm{PEG}_{2000}-\mathrm{OMs}$ as a white solid ($10 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.42-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 174 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 71.83,70.46,69.20,68.92,58.92,37.64$.

Synthesis of $\mathbf{m P E G}_{\mathbf{2 0 0 0}}$-imidazole (S2): To a solution of imidazole (5.6 mol) in 50 mL dry THF was added $\mathrm{NaH}(60 \%$ in mineral oil, 10 mol$)$ at room temperature. The mixture was then heated to $40^{\circ} \mathrm{C}$ and stirred for 1 h . After that, $\mathrm{mPEG}_{2000}-\mathrm{OMs}(2 \mathrm{~mol})$ was added and the reaction mixture was refluxed for 24 h . Upon completion, the resultant suspension was filtered through celite, concentrated in vacuo and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ to afford mPEG_{2000}-imidazole as a white solid ($2.9 \mathrm{~g}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.49(\mathrm{~m}, 174 \mathrm{H}), 3.38$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.48,129.15,119.38,71.88,70.51,58.97,46.99$.

Synthesis of 1-methylimidazole-mPEG $\mathbf{2 0 0 0}^{\mathbf{~}}(\mathbf{L 1})$: Iodomethane $(0.5 \mathrm{~mL})$ was added dropwise to a solution of mPEG_{2000}-imidazole $(0.5 \mathrm{~mol})$ in toluene $(15 \mathrm{~mL})$ under argon. The mixture was heated to 60 ${ }^{\circ} \mathrm{C}$ and stirred overnight. After that, the mixture was concentrated and the resulting imidazolium salt was isolated by precipitation with $\mathrm{Et}_{2} \mathrm{O}(1.04 \mathrm{~g}, 98 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.67(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}$, $1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.93-3.38(\mathrm{~m}, 174 \mathrm{H}), 3.35(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.24,123.63,123.10,71.91,70.52,70.32,70.23,70.20,68.82$,
59.01, 49.83, 36.71. MALDI-TOF-MS m/z: [M-I] ${ }^{+}$calcd. for $\mathrm{C}_{93} \mathrm{H}_{185} \mathrm{~N}_{2} \mathrm{O}_{44}, 2035.2334$; found, 2036.1598.

Synthesis of 1-benzylimidazole-mPEG $\mathbf{2 0 0 0}^{\mathbf{2 0}} \mathbf{(L 2) : ~ B e n z y l}$ bromide (0.5 mL) was added dropwise to a solution of mPEG_{2000}-imidazole $(0.5 \mathrm{~mol})$ in toluene $(15 \mathrm{~mL})$. The mixture was heated to $100^{\circ} \mathrm{C}$ and stirred overnight. After that, the mixture was concentrated and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ to afford 1-benzylimidazole-mPEG ${ }_{2000}$ as a light yellow solid $(1.06 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.40$ $(\mathrm{s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 4.63-4.61(\mathrm{~m}$, $2 \mathrm{H}), 3.93-3.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.66-3.49(\mathrm{~m}, 172 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.07, 133.17, 129.26, 128.96, 128.76, 123.72, 121.27, 71.77, 70.38, 70.18, 70.13, 70.11, 68.84, 58.88, 53.12, 49.67. MALDI-TOF-MS $m / z:[\mathrm{M}-\mathrm{Br}]^{+}$calcd. for $\mathrm{C}_{99} \mathrm{H}_{189} \mathrm{~N}_{2} \mathrm{O}_{44}, 2111.2647$; found, 2111.0342.

Scheme S2. Synthetic route 2 for PEGylated-imidazolium salts.
Ligands $\mathbf{L 3}$ and $\mathbf{L 4}$ were synthesized according to the reaction as shown in Scheme S2.

Synthesis of 1-mesityl imidazole-mPEG \mathbf{F}_{2000} (L3): 1-Mesityl-1H-imidazole (6 mmol) and the abovedescribed $\mathrm{mPEG}_{2000}-\mathrm{OMs}(4 \mathrm{mmol})$ were dissolved in 10 mL DMF, followed by adding $\mathrm{NaI}(8 \mathrm{mmol})$. The mixture was refluxed for 24 h . After completion, the mixture was cooled to room temperature, washed with water, extracted with DCM and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the organic layer was concentrated under reduced pressure and precipitated with diethyl ether to afford a yellow solid ($8.62 \mathrm{~g}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 4.95-4.92(\mathrm{~m}, 2 \mathrm{H})$, $4.02-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.45(\mathrm{~m}, 172 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 160.77,141.07,137.35,134.16,130.55,129.60,124.50,122.55,71.70,70.33,70.13,70.08$, $70.02,69.97,68.73,58.79,50.02,20.90,17.47$. MALDI-TOF-MS $m / z:[M-I]^{+}$calcd. for $\mathrm{C}_{101} \mathrm{H}_{193} \mathrm{~N}_{2} \mathrm{O}_{44}$, 2139.2960; found, 2140.9884 .

Synthesis of 1-(2,6-diisopropylphenyl) imidazole-mPEG $\mathbf{2 0 0 0}^{\mathbf{~ (L 4)}}$: The procedure is the same as that for $\mathbf{L} 3$ except for use of 1-(2,6-diisopropylphenyl)-1H- imidazole. The yield of the resulting yellow solid: $97 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.07-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.48(\mathrm{~m}, 172 \mathrm{H}), 3.38$ (s, 3H), $2.32(\mathrm{p}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 145.33,137.53,131.83,130.05,124.68,124.56,123.55,71.79,70.42,70.36,70.32,70.23$, $70.17,70.15,70.10,70.03,68.91,58.88,50.16,28.53,24.21,24.19$. MALDI-TOF-MS $m / z:[\mathrm{M}-\mathrm{I}]^{+}$ calcd. for $\mathrm{C}_{104} \mathrm{H}_{199} \mathrm{~N}_{2} \mathrm{O}_{44}, 2181.3429$; found, 2183.6780.

1.3 Synthesis of PEGylated NHC-gold(I) complexes

Silver oxide (2 mmol) was added to a solution of PEGylated-imidazolium salts (1 mmol) in dry DCM (20 mL) under argon at room temperature. The mixture was stirred overnight in dark. Upon completion, the suspension liquid was filtered through celite into a solution of (DMS) $\mathrm{AuCl}(1.2 \mathrm{mmol})$ in 15 mL DCM. The mixture was bubbled with N_{2} for 0.5 h and continued to be stirred for 24 h . Then the suspension solution was filtered through celite, concentrated under reduced pressure and precipitated with diethyl ether to afford a yellow solid. All PEGylated NHC-gold(I) complexes have good solubility in water. Their solubility in water has been measured to be $423 \mathrm{~g} / \mathrm{L}$ for $\mathrm{L} 1 \mathrm{AuCl}, 356 \mathrm{~g} / \mathrm{L}$ for L 2 AuCl , $302 \mathrm{~g} / \mathrm{L}$ for L 3 AuCl and $283 \mathrm{~g} / \mathrm{L}$ for L 4 AuCl , respectively.

1-Methylimidazole-mPEG $\mathbf{2 0 0 0} \mathbf{- A u C l}(\mathbf{L 1 A u C l}):$ yellow solid. Yield: $92 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.8301(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.49(\mathrm{~m}, 174 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.62,122.43,121.26,71.86,70.48,70.39,70.31,70.28,58.96,51.06$, 38.14. MALDI-TOF-MS m / z : [M-Cl] calcd. for $\mathrm{C}_{93} \mathrm{H}_{184} \mathrm{~N}_{2} \mathrm{O}_{44} \mathrm{Au}, 2231.1921$; found, 2230.9059; calcd. for dimer $\mathrm{C}_{186} \mathrm{H}_{368} \mathrm{~N}_{4} \mathrm{O}_{88} \mathrm{Au}, 4265.4177$; found, 4261.9402 .

1-Benzylimidazole-mPEG $\left.\mathbf{2 0 0 0}^{\mathbf{- A u C l}} \mathbf{(L 2 A u C l}\right)$: yellow solid. Yield: 72%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-3.43(\mathrm{~m}$, $174 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.26,135.00,128.89,128.52,127.90,122.83$, $119.89,71.75,70.35,70.21,70.12,58.86,54.92,51.09$. MALDI-TOF-MS $m / z:[\mathrm{M}-\mathrm{Cl}]^{+}$calcd. for $\mathrm{C}_{99} \mathrm{H}_{188} \mathrm{~N}_{2} \mathrm{O}_{44} \mathrm{Au}, 2307.2234$; found, 2311.7653.

1-Mesityl imidazole-mPEG $\mathbf{2 0 0 0} \mathbf{- A u C l}$ (L3AuCl): yellow solid. Yield: $81 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 4.50-4.47(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.45$ $(\mathrm{m}, 172 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.48,139.50$, $134.76,134.69,129.30,122.35,121.57,71.85,70.46,70.33,58.95,51.17,21.02,17.72$. MALDI-TOFMS m / z : $[\mathrm{M}-\mathrm{Cl}]^{+}$calcd. for $\mathrm{C}_{101} \mathrm{H}_{192} \mathrm{~N}_{2} \mathrm{O}_{44} \mathrm{Au}, 2334.2547$; found 2337.0323; calcd. for dimer $\mathrm{C}_{202} \mathrm{H}_{384} \mathrm{~N}_{4} \mathrm{O}_{88} \mathrm{Au}, 4473.5429$; found, 4478.2901.

1-(2,6-Diisopropylphenyl) imidazole-mPEG $\mathbf{2 0 0 0}-\mathbf{A u C l}(\mathbf{L 4 A u C l}):$ yellow solid. Yield: 94\%. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.46$ $(\mathrm{m}, 2 \mathrm{H}), 3.96-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.45(\mathrm{~m}, 172 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{p}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.53,145.68,134.16,130.48$, 124.16, $122.89,122.06,71.89,70.51,70.41,70.37,58.99,51.20,28.35,24.33,24.31$. MALDI-TOF-MS $m / z:[\mathrm{M}-\mathrm{Cl}]^{+}$calcd. for $\mathrm{C}_{104} \mathrm{H}_{198} \mathrm{~N}_{2} \mathrm{O}_{44} \mathrm{Au}, 2377.3017$; found, 2377.5142.

1.4 Preparation of alkynoic acids

General procedure \mathbf{A} (for the alkylation of malonate): based on the known method. ${ }^{2}$ Dimethyl malonate $(50 \mathrm{mmol}, 5.74 \mathrm{~mL})$ and propargyl bromide ($50 \mathrm{mmol}, 5.45 \mathrm{~mL}$) were added to a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(100$ $\mathrm{mmol}, 13.8 \mathrm{~g})$ in acetone (100 mL). The mixture was stirred for 24 h at room temperature. Then it was quenched with saturated ammonium chloride solution $(50 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$. The combined organic layer was dried with sodium sulfate and concentrated under reduced pressure. The oil residue was purified with column chromatography (hexane/EA: 50:1 v/v) to give dimethyl-2-propargyl malonate as a colourless oil ($5.78 \mathrm{~g}, 68 \%$) and dimethyl $2,2-\mathrm{di}($ prop- $2-\mathrm{yn}-1-\mathrm{yl})$ malonate as a white solid ($1.12 \mathrm{~g}, 10 \%$).

Dimethyl-2-propargyl malonate (S3) ${ }^{2}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.78(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.5,80.0,70.7,53.0,51.1,18.7$.

Dimethyl 2,2-di(prop-2-yn-1-yl)malonate (S4) ${ }^{3}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.01(\mathrm{~s}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.01, 78.24, 71.76, 56.38, 53.15, 22.61.

Dimethyl 2-(but-2-yn-1-yl)malonate (S5) ${ }^{4}$

Following the general procedure A, dimethyl 2-(but-2-yn-1-yl) malonate was obtained as a colourless oil $(2.36 \mathrm{~g}, 43 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.72(\mathrm{~m}, 2 \mathrm{H})$, $1.76(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.60,77.92,74.51,52.68,51.46,18.87,3.43$.

Dimethyl 2,2-bis(2-butynyl)malonate (S6) ${ }^{5}$

Following the general procedure A, dimethyl 2,2-bis(2-butynyl) malonate was obtained as a white solid in above reaction ($370 \mathrm{mg}, 5 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.74(\mathrm{~s}, 6 \mathrm{H}), 2.91(\mathrm{q}, J=2.5 \mathrm{~Hz}, 4 \mathrm{H})$, $1.75(\mathrm{t}, J=2.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.74,78.99,73.09,57.08,52.87,22.98,3.50$.

Dimethyl 2-allylmalonate (S7) ${ }^{2}$

Following the general procedure \mathbf{A}, dimethyl 2-allylmalonate was obtained as a colourless oil (6.86 g , $71.4 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.84-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.19-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.67(\mathrm{~m}, 6 \mathrm{H})$, $3.47(\mathrm{td}, J=7.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.58(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.27,133.90,117.65$, 52.49, 51.38, 32.85 .

Dimethyl 2-allyl-2-(prop-2-yn-1-yl)malonate (S8) ${ }^{6}$

General procedure B (for the synthesis of dimethyl 2-allyl-2-(prop-2-yn-1-yl)malonate): according to the reported methods. ${ }^{6}$ In a 50 mL two-neck flask, $\mathrm{NaH}(60 \%$ in mineral oil) ($22 \mathrm{mmol}, 440 \mathrm{mg}$) was suspended in 20 mL dry THF and cooled to $0^{\circ} \mathrm{C}$. Then dimethyl 2-allylmalonate ($20 \mathrm{mmol}, 3.44 \mathrm{~g}$) was added dropwise. The mixture was warmed to room temperature and stirred for 30 min . Subsequently, propargyl bromide ($22 \mathrm{mmol}, 2.62 \mathrm{~g}$) was added and the mixture was stirred at room temperature overnight. The reaction was quenched with 50 mL water and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. It was further purified through column chromatography (hexane/EA: 8:1 v/v) to give dimethyl 2-allyl-2-(prop-2-yn-1-yl) malonate as a colourless oil ($3.36 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.70-5.52$ (m, 1H), 5.16 (dd, $J=20.8,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.85-2.74(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{t}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.14,131.61,119.94,78.73,71.46,56.86,52.77,36.50,22.67$.

General procedure \mathbf{C} (for the mono-saponification of malonates): 2-(methoxycarbonyl)pent-4-ynoic acid^{2} (1a)

Dimethyl-2-propargyl malonate ($2.5 \mathrm{~g}, 15 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$ and potassium hydroxide ($924 \mathrm{mg}, 16.5 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature for 4 h. Afterwards, the solvent was removed under reduced pressure. The residue was diluted with 20 mL water and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ to remove unreacted starting material. The aqueous layer was acidified with 5 M HCl solution and extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give a colourless solid $(1.68 \mathrm{~g}, 72 \%)$ without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.66$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.98$, 168.05, 79.40, 70.76, 53.00, 50.74, 18.28.

2-(Methoxycarbonyl)-2-(prop-2-yn-1-yl)pent-4-ynoic acid 7 (1c)

Following the general procedure \mathbf{C}, $\mathbf{1 c}$ was obtained as a white solid ($428 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.06(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.19,168.85,78.00,72.00,56.39,53.34,22.61$.

2-(Methoxycarbonyl)-2-(prop-2-yn-1-yl)pent-4-enoic acid ${ }^{7}$ (1d)

Following the general procedure \mathbf{C}, $\mathbf{1 d}$ was obtained as a white solid ($1.35 \mathrm{~g}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{dq}, J=17.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=22.1,13.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 2.88 - $2.73(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.72,170.14,131.26,120.25,78.43$, 71.75, 56.92, 53.00, 36.67, 22.80.

2-Phenylpent-4-ynoic acid 8 (1e)

1e was synthesized in two steps. The first step was propargylation of methyl 2-phenylacetate following the reported procedure. ${ }^{9}$ To a solution of methyl 2-phenylacetate ($3.0 \mathrm{~g}, 20 \mathrm{mmol}$) in dry THF (15 mL) was added dropwise LDA (2 M in THF, 30 mmol) at $-78^{\circ} \mathrm{C}$. After stirring for 5 h at this temperature, propargyl bromide ($1.87 \mathrm{~mL}, 24 \mathrm{mmol}$) was added. The reaction mixture was warmed to room temperature and stirred overnight. Subsequently, the mixture was treated with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. After concentrating the organic layer, the residue was purified through column chromatography (hexane/EA: $30: 1 \mathrm{v} / \mathrm{v}$) to give 1 e as a pale-yellow oil ($3.2 \mathrm{~g}, 85 \%$). The second step refers to the general procedure \mathbf{C} to give 2-phenylpent-4-ynoic acid as an off-white solid $(1.13 \mathrm{~g}, 65 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 3.83(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (ddd, J $=16.8,8.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{ddd}, J=16.8,7.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.21,136.78,129.36,128.81,128.63,128.01,127.85,81.00,70.19,50.60,22.55$.

4-Hexynoic acid ${ }^{10}$ (1g)

5-Hexynoic acid ($5 \mathrm{mmol}, 560 \mathrm{mg}$) and $\mathrm{KOtBu}(10 \mathrm{mmol}, 1.12 \mathrm{~g}$) were dissolved in DMSO (20 mL). The mixture was stirred at room temperature for 3 h . Then it was quenched with 2 M HCl solution (10 $\mathrm{mL})$ and extracted with ethyl ether ($3 \times 10 \mathrm{~mL}$). The organic layer was separated, dried and evaporated under reduced pressure to yield a colourless oil ($524.7 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.57-$ $2.54(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.76(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.15$, 76.96, 76.73, 33.82, 14.52, 3.53.

2-(Methoxycarbonyl)hex-4-ynoic acid ${ }^{10}$ (1h)

Following the general procedure \mathbf{C}, $\mathbf{1 h}$ was obtained as a colourless oil ($1.10 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.83,168.58,78.29,74.18,52.91,51.23,18.82,3.42$.

2-(But-2-yn-1-yl)-2-(methoxycarbonyl)hex-4-ynoic acid ${ }^{5}$ (1i)

Following the general procedure \mathbf{C}, $\mathbf{1 f}$ was obtained as a white solid ($241 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.01(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.76(\mathrm{t}, J=2.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.17,169.68,79.30,72.81,57.08,53.08,23.07,3.45$.

5-Phenylpent-4-ynoic acid ${ }^{11}$ (1j)

The synthesis route for $\mathbf{1} \mathbf{j}$ is according to the reported method with minor modification. ${ }^{11} \mathrm{SOCl}_{2}$ (120 $\mathrm{mmol}, 8.7 \mathrm{~mL}$) was added dropwise to a solution of 4-pentynoic acid ($15 \mathrm{mmol}, 1.47 \mathrm{~g}$) in ethanol (30 mL) at $0^{\circ} \mathrm{C}$. The mixture was heated to reflux for 4 h and then concentrated. The residue was dissolved in ethyl acetate and washed with NaHCO_{3} aqueous solution, water and brine. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give crude ethyl pent-4-ynoate ($1.74 \mathrm{~g}, 92 \%$).
Then it was used in the general procedure \mathbf{D} for Sonogashira coupling reaction. To a solution of ethyl pent-4-ynoate $(10 \mathrm{mmol})$ in dry DMF $(5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{~mL})$ was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.5 \mathrm{mmol}), \mathrm{CuI}$ $(1 \mathrm{mmol})$ and iodobezene $(10 \mathrm{mmol})$. The resulting mixture was then stirred at room temperature for 8 h. Afterwards, it was quenched with water $(80 \mathrm{~mL})$ and extracted with EA $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was then purified through column chromatography to give ethyl 5-phenylpent-4-yonate ($1.71 \mathrm{~g}, 85 \%$).
Afterwards, to a solution ethyl 5-phenylpent-4-yonate (1.5 mmol) in water/ $\mathrm{MeOH}(1: 9 \mathrm{v} / \mathrm{v}, 10 \mathrm{~mL})$ was added $\mathrm{NaOH}(30 \mathrm{mmol})$. The mixture was heated to $40^{\circ} \mathrm{C}$ and stirred for 1 h . Then it was evaporated, added saturated NaHCO_{3} aqueous solution $(15 \mathrm{~mL})$ and washed with dichloromethane $(2 \times 15 \mathrm{~mL})$. The aqueous layer was separated and acidified with 5 M HCl solution until no bubble occurred. Finally, it was extracted with EA $(3 \times 20 \mathrm{~mL})$, dried and concentrated under reduced pressure to give a yellow solid $(227 \mathrm{mg}, 87 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.31(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 5 \mathrm{H}), 2.63(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 2 H), $2.57-2.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 173.38,131.71,129.04,128.50,123.48$, 90.00, 80.97, 33.53, 15.22.

2-(2-Ethynylphenyl)acetic acid ${ }^{12}$ (1k)

1k was synthesized by three steps. ${ }^{12}$ First, Sonogashira reaction was carried out by using methyl 2-(2iodophenyl)acetate $(6 \mathrm{mmol})$ and trimethylsilylacetylene $(6 \mathrm{mmol})$ according to the general procedure \mathbf{D} to afford methyl 2-(2-((trimethylsilyl)ethynyl)phenyl)acetate. Then, it was further dissolved in 6 mL $\mathrm{MeOH} / \mathrm{EtOH}(2: 1 \mathrm{v} / \mathrm{v})$ and added a catalytic quantity of $\mathrm{K}_{2} \mathrm{CO}_{3}$. After stirring in air overnight, the mixture was concentrated under reduced pressure and dissolved in DCE. The organic layer was washed with water $(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed in vacuo. The resulting oil was dissolved in $6 \mathrm{~mL} \mathrm{MeOH} / \mathrm{EtOH}(2: 1 \mathrm{v} / \mathrm{v})$ again. $5 \% \mathrm{NaOH}$ (1.3 equiv.) was added and the mixture was stirred at $75^{\circ} \mathrm{C}$ for 1 h . The solution was then concentrated and diluted with water (20 mL), washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$. Subsequently, the aqueous layer was acidified to $\mathrm{pH} 1-2$, extracted with $\mathrm{EA}(3 \times 15$ mL), dried and concentrated in vacuo to give a white solid ($800 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.19,136.02,132.95,130.04,129.18,127.51,122.69,81.99,81.57,39.50$.

2-(Phenylethynyl)benzoic acid (1m)

The synthesis of $\mathbf{1 m}$ was according to general procedure \mathbf{D} for Sonogashira coupling and procedure \mathbf{C} for mono-saponification. Yellow solid. Yield: $81 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{dd}, J=7.9,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dtd}, J$ $=9.1,4.5,1.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.38,171.35,134.17,132.56,131.74,131.35$, 130.54, 128.58, 128.35, 127.94, 124.39, 123.13, 95.34, 88.02.

2,2-Di(prop-2-ynyl)malonic acid 7 (1n)

$\xrightarrow{\mathrm{HO}_{2} \mathrm{C}}$

General procedure E (for di-saponification): Dimethyl 2,2-di(prop-2-yn-1-yl)malonate (3 mmol) was dissolved in 9 mL mixture solvent $\left(\mathrm{MeOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}: 1: 1: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}\right)$. The reaction solution was added KOH $(15 \mathrm{mmol})$ and stirred overnight at room temperature in open air. Then the mixture was concentrated under reduced pressure and added 10 mL saturated NaHCO_{3} solution. The aqueous solution was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. Subsequently, the aqueous layer was acidified 1 M HCl solution and extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give white solid without further purification $(328 \mathrm{mg}, 61 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.03(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 4 \mathrm{H}$), $2.38(\mathrm{~s}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 170.46,79.68,74.48,55.91$, 22.51.

2,2-Di(but-2-yn-1-yl)malonic acid ${ }^{13}$ (10)

$\xrightarrow{\mathrm{HO}_{2} \mathrm{C}}+=-$

Following the general procedure $\mathbf{E}, \mathbf{1 0}$ was obtained as a white solid ($536 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 13.02(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 4 \mathrm{H}), 1.72(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) δ 170.98, 79.10, 74.76, 56.50, 22.95, 3.67. HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ calcd. 208.0736, found 208.0689.

2,2-Bis(3-phenylprop-2-yn-1-yl)malonic acid ${ }^{14}$ (1p)

To a solution of dimethyl 2,2-di(prop-2-yn-1-yl)malonate (6 mmol) in dry DMF (6 mL) and $\mathrm{Et}_{3} \mathrm{~N}(6 \mathrm{~mL})$ was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.3 \mathrm{mmol}), \mathrm{CuI}(0.6 \mathrm{mmol})$ and iodobezene $(12 \mathrm{mmol})$. The mixture was then stirred at room temperature for 8 h . After the reaction completed, it was quenched with water (80 mL) and extracted with EA $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified through column chromatography to give a colourless oil $(1.856 \mathrm{~g}, 86 \%)$. The intermediate product was subjected to the general procedure \mathbf{E} to give a white solid $\mathbf{1 p}(983 \mathrm{mg}, 87 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) δ $13.37(\mathrm{~s}, 2 \mathrm{H}), 7.36(\mathrm{~s}, 10 \mathrm{H}), 3.10(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 170.82,131.93$, 129.19, 128.97, 123.03, 85.94, 83.57, 56.84, 23.81. HRMS (EI) for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{4}$, calcd. 332.1049, found 332.0991 .

2,2-Bis(3-(4-methoxyphenyl)prop-2-yn-1-yl)malonic acid (1q)

1q was prepared following the similar procedure carried out for $\mathbf{1 p}$. Yield: 85%. Yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.30(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H})$, $3.05(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 170.83,159.64,133.31,114.92,114.68,84.09,83.33$, 56.79, 55.69, 23.69. HRMS (EI) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{6}$, calcd. 392.1260, found 392.1256.

2,2-Bis(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)malonic acid (1r)

$\mathbf{1 r}$ was prepared following the similar procedure carried out for $\mathbf{1 p}$. Yield: 89%. White solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.14(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 170.30,132.29,128.61(\mathrm{q}, J=32.3 \mathrm{~Hz}), 126.83,125.68(\mathrm{q}, J=3.9 \mathrm{~Hz}), 124.11$ (q, $J=272.1 \mathrm{~Hz}$), 88.60, 81.98, $56.29,23.53$. HRMS (EI) for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{4}$, calcd. 468.0796, found 468.0715 .

2,2-Bis(3-(o-tolyl)prop-2-yn-1-yl)malonic acid (1s)

1s was synthesized following the similar procedure carried out for $\mathbf{1 p}$. White solid. Yield: $97 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.34$ (d, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.16(\mathrm{dt}, J=8.2,4.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.16(\mathrm{~s}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 170.81,140.03,132.05,129.96,128.80$, $126.28,122.74,89.58,82.19,56.65,23.99$, 20.71. HRMS (EI) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{4}$, calcd. 360.1362, found 360.1297 .

1.5 General procedure for gold(I)-catalysed cyclization of alkynoic acid into enol lactones

Alkynoic acid $(0.3 \mathrm{mmol}), \mathbf{L 4 A u C l}(0.0015 \mathrm{mmol})$ and water $(2 \mathrm{~mL})$ were added in a reaction tube. The reaction was stirred at room temperature and monitored by TLC (a small amount of sample was taken from the reaction mixture and was extracted with dichloromethane; then the organic product in the dichloromethane extract was detected by TLC). Upon completion, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 3 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified through column chromatography.

Methyl 5-methylene-2-oxotetrahydrofuran-3-carboxylate ${ }^{10}$ (2a)

Colourless oil. Yield: $95 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.84-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.37(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{dd}, J=10.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{ddt}, J=16.6,7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (ddt, $J=16.6$, $10.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.52,167.31,153.12,89.90,53.39,46.23,29.34$.

5-Methylenedihydrofuran-2(3H)-one ${ }^{7}$ (2b)

Colourless oil. Yield: $88 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.70(\mathrm{dd}, J=4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.28(\mathrm{dd}, J=$ $4.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=6.7,5.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.87,155.60,88.61,27.90,24.98$.

Methyl 5-methylene-2-oxo-3-(prop-2-yn-1-yl)tetrahydrofuran-3-carboxylate ${ }^{7}$ (2c)

Pale yellow oil. Yield: $96 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.87-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.43,168.57,152.55,89.88,77.73,72.47,54.55,53.76,34.83,23.89$.

Methyl 3-allyl-5-methylene-2-oxotetrahydrofuran-3-carboxylate ${ }^{7}$ (2d)

Yellow oil. Yield: $96 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.75-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.14(\mathrm{~m}, 2 \mathrm{H}), 4.78$ $(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dt}, J=16.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dt}, J=$ $16.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=14.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=14.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.24,169.36,152.70,131.09,121.17,89.73,54.95,53.49,38.35,34.44$.

5-Methylene-3-phenyldihydrofuran-2(3H)-one ${ }^{15}$ (2e)

Colourless oil. Yield: $96 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.86-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.45$ $-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=10.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (ddt, $J=16.5,10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00$ (ddt, $J=16.4$, $7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.06,154.15,136.71,129.21,128.08,127.63,89.29$, 46.11, 34.56 .

3-Methyleneisobenzofuran-1(3H)-one ${ }^{16}$ (2f)

Yellow solid. Yield: 92%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.59(\mathrm{dt}, J=7.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=5.8,2.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.89$, 151.86, 139.03, 134.48, 130.48, 125.32, 125.15, 120.60, 91.27.
(Z)-5-Ethylidenedihydrofuran-2(3H)-one ${ }^{10}$ (2g-exo)

6-Methyl-3,4-dihydro-2H-pyran-2-one ${ }^{17}$ (2g-endo)

2g-exo
2g-endo
Colourless oil. Yield: 85% (2g-exo:3g-endo/20:1) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.01$ (td, $J=4.4,1.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{2 g}-$ endo $), 4.60(\mathrm{qt}, J=6.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 g - e x o}$), $2.83-2.79$ (m, 2H, 2g-exo), $2.66-2.62$ (m, 2H, 2g-exo), $2.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{2 g}$-endo), 2.29 (tdd, $J=7.6,4.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{2 g}$-endo), $1.89(\mathrm{q}, J=$ $1.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{2 g - e n d o}$), 1.67 (dt, $J=6.9,1.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{2 g}$-exo). ${ }^{13} \mathrm{C}$ NMR of 2g-exo ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.33, 148.44, 99.30, 28.14, 25.05, 10.48.

Methyl (Z)-5-ethylidene-2-oxotetrahydrofuran-3-carboxylate ${ }^{10}$ (2h-exo)
Methyl 6-methyl-2-oxo-3,4-dihydro-2H-pyran-3-carboxylate ${ }^{10}$ (2h-endo)

2h-exo

2h-endo

Colourless oil. Yield: 99% ($\mathbf{2 h}$-exo:2h-endo/ 5:1) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.03$ ($\mathrm{s}, 1 \mathrm{H}, \mathbf{2 h}$-endo), 4.72 (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 h}$-exo), 3.82 (s, 3H, 2h-exo), 3.80 ($\mathrm{s}, 3 \mathrm{H}, \mathbf{2 h}$ endo), 3.74 (dd, $J=10.1,8.1 \mathrm{~Hz}$, 1H, 2h-exo), 3.56 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 h}$-endo), 3.23 (dd, $J=16.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 h}$-exo), 3.04 (dd, $J=$ $15.8,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 h}$-exo), $2.77-2.71$ (m, 1H, 2h-endo), $2.57-2.40$ ($\mathrm{m}, 2 \mathrm{H}, \mathbf{2 h}$-endo), 1.90 ($\mathrm{s}, 3 \mathrm{H}, \mathbf{2 h}$ endo), $1.69(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{2 h}-$ exo $) .{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 h}-\operatorname{exo}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.76,167.58,145.84$, 100.38, 53.21, 46.18, 29.22, 10.40. ${ }^{13} \mathrm{C}$ NMR of 2h-endo ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.76,168.66,150.26$, 98.66, 52.87, 45.42, 22.36, 18.41 .

Methyl (Z)-3-(but-2-yn-1-yl)-5-ethylidene-2-oxotetrahydrofuran-3-carboxylate ${ }^{18}$ (2i-exo)

Colourless oil. Yield: $86 \%(\mathbf{1 0 : 1}){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.70(\mathrm{qt}, J=6.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, 3 H), 3.18 (tdq, $J=18.2,16.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.74(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.71$ (dt, $J=$ $6.9,1.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,169.03,145.41,99.89,79.76,72.43,54.68,53.40$, 34.66, 24.31, 10.42, 3.42.

Methyl 3-(but-2-yn-1-yl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-3-carboxylate ${ }^{18}$ (2i-endo)

Colourless oil. Yield: $86 \%(10: 1){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.01$ (ddd, $J=6.1,2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{dp}, J=17.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dt}, J=2.5$, $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H})$.
(Z)-5-Benzylidenedihydrofuran-2(3H)-one ${ }^{10}$ (2 j)

White solid. Yield: $99 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ (s, 2 H), 7.31 (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20 (d, J $=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.07,148.28$, 134.06, 128.58, 128.42, 126.84, 105.00, 27.06, 26.43.

1-Methyleneisochroman-3-one ${ }^{19}$ (2k)

Brown oil. Yield: 23%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (tt, $J=12.6,6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.20,153.77,130.05,128.62,127.92,127.41,127.25,124.79,95.03,34.92$.

6-Methylenetetrahydro-2H-pyran-2-one ${ }^{7}$ (21) and 5-Oxohexanoic acid ${ }^{20}$ (31)

21

31

Colourless oil. Yield: 95\% (21:31/ 61:34) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.65-4.62(\mathrm{~m}, 1 \mathrm{H}, \mathbf{2 1}), 4.29$ (dd, $J=2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 1}$), $2.63(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{2 1}), 2.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{3 1}), 2.50-2.44(\mathrm{~m}, 2 \mathrm{H}$, $\mathbf{2 l}), 2.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{3 1}), 2.14(\mathrm{~s}, 3 \mathrm{H}, \mathbf{3 1}), 1.95-1.81(\mathrm{~m}, 4 \mathrm{H}, 2 \mathbf{2}$ and $\mathbf{3 I}) .{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 l}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 93.75,42.28,32.80,30.25,26.73,18.56$.
(Z)-3-Benzylideneisobenzofuran-1(3H)-one (2m) and 3-Phenyl-1H-isochromen-1-one (3m) ${ }^{17}$

2m

3m

Pale yellow solid. 82\%. The (Z)-5-exo-dig and 6-endo-dig isomers were obtained in a 20:80 ratio. Signals corresponding to $\mathbf{3 m}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.81(\mathrm{~m}$, $2 \mathrm{H}), 7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.30$, $153.64,137.53,134.87,131.98,129.97$, 129.66, 128.83, 128.15, 125.98, 125.26, 120.56, 101.81.
Representative signals corresponding to $\mathbf{2 m}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.48,133.10,130.13,129.77,128.77,128.42,125.57,119.82,107.06$.

3,8-Dimethylene-2,7-dioxaspiro[4.4]nonane-1,6-dione ${ }^{7}$ (2n)

Colourless oil. Yield: $97 \% .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.92$ (s, 2H), 4.50 (s, 2H), 3.46 (d, $J=16.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.94(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.81,151.26,91.11,51.92$, 36.34.

(3Z,8Z)-3,8-Diethylidene-2,7-dioxaspiro[4.4]nonane-1,6-dione (20)

White solid. Yield: $96 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.78$ (qt, $J=6.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.39(\mathrm{dt}, J=16.1$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{dt}, J=16.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{dt}, J=6.9,1.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.30$, 144.31, 101.71, 51.69, 36.61, 10.62. HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$, calcd. 208.0736, found 208.0730 .

3-((Z)-Benzylidene)-8-((Z)-cyclohexa-2,4-dien-1-ylidenemethyl)-2,7-dioxaspiro[4.4]nonane-1,6dione (2p)

White solid. Yield: $93 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 4 H), $7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=16.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=16.6,1.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.82,143.35,132.91,128.67,128.59,127.49,107.04,49.96$, 37.81. HRMS (EI) for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{4}$, calcd. 332.1049, found 332.1056

3,8-Bis((Z)-4-methoxybenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (2q)

White solid. Yield: 97%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 4 H), 5.63 (s, 2H), 3.82 (d, $J=2.1 \mathrm{~Hz}, 6 \mathrm{H}$), 3.62 (dd, $J=16.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.10 (dd, $J=16.5,1.5 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.12,158.98,141.80,130.08,125.79,114.11,106.64,55.40$, $50.22,37.95$. HRMS (EI) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{6}$, calcd. 392.1260, found 392.1249.

3,8-Bis((Z)-4-(trifluoromethyl)benzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (2r)

White solid. Yield: $96 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 4 H), $5.76(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.22,145.17,136.25,129.19(\mathrm{q}, J=32.9 \mathrm{~Hz}), 128.75,125.48(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.04(\mathrm{q}, J=272.2$ Hz), 105.87, 49.69, 37.60. ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.59$. HRMS (EI) for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{4}$, calcd. 468.0796, found 468.0795 .

3,8-Bis((Z)-2-methylbenzylidene)-2,7-dioxaspiro[4.4]nonane-1,6-dione (2s)

White solid. Yield: $84 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 6 \mathrm{H})$, $5.84(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=16.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{dd}, J=16.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.89,143.74,135.54,131.54,130.14,129.23,127.58,126.13,104.42,50.31,37.71$, 20.20. ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.59. HRMS (EI) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{4}$, calcd. 360.1362, found 360.1347 .

1.6 General procedure for gold(I)-catalysed synthesis of fused polycyclic indoles

11B-methyl-1,2,5,6,11,11b-hexahydro-3H-indolizino[8,7-b]indol-3-one ${ }^{21}$ (7a)

To a round-bottomed flask, 4-pentynoic acid (0.3 mmol) and $\mathbf{L} 4 \mathrm{AuCl}(0.0015 \mathrm{mmol})$ was added in water $(2 \mathrm{~mL})$. After stirring at room temperature for half hour, tryptamine $(0.3 \mathrm{mmol})$ was added. Then the mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 15 h . The resulting white solid was filtered and purified via
flash column chromatography. White solid. Yield: $75 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.01(\mathrm{~s}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J$ $=13.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{td}, J=12.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=15.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.51(\mathrm{~m}, 2 \mathrm{H})$, $2.33-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $\left.d_{6}\right) \delta 172.45,139.53$, $136.51,126.85,121.56,119.15,118.54,111.70,105.23,59.45,34.83,33.15,30.64,25.53,21.46$

13B-methyl-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one ${ }^{11}$ (7b)

To a round-bottomed flask, 2-ethynylbenzoic acid (0.3 mmol) and $\mathbf{L 4 A u C l}(0.0015 \mathrm{mmol})$ was added in water (2 mL). After stirring at room temperature for 1 h , tryptamine $(0.3 \mathrm{mmol})$ and a catalytic amount of TFA were added. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 15 h . The resulting white solid was extracted with DCM, dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified via flash column chromatography. White solid. Yield: 74\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.31(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=6.7,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=$ $13.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{td}, J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=15.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 1 \mathrm{H})$, $1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 167.63,149.79,136.65,135.64,132.65,130.72,129.04$, $126.44,123.62,123.21,122.05,119.33,118.77,111.65,106.80,62.46,35.87,26.35,21.89$.

N -(2-(1H-indol-3-yl)ethyl)-2-acetylbenzamide ${ }^{22}$ (6b)

White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.83(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.34$ $(\mathrm{s}, 1 \mathrm{H}), 3.77-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.22-2.95(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 165.74$, $149.10,136.27,131.97,130.70,128.98,127.17,122.72,122.14,121.91,120.93,118.28,111.82,111.40$, 87.86, 39.04, 24.89.

1.7 Procedure for recycling PEGylated NHC-gold(I) catalyst for cyclization of alkynoic acid into enol lactones

1a (0.5 mmol), L4AuCl (0.005 mmol) and water (2 mL) were added in a reaction tube. The reaction was stirred at room temperature and was monitored by TLC. Upon completion of the reaction, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 2 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Yield was determined by ${ }^{1} \mathrm{H}$ NMR with trimethoxyphenylsilane as internal standard. The aqueous layer containing recycled gold catalyst was used for consecutive reactions under identical condition.
1.8 Catalytic comparison of L 4 AuCl and other gold catalysts for cyclization of alkynoic acid

	10			20	
Entry	Catalyst	Silver salt	Solvent	Time (h)	Yield of 20 (\%)
1	L4AuCl	--	$\mathrm{H}_{2} \mathrm{O}$	1.5	96
2	IPrAuCl	AgSF_{6}	DCM	2.0	36
3	JohnPhosAuCl	AgSbF_{6}	DCM	2.0	15

Fimim mim

L4AuCl

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 o}$ obtained by $\mathbf{L 4 A u C l}$ as catslyst.

Fig. S2. ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of products obtained by IPrAuCl as catalyst.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of products obtained by JohnPhosAuCl as catalyst.

1.9 Detection of gold nanoparticles in reaction solution

The colourless reaction solution was found to turn to pink during the reaction. This observation is indicative of the formation of gold nanoparticles according to literature. ${ }^{23}$ To further demonstrate the formation of gold nanoparticles, we examined the reaction solution by UV-visible absorption spectroscopy revealing the formation of an absorption band at around 520 nm , which is the absorption of gold nanoparticles (Fig. S4). ${ }^{23}$ Absorbance of UV-Vis increased with increasing concentration of the solution. No absorption of UV-Vis for L4 and fresh L4AuCl was observed. Transmission electron microscope (TEM) also showed that there are gold nanoparticles around $20-50 \mathrm{~nm}$ in reaction solution (Fig. S7). In order to probe the stability of $\mathbf{L} 4 \mathbf{A u C l}$ in water, $2 \times 10^{-4} \mathrm{~mol} / \mathrm{mL}$ water solution of $\mathbf{L 4 A u C l}$ was tested at different time. UV-visible absorption spectroscopy (Fig. S5) showed that there was no gold nanoparticle formed at the beginning. Slight absorption band for gold nanoparticles occurred after 1.5 h and became higher as time went. But even the solution was kept under air for 2 days (Fig. S5, 2 d), the absorption band was lower than that of used $\mathbf{L 4 A u C l}$ (Fig. S4, green line). This indicated that substate or cyclization reaction would promote the formation of gold nanoparticles. We also compared the stability of $\mathbf{L 1} \mathbf{- L 4 A u C l}$ in water. UV-Vis tests of $2 \times 10^{-4} \mathrm{~mol} / \mathrm{mL}$ water solutions of $\mathbf{L 1}-\mathbf{L 4 A u C l}$ were performed after keeping under air for 24 h . It showed that $\mathbf{L 1 A u C l}$ and $\mathbf{L 4 A u C l}$ are more stable than $\mathbf{L 3 A u C l}$ (Fig. S6). The water solution of $\mathbf{L 2 A u C l}$ became turbid after 24 h , indicating decomposition of L2AuCl.

Fig. S4. UV-Vis spectra of blank L4AuCl, L4 and used L4AuCl water solution in different concentrations.

Fig. S5. UV-Vis spectra of $2 \times 10^{-4} \mathrm{~mol} / \mathrm{mL} \mathbf{L 4 A u C l}$ water solution in open air at different time.

Fig. S6. UV-Vis spectra of $2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ L1-L4AuCl water solution in open air for 24 h .

Fig. S7. TEM images of ligand $\mathbf{L 4}$ (left), gold complex $\mathbf{L 4 A u C l}$ (middle) and used $\mathbf{L 4 A u C l}$ (right).

2. References

1. N. Sun, M. Chen, L. Jin, W. Zhao, B. Hu, Z. Shen and X. Hu, Beilstein J. Org. Chem., 2017, 13, 17351744.
2. P. Klahn, H. Erhardt, A. Kotthaus and S. F. Kirsch, Angew. Chem. Int. Ed., 2014, 53, 7913-7917.
3. G. S. Sinclair, T. Yang, S. Wang, W. H. Chen and D. J. Schipper, Org. Lett., 2017, 19, 802-805.
4. Q. Zhang, W. Xu and X. Lu, J. Org. Chem., 2005, 70, 1505-1507.
5. M. Wilking, C. Mueck-Lichtenfeld, C. G. Daniliuc and U. Hennecke, J. Am. Chem. Soc., 2013, 135, 8133-8136.
6. S. Zhu, R. Liang, H. Jiang and W. Wu, Angew. Chem. Int. Ed., 2012, 51, 10861-10865.
7. J. Aleman, V. del Solar and C. Navarro-Ranninger, Chem. Commun., 2010, 46, 454-456.
8. Z. Wu, G. S. Minhas, D. Wen, H. Jiang, K. Chen, P. Zimniak and J. Zheng, J. Med. Chem., 2004, 47, 3282-3294.
9. J. L. Arbour, H. S. Rzepa, A. J. P. White and K. K. Hii, Chem. Commun., 2009, 46, 7125-7127.
10. D. Gasperini, L. Maggi, S. Dupuy, R. M. P. Veenboer, D. B. Cordes, A. M. Z. Slawin and S. P. Nolan, Adv. Synth. Catal., 2016, 358, 3857-3862.
11. J. Qiao, X. Jia, P. Li, X. Liu, J. Zhao, Y. Zhou, J. Wang, H. Liu and F. Zhao, Adv. Synth. Catal., 2019, 361, 1419-1440.
12. E. Marchal, P. Uriac, B. Legouin, L. Toupet and P. van de Weghe, Tetrahedron, 2007, 63, 99799990.
13. R. S. Atkinson and M. J. Grimshire, J. Chem. Soc., Perkin Trans. 1, 1986, 1215-1224.
14. S. Li, W. Jia and N. Jiao, Adv. Synth. Catal., 2009, 351, 569-575.
15. F. Neatu, V. I. Parvulescu, V. Michelet, J.-P. Genet, A. Goguet and C. Hardacre, New J. Chem., 2009, 33, 102-106.
16. N. Conde, R. SanMartin, M. T. Herrero and E. Dominguez, Adv. Synth. Catal., 2016, 358, 32833292.
17. N. Leconte, A. du Moulinet d'Hardemare, C. Philouze and F. Thomas, Chem. Commun., 2018, 54, 8241-8244.
18. E. Tomás-Mendivil, P. Y. Toullec, J. Borge, S. Conejero, V. Michelet and V. Cadierno, ACS Catal., 2013, 3, 3086-3098.
19. N. Á. Espinosa-Jalapa, D. Ke, N. Nebra, L. Le Goanvic, S. Mallet-Ladeira, J. Monot, B. Martin-Vaca and D. Bourissou, ACS Catal., 2014, 4, 3605-3611.
20. M. A. Hussein, V. T. Huynh, R. Hommelsheim, R. M. Koenigs and T. V. Nguyen, Chem. Commun., 2018, 54, 12970-12973.
21. T. Yang, L. Campbell and D. J. Dixon, J. Am. Chem. Soc., 2007, 129, 12070-12071.
22. Z. Li, J. Li, N. Yang, Y. Chen, Y. Zhou, X. Ji, L. Zhang, J. Wang, X. Xie and H. Liu, J. Org. Chem., 2013, 78, 10802-10811.
23. V. Amendola and M. Meneghetti, J. Phys. Chem. C, 2009, 113, 4277-4285.
24. ${ }^{1} \mathrm{H}$ NMR and MOLDI-TOF mass spectra of PEGylated NHC ligands and gold complexes

Fig. S8. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 4}$ and $\mathbf{L 4 A u C l}$.

Fig. S9. MALDI-TOF mass spectrum of 1-methylimidazole-mPEG ${ }_{2000}(\mathbf{L 1})$.

Fig. S10. MALDI-TOF mass spectrum of 1-methylimidazole-mPEG ${ }_{2000}-\mathrm{AuCl}(\mathbf{L 1 A u C l})$ and dimer (L1-Au-L1).

Fig. S11. MALDI-TOF mass spectrum of 1-benzylimidazole-mPEG $\operatorname{lin}_{2000}(\mathbf{L 2})$.

Fig. S12. MALDI-TOF mass spectrum of 1-benzylimidazole-mPEG 2000 $^{-} \mathrm{AuCl}$ (L2AuCl).

Fig. S13. MALDI-TOF mass spectrum of 1-mesityl imidazole-mPEG $\operatorname{ranon}_{200}(\mathbf{L 3})$.

Fig. S14. MALDI-TOF mass spectrum of 1-mesityl imidazole-mPEG ${ }_{2000}-\mathrm{AuCl}(\mathbf{L 3 A u C l})$ and dimer ($\mathbf{L 3} \mathbf{- A u} \mathbf{- L 3}$).

Fig. S15. MALDI-TOF mass spectrum of 1-(2,6-diisopropylphenyl) imidazole-mPEG ${ }_{2000}$ (L4).

Fig. S16. MALDI-TOF mass spectrum of 1-(2,6-diisopropylphenyl) imidazole-mPEG 2000 $-\mathrm{AuCl}(\mathbf{L 4 A u C l})$.

4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

$\begin{array}{llllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$ f1 (ppm)

$\begin{array}{lll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$ f1 (ppm)

$\underset{\sim}{\infty} \stackrel{\infty}{\infty}$

$\begin{array}{lllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{f1}(\mathrm{ppm})\end{array}$

菕
$\stackrel{\rightharpoonup}{\mathrm{i}} \stackrel{\text { ì }}{1}$

Cols

Cl

Fig. S17 H-H Noesy experiment of $\mathbf{2 p}$

Fig. $\mathbf{S 1 8}$ H-C HMBC experiment of $\mathbf{2 p}$

 $1 \mid$

Fig. S19 H-H Noesy experiment of 2s

Fig. S20 H-C HMBC experiment of $\mathbf{2 s}$

[^0]

[^0]: $\begin{array}{llllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

