Supporting Information

Selective synthesis of acylated caprolactam via sequential Michael addition/palladium-catalyzed *alpha*-arylation of ketone

Xin-Xing Wu,**,^{†,‡} Hao Ye,[†] Ming Li,[†] Jianing Qian,[†] Hong Dai,**,[†] and Yujun Shi**,[†]

[†]College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China

[‡]Nantong Key Lab of Intelligent and New Energy Materials, Nantong 226019, P. R. China

Table of Contents

1. General considerations	S2
2. Preparation of substrates	S2
3. Experiment procedure	S2
4. Gram-scale reaction of 3z	S2-S3
5. Synthetic transformations	S3-S4
6. Spectra data	S4-S17
7. References	S17
8. Crystallographic data of 3a	S18
9. NMR spectra	S18-S55

1. General considerations

All reactions were carried out under a nitrogen atmosphere. Materials were obtained from commercial suppliers or prepared according to standard procedures unless otherwise noted. Solvents were purified and dried according to standard methods prior to use. For product purification by flash column chromatography, silica gel (200~300 mesh) and light petroleum ether (bp. 60~90) are used. ¹H NMR spectra were recorded on a Bruker advance III 400 MHz in CDCl₃ and ¹³C NMR spectra were recorded on 101 MHz in CDCl₃ using TMS as internal standard, Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). Data for ¹³C NMR is reported in terms of chemical shift (δ , ppm). High-resolution mass spectral analysis (HRMS) data were measured on a Bruker Apex II.

2. Preparation of substrates

Subatrates **1** were synthesized according to literatures.¹ Methyl ketones **2** were purchased from commercial suppliers.

3. Experiment procedure

1 (0.2 mmol), **2** (0.3 mmol), $PdCl_2$ (5 mol%), $P(2-furyl)_3$ (10 mol%), ^tBuOLi (1.0 mmol), were added to a sealed tube, dioxane (2.0 mL) were added via syringe. The mixture was flushed with N₂ and stirred at room temperature for 10 min firstly, and then was heated at 90 °C about for 4 h until completion (monitored by TLC). After cooling at room temperature, the reaction mixture was filtered through Celite. The solvent in the filtrate was evaporated under reduced pressure.The residue was purified through silica gel chromatography to afford the products **3**.

4. Gram-scale reaction of 3z

11 (3.0 mmol, 1.13 g), **2a** (4.5 mmol, 0.54 g), $PdCl_2$ (5 mol%), $P(2-furyl)_3$ (10 mol%), ^tBuOLi (15 mmol), were added to a sealed tube, dioxane (30.0 mL) were added via syringe. The mixture was flushed with N₂ and stirred at room temperature for 10 min firstly, and then was heated at 90 °C about for 4 h until completion (monitored by TLC). After cooling at room temperature, the mixture was diluted with water and extracted with DCM,

dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography to afford the product **3z** (0.71 g, 64% yield).

5. Synthetic transformations

0.1 mL of ^{*n*}BuLi (2.5 M, 0.23 mmol) was added dropwise to a solution of methyltriphenylphosphonium bromide (80.4 mg, 0.23 mmol) in 2.0 mL of THF at 0 °C. The reaction was stirred for about 15 min and then **3z** (74 mg, 0.2 mmol) in 2.0 mL of THF was added. After an additional 15 min, the ice bath was removed and the reaction was allowed to room temperature for 12 h. The reaction mixture was diluted with water (3.0 mL) and extracted with EtOAc (3.0 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The crude product was purified by a silica gel column chromatography (petroleum ether/ethyl acetate = 20:1, v/v) to afford **4** (51.5 mg, 70% yield) as a pale yellow solid.

To a solution of **4** (0.2 mmol) in 2.0 mL of THF was added a solution of LiAlH₄ (3.0 equiv.) at 0 °C. The ice bath was removed and the reaction was allowed to rt stir for about 3 h. The reaction mixture was diluted with ice water (5.0 mL) and extracted with EtOAc (10 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude product was purified by a silica gel column chromatography to afford **5** with 76% yield as colorless oil.

To a solution of **4** (0.2 mmol,) in DCM (2.0 mL) was added *m*CPBA (0.4 mmol, 69.0 mg, 2.0 equiv.) at 0 °C under air. Then the reaction mixture was allowed to room temperature, and stirred for 12 h. The reaction mixture was filtered through Celite. The solvent in the filtrate was evaporated under reduced pressure, and the crude product was purified by flash chromatography (Hexane/EtOAc = 10:1) to afford the pure epoxide product **6** in 68%

yield as a pale yellow solid.

To a solution of **3a** (0.2 mmol, 1.0 equiv.) in THF (2.0 mL) was added NaBH₄ (0.6 mmol, 3.0 equiv.) at 0 °C under air. Then the reaction mixture was allowed to warm stirred for 2 h at room temperature. The reaction mixture was filtered through Celite. The solvent in the filtrate was evaporated under reduced pressure, and the crude product was purified by flash chromatography (Hexane/EtOAc = 5:1) to afford the pure epoxide product **7** as a pale yellow solid.

To a solution of alcohol **7** (0.2 mmol), Et_3N (0.4 mmol, 2.0 equiv.), DMAP (0.02 mmol, 0.1 equiv.) in 2 mL CH₂Cl₂ was added acetic acid anhydride (0.3 mmol, 1.5 equiv.) at 0 °C under argon atmosphere. After stirring at toom temperature for 1 hour, the reaction mixture was quenched with saturated aq. NH₄Cl and separated layers. The aqueous layer is extracted with 2 x 5 mL CH₂Cl₂, then 5 mL brine, then dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography (Hexane/EtOAc = 10:1) to afford the pure epoxide product **8** as a pale yellow solid.

6. Spectra data

5-benzoyl-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3a): 42 mg; 72% yield; pale yellow solid; mp = 137-139 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84-7.74 (m, 2H), 7.54-7.47 (m, 1H), 7.38 (t, J = 7.7 Hz, 2H), 7.32-7.25 (m, 2H), 7.05 (td, J = 7.3, 1.7 Hz, 1H), 6.85 (dd, J = 7.7, 1.4 Hz, 1H), 4.78 (dd, J = 12.5, 6.4 Hz, 1H), 3.52 (s, 3H), 2.71 (td, J = 12.8, 7.6 Hz, 1H), 2.53-2.35 (m, 1H), 1.95 (ddd, J = 13.2, 11.8, 6.4 Hz, 1H), 1.15 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.9, 175.2, 142.4, 136.1, 133.9,

133.2, 128.6, 128.6, 128.2, 126.9, 126.4, 122.9, 46.3, 39.6, 35.2, 35.0, 15.6. **HRMS** (ESI) calcd for $C_{19}H_{20}NO_2$ [M+H]⁺ : 294.1489, found: 294.1491.

1,3-dimethyl-5-(4-methylbenzoyl)-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3b): 42 mg; 69% yield; yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65-7.56 (m, 2H), 7.23-7.18 (m, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.97 (td, *J* = 7.4, 1.7 Hz, 1H), 6.77 (dd, *J* = 7.8, 1.4 Hz, 1H), 4.68 (dd, *J* = 12.5, 6.4 Hz, 1H), 3.44 (s, 3H), 2.62 (td, *J* = 12.8, 7.6 Hz, 1H), 2.35 (dt, *J* = 11.7, 6.8 Hz, 1H), 2.28 (s, 3H), 1.86 (ddd, *J* = 13.1, 11.8, 6.4 Hz, 1H), 1.08 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.5, 175.3, 144.2, 142.4, 134.1, 133.6, 129.3, 128.8, 128.1, 127.0, 126.4, 122.9, 46.2, 39.6, 35.3, 35.0, 21.6, 15.6. HRMS (ESI) calcd for C₂₀H₂₁NNaO₂ [M+Na]⁺: 330.1465, found: 330.1466.

5-(4-methoxybenzoyl)-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3c): 52 mg; 80% yield; pale yellow solid; mp = 104-106 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71-7.67 (m, 2H), 7.26-7.16 (m, 2H), 6.97 (td, J = 7.4, 1.7 Hz, 1H), 6.81-6.75 (m, 3H), 4.65 (dd, J = 12.5, 6.4 Hz, 1H), 3.75 (s, 3H), 3.44 (s, 3H), 2.62 (td, J = 12.9, 7.6 Hz, 1H), 2.41-2.27 (m, 1H), 1.85 (ddd, J = 13.2, 11.8, 6.4 Hz, 1H), 1.07 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.3, 175.3, 163.5, 142.4, 134.2, 130.9, 129.1, 128.1, 127.0, 126.4, 122.9, 113.8, 55.4, 46.0, 39.7, 35.3, 35.0, 15.6. HRMS (ESI) calcd for C₂₀H₂₁NaNO₃ [M+Na]⁺ : 346.1414, found: 346.1414.

1,3-dimethyl-5-(4-(methylthio)benzoyl)-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3d): 45 mg; 66% yield; colorless oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65-7.57 (m, 2H), 7.26-7.15 (m, 2H), 7.11-7.05 (m, 2H), 6.96 (td, *J* = 7.4, 1.7 Hz, 1H), 6.79-6.72 (m, 1H), 4.64 (dd, *J* = 12.5, 6.3 Hz, 1H), 3.44 (s, 3H), 2.62 (td, *J* = 12.9, 7.6 Hz, 1H), 2.39 (s, 3H), 2.34 (dt, *J* = 12.9, 7.6 Hz, 1H), 3.44 (dd, J = 12.9, 7.6 Hz, 1 11.8, 6.8 Hz, 1H), 1.85 (ddd, J = 13.1, 11.8, 6.4 Hz, 1H), 1.07 (d, J = 6.5 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 197.8, 175.2, 146.3, 142.4, 134.0, 132.2, 129.0, 128.1, 126.9, 126.4, 124.8, 122.9, 46.1, 39.5, 35.2, 35.0, 15.6, 14.5. **HRMS** (ESI) calcd for C₂₀H₂₁NaNO₂S [M+Na]⁺ : 362.1185, found: 362.1189.

5-(4-chlorobenzoyl)-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3e):

46 mg; 70% yield; colorless oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67-7.62 (m, 2H), 7.30-7.18 (m, 4H), 6.98 (td, *J* = 7.4, 1.6 Hz, 1H), 6.72 (dd, *J* = 7.8, 1.4 Hz, 1H), 4.63 (dd, *J* = 12.5, 6.3 Hz, 1H), 3.44 (s, 3H), 2.61 (td, *J* = 12.9, 7.6 Hz, 1H), 2.41-2.26 (m, 1H), 1.86 (ddd, *J* = 13.1, 11.8, 6.3 Hz, 1H), 1.07 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.8, 175.1, 142.4, 139.7, 134.3, 133.6, 130.02, 129.0, 128.3, 126.8, 126.5, 123.0, 46.4, 39.5, 35.3, 35.0, 15.6. HRMS (ESI) calcd for C₁₉H₁₈NaNO₂Cl [M+Na]⁺ : 350.0918, found: 350.0920.

1,3-dimethyl-5-(2-methylbenzoyl)-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3f): 47 mg; 76% yield; pale yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.24 (qd, *J* = 7.6, 1.5 Hz, 2H), 7.17 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.02 (qd, *J* = 7.3, 1.4 Hz, 2H), 6.92 (dd, *J* = 7.8, 1.5 Hz, 1H), 4.63 (dd, *J* = 12.6, 6.3 Hz, 1H), 3.39 (s, 3H), 2.57 (dd, *J* = 12.8, 7.6 Hz, 1H), 2.52 (s, 3H), 2.40-2.29 (m, 1H), 1.89 (ddd, *J* = 12.9, 11.7, 6.4 Hz, 1H), 1.06 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.3, 175.1, 142.5, 139.2, 136.8, 133.9, 132.3, 131.7, 129.2, 128.1, 126.5, 126.4, 125.7, 123.0, 48.4, 40.4, 35.2, 35.0, 21.8, 15.6. HRMS (ESI) calcd for C₂₀H₂₁NaNO₂ [M+Na]⁺ : 330.1465, found: 330.1482.

5-(2-fluorobenzoyl)-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3g): 39 mg; 63% yield; yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (td, *J* = 7.7, 1.9 Hz, 1H), 7.41 (dddd, *J* = 8.5, 7.0, 5.0, 1.9 Hz, 1H), 7.26-7.14 (m, 3H), 6.97 (td, *J* = 7.5, 1.6 Hz, 1H), 6.88 (ddd, *J* = 11.5, 8.3, 1.1 Hz, 1H), 6.73 (dd, *J* = 7.7, 1.4 Hz, 1H), 4.62 (dd, *J* = 12.6, 6.1 Hz, 1H),

3.39 (s, 3H), 2.53 (tdd, J = 12.8, 7.6, 2.5 Hz, 1H), 2.38-2.25 (m, 1H), 1.93 (ddd, J = 13.0, 11.7, 6.2 Hz, 1H), 1.07 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.7, 175.1, 143.1, 135.1, 135.0, 133.7, 131.0, 131.0, 128.0, 126.3, 125.8, 124.6, 124.6, 123.1, 117.0, 116.7, 51.0, 50.9, 39.6, 35.1, 35.0, 15.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -108.8. HRMS (ESI) calcd for C₁₉H₁₈NaNO₂F [M+Na]⁺ : 334.1214, found: 334.1217.

5-(3-methoxybenzoyl)-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3h): 50 mg; 78% yield; yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 (q, J = 1.3 Hz, 1H), 7.28-7.12 (m, 4H), 6.98 (dtd, J = 7.0, 3.5, 1.5 Hz, 2H), 6.77 (dd, J = 7.7, 1.4 Hz, 1H), 4.69 (dd, J = 12.5, 6.3 Hz, 1H), 3.72 (s, 3H), 3.44 (s, 3H), 2.62 (td, J = 12.8, 7.6 Hz, 1H), 2.42-2.27 (m, 1H), 1.86 (ddd, J = 13.2, 11.8, 6.4 Hz, 1H), 1.07 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.7, 175.2, 159.7, 142.3, 137.4, 134.0, 129.6, 128.2, 126.9, 126.5, 122.9, 121.3, 119.7, 112.8, 55.3, 46.5, 39.6, 35.2, 35.0, 15.6. HRMS (ESI) calcd for C₂₀H₂₁NaNO₃ [M+Na]⁺ : 346.1414, found: 346.1413.

5-(3-fluorobenzoyl)-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3i): 32 mg; 52% yield; yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (dd, J = 9.3, 2.3 Hz, 2H), 7.30-7.20 (m, 3H), 7.17-7.08 (m, 1H), 6.99 (td, J = 7.4, 1.6 Hz, 1H), 6.73 (dd, J = 7.8, 1.4 Hz, 1H), 4.65 (dd, J = 12.5, 6.3 Hz, 1H), 3.45 (s, 3H), 2.61 (td, J = 12.8, 7.6 Hz, 1H), 2.40-2.27 (m, 1H), 1.87 (ddd, J = 13.3, 11.8, 6.3 Hz, 1H), 1.08 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.7, 175.1, 142.4, 133.5, 130.4, 130.3, 128.4, 126.8, 126.5, 124.4, 124.4, 123.1, 120.4, 120.2, 115.4, 115.2, 46.6, 39.5, 35.3, 35.0, 15.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.4. HRMS (ESI) calcd for C₁₉H₁₈NaNFO₂ [M+Na]⁺ : 334.1214, found: 334.1210.

5-(3-chlorobenzoyl)-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3j) : 39 mg; 59% yield; yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (t, *J* = 1.9 Hz, 1H), 7.50 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.41 (ddd, *J* = 8.0, 2.2, 1.0 Hz, 1H), 7.27-7.19 (m, 3H), 6.99 (td, *J* = 7.5, 1.6 Hz, 1H), 6.73 (dd, *J* = 7.8, 1.4 Hz, 1H), 4.65 (dd, *J* = 12.5, 6.3 Hz, 1H), 3.45 (s, 3H), 2.61 (td, *J* = 12.9, 7.6 Hz, 1H), 2.41-2.28 (m, 1H), 1.87 (ddd, *J* = 13.2, 11.8, 6.3 Hz, 1H), 1.08 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.7, 175.1, 142.4, 137.6, 135.1, 133.4, 133.2, 130.0, 128.7, 128.4, 126.8, 126.7, 126.6, 123.1, 46.6, 39.5, 35.3, 35.0, 15.6. HRMS (ESI) calcd for C₁₉H₁₈NaNO₂CI [M+Na]⁺ : 350.0918, found: 350.0917.

1,3-dimethyl-5-(4-morpholinobenzoyl)-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3k): 51 mg; 68% yield; pale yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71-7.58 (m, 2H), 7.26-7.15 (m, 2H), 6.96 (td, *J* = 7.4, 1.7 Hz, 1H), 6.81 (dd, *J* = 7.8, 1.4 Hz, 1H), 6.76-6.63 (m, 2H), 4.63 (dd, *J* = 12.5, 6.4 Hz, 1H), 3.80-3.66 (m, 4H), 3.43 (s, 3H), 3.19 (dd, *J* = 6.0, 3.9 Hz, 4H), 2.62 (td, *J* = 12.9, 7.6 Hz, 1H), 2.34 (dt, *J* = 11.7, 6.8 Hz, 1H), 1.83 (ddd, *J* = 13.1, 11.8, 6.4 Hz, 1H), 1.06 (d, *J* = 6.5 Hz, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 196.8, 175.3, 154.1, 142.3, 134.5, 130.7, 127.9, 127.0, 126.7, 126.4, 122.8, 113.1, 66.4, 47.1, 45.6, 39.7, 35.2, 35.0, 15.6. HRMS (ESI) calcd for C₂₃H₂₆NaN₂O₃ [M+Na]⁺ : 401.1836, found: 401.1809.

5-(3,4-dimethylbenzoyl)-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one

(31): 44 mg; 69% yield; pale yellow solid; mp = 112-114 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 2.0 Hz, 1H), 7.35 (dd, *J* = 7.9, 2.0 Hz, 1H), 7.28-7.14 (m, 2H), 7.05-6.89 (m, 2H), 6.78 (dd, *J* = 7.8, 1.4 Hz, 1H), 4.69 (dd, *J* = 12.6, 6.4 Hz, 1H), 3.44 (s, 3H), 2.61 (td, *J* = 12.9, 7.6 Hz, 1H), 2.44-2.27 (m, 1H), 2.18 (d, *J* = 4.6 Hz, 6H), 1.85 (ddd, *J* = 13.1, 11.8, 6.4 Hz, 1H), 1.07 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.8, 175.3, 143.0, 142.4, 137.0, 134.2, 134.0, 129.8, 129.6, 128.0, 126.9, 126.4, 126.4, 122.9, 46.1, 39.7, 35.2, 35.0, 20.0, 19.8, 15.6. HRMS (ESI) calcd for C₂₁H₂₃NaNO₂ [M+Na]⁺ : 344.1621, found: 344.1621.

5-(3,5-dichlorobenzoyl)-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3m): 39 mg; 54% yield; pale yellow solid; mp = 107-109 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 1.8 Hz, 2H), 7.41 (t, *J* = 1.9 Hz, 1H), 7.28 (td, *J* = 7.6, 1.5 Hz, 1H), 7.22 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.01 (td, *J* = 7.5, 1.5 Hz, 1H), 6.69 (dd, *J* = 7.7, 1.4 Hz, 1H), 4.59 (dd, *J* = 12.4, 6.3 Hz, 1H), 3.44 (s, 3H), 2.59 (td, *J* = 12.8, 7.6 Hz, 1H), 2.43-2.26 (m, 1H), 1.86 (ddd, *J* = 13.1, 11.8, 6.3 Hz, 1H), 1.07 (d, *J* = 6.5 Hz, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 196.6, 175.0, 142.4, 138.5, 135.6, 133.0, 132.8, 128.7, 127.0, 126.6, 126.5, 123.2, 46.6, 39.5, 35.2, 35.0, 15.6. HRMS (ESI) calcd for $C_{19}H_{17}NaNO_2Cl_2$ [M+Na]⁺ : 384.0529, found: 384.0529.

5-(2-naphthoyl)-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3n): 42 mg; 61% yield; yellow solid; mp = 116-118 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23-8.18 (m, 1H), 7.80-7.71 (m, 4H), 7.44 (dddd, J = 26.6, 8.1, 6.9, 1.3 Hz, 2H), 7.23-7.18 (m, 2H), 6.93 (ddd, J = 7.7, 5.3, 3.5 Hz, 1H), 6.84-6.77 (m, 1H), 4.86 (dd, J = 12.5, 6.3 Hz, 1H), 3.49 (s, 3H), 2.68 (td, J = 12.8, 7.6 Hz, 1H), 2.47-2.32 (m, 1H), 1.92 (ddd, J = 13.0, 11.8, 6.4 Hz, 1H), 1.09 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.9, 175.3, 142.4, 135.5, 134.0, 133.4, 132.3, 130.4, 129.6, 128.6, 128.5, 128.2, 127.7, 127.0, 126.8, 126.5, 124.1, 123.0, 46.4, 39.7, 35.3, 35.1, 15.6. HRMS (ESI) calcd for C₂₃H₂₁NaNO₂ [M+Na]⁺ : 366.1465, found: 366.1465.

1,3-dimethyl-5-(thiophene-3-carbonyl)-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (30): 34 mg; 57% yield; yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (dd, J = 2.9, 1.3 Hz, 1H), 7.32 (dd, J = 5.1, 1.3 Hz, 1H), 7.24 (td, J = 7.6, 1.5 Hz, 1H), 7.22-7.14 (m, 2H), 7.00 (td, J = 7.5, 1.5 Hz, 1H), 6.84 (dd, J = 7.8, 1.4 Hz, 1H), 4.53 (dd, J = 12.6, 6.4 Hz, 1H), 3.42 (s, 3H), 2.58 (td, J = 12.9, 7.6 Hz, 1H), 2.42-2.27 (m, 1H), 1.91-1.83 (m, 1H), 1.06 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.1, 175.2, 142.5, 141.5, 133.8, 133.0, 128.2, 127.1, 126.8, 126.4, 122.9, 48.0, 39.3, 35.2, 35.0, 15.6. **HRMS** (ESI) calcd for $C_{17}H_{17}NaNO_2S$ [M+Na]⁺ : 322.0872, found: 322.0872.

5-benzoyl-1,3,7-trimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3p): 37 mg; 60% yield; yellow solid; mp = 150-151 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77-7.68 (m, 2H), 7.50-7.40 (m, 1H), 7.32 (t, J = 7.7 Hz, 2H), 7.11-7.01 (m, 2H), 6.61-6.53 (m, 1H), 4.68 (dd, J = 12.5, 6.3 Hz, 1H), 3.42 (s, 3H), 2.61 (td, J = 12.8, 7.6 Hz, 1H), 2.35 (dt, J = 11.7, 6.8 Hz, 1H), 2.11 (s, 3H), 1.84 (ddd, J = 13.1, 11.8, 6.3 Hz, 1H), 1.07 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.2, 175.3, 139.8, 136.4, 136.2, 133.6, 133.3, 128.8, 128.7, 128.6, 127.3, 122.8, 46.3, 39.7, 35.3, 35.0, 21.0, 15.6. HRMS (ESI) calcd for C₂₀H₂₁NaNO₂ [M+Na]⁺ : 330.1465, found: 330.1468.

5-benzoyl-7-methoxy-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3q): 35 mg; 54% yield; colorless oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (dt, *J* = 8.2, 1.0 Hz, 2H), 7.44 (td, *J* = 7.4, 1.3 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.12 (d, *J* = 8.7 Hz, 1H), 6.75 (dd, *J* = 8.8, 2.9 Hz, 1H), 6.31 (d, *J* = 2.8 Hz, 1H), 4.67 (dd, *J* = 12.5, 6.3 Hz, 1H), 3.56 (d, *J* = 1.0 Hz, 3H), 3.41 (s, 3H), 2.60 (td, *J* = 12.8, 7.6 Hz, 1H), 2.43-2.28 (m, 1H), 1.85 (ddd, *J* = 13.5, 11.8, 6.3 Hz, 1H), 1.07 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.0, 175.3, 157.6, 136.2, 135.3, 135.1, 133.3, 128.7, 128.6, 124.1, 113.1, 112.4, 55.4, 46.4, 39.5, 35.3, 34.9, 15.6. HRMS (ESI) calcd for C₂₀H₂₁NaNO₃ [M+Na]⁺ : 346.1414, found: 346.1414.

5-benzoyl-7-fluoro-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3r): 37 mg; 59% yield; yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75-7.67 (m, 2H), 7.49-7.43 (m, 1H), 7.33 (t, J = 7.8 Hz, 2H), 7.18 (dt, J = 8.8, 4.1 Hz, 1H), 6.93 (ddd, J = 8.7, 7.8, 2.9 Hz, 1H), 6.53 (dd, J = 9.1, 2.9 Hz, 1H), 4.69 (dd, J = 12.5, 6.4 Hz, 1H), 3.42 (s, 3H), 2.61 (td, J = 12.9, 7.6 Hz, 1H), 2.41-2.24 (m, 1H), 1.86 (ddd, J = 13.2, 11.8, 6.4 Hz, 1H), 1.07 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.3, 175.0, 138.5, 138.4, 135.9, 135.8, 133.5, 128.8, 128.6, 124.6, 124.5, 115.1, 114.9, 114.1, 113.9, 46.1, 46.1, 39.5, 35.4, 34.9,

15.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.9. **HRMS** (ESI) calcd for $C_{19}H_{18}NNaFO_2$ [M+Na]⁺ : 334.1214, found: 334.1208.

5-benzoyl-7-chloro-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3s): 33 mg; 51% yield; yellow solid; mp = 153-154 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76-7.68 (m, 2H), 7.53-7.44 (m, 1H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.24 – 7.19 (m, 1H), 7.14 (d, *J* = 8.6 Hz, 1H), 6.80 (d, *J* = 2.3 Hz, 1H), 4.69 (dd, *J* = 12.5, 6.4 Hz, 1H), 3.42 (s, 3H), 2.62 (td, *J* = 12.9, 7.6 Hz, 1H), 2.35 (dt, *J* = 11.8, 6.7 Hz, 1H), 1.87 (ddd, *J* = 13.1, 11.8, 6.4 Hz, 1H), 1.08 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.3, 174.9, 141.0, 135.9, 135.5, 133.6, 131.9, 128.8, 128.6, 128.3, 126.9, 124.2, 46.0, 39.6, 35.3, 35.0, 15.6. HRMS (ESI) calcd for C₁₉H₁₈NaNCIO₂ [M+Na]⁺ : 350.0918, found: 350.0925.

5-benzoyl-1,3,8-trimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3t): 42 mg, 68% yield, yellow solid; mp = 168-169 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77-7.65 (m, 2H), 7.49-7.39 (m, 1H), 7.29 (t, J = 7.8 Hz, 2H), 7.01 (d, J = 1.8 Hz, 1H), 6.77 (dd, J = 7.4, 1.4 Hz, 1H), 6.63 (d, J = 7.9 Hz, 1H), 4.65 (dd, J = 12.5, 6.3 Hz, 1H), 3.43 (s, 3H), 2.60 (td, J = 12.8, 7.6 Hz, 1H), 2.41-2.29 (m, 1H), 2.25 (s, 3H), 1.84 (ddd, J = 13.1, 11.8, 6.3 Hz, 1H), 1.07 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.1, 175.3, 142.2, 138.2, 136.1, 133.2, 130.9, 128.6, 128.6, 127.2, 126.7, 123.6, 46.1, 39.6, 35.2, 35.0, 21.1, 15.6. HRMS (ESI) calcd for C₂₀H₂₁NNaO₂ [M+Na]⁺ : 330.1465, found: 330.1476.

5-benzoyl-8-fluoro-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3u): 39 mg; 62% yield; yellow solid; mp = 121-123 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75-7.67 (m, 2H), 7.50-7.40 (m, 1H), 7.32 (t, *J* = 7.8 Hz, 2H), 6.93 (dd, *J* = 9.5, 2.5 Hz, 1H), 6.79-6.64 (m, 2H), 4.65 (dd, *J* = 12.6, 6.3 Hz, 1H), 3.43 (s, 3H), 2.62 (td, *J* = 12.9, 7.6 Hz, 1H), 2.44-2.27 (m, 1H), 1.86 (ddd, *J* = 13.2, 11.8, 6.3 Hz, 1H), 1.09 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz,

Chloroform-*d*) δ 198.7, 175.1, 143.9, 143.8, 135.9, 133.5, 129.7, 129.6, 128.7, 128.6, 128.2, 128.1, 113.4, 113.2, 110.6, 110.3, 45.8, 39.7, 35.2, 15.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.6 (td, J = 9.0, 6.5 Hz). **HRMS** (ESI) calcd for C₁₉H₁₈NaNO₂F [M+Na]⁺ : 334.1214, found: 334.1207.

5-benzoyl-1-methyl-3-phenyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3v): 38 mg; 53% yield; yellow solid; mp = 140-142 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79-7.72 (m, 2H), 7.44 (t, J = 7.4 Hz, 1H), 7.34-7.27 (m, 4H), 7.23-7.16 (m, 5H), 7.02 (ddd, J = 8.6, 6.4, 2.3 Hz, 1H), 6.88-6.77 (m, 1H), 4.87 (dd, J = 12.5, 6.3 Hz, 1H), 3.54 (dd, J = 12.4, 7.5 Hz, 1H), 3.46 (s, 3H), 2.89-2.74 (m, 1H), 2.49 (td, J = 12.9, 6.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.5, 173.0, 142.5, 137.9, 136.0, 133.5, 133.3, 129.5, 128.7, 128.6, 128.5, 128.0, 127.2, 127.1, 126.8, 123.1, 46.7, 46.5, 39.1, 35.5. HRMS (ESI) calcd for C₂₄H₂₁NaNO₂ [M+Na]⁺: 378.1465, found: 378.1468.

5-benzoyl-1-ethyl-3-methyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3w): 40 mg; 65% yield; yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75-7.69 (m, 2H), 7.47-7.39 (m, 1H), 7.29 (t, J = 7.8 Hz, 2H), 7.25-7.20 (m, 2H), 6.98 (ddd, J = 7.7, 6.1, 2.5 Hz, 1H), 6.82-6.75 (m, 1H), 4.70 (dd, J = 12.6, 6.3 Hz, 1H), 4.47 (dq, J = 14.2, 7.2 Hz, 1H), 3.54 (dq, J = 13.9, 7.0 Hz, 1H), 2.60 (td, J = 12.9, 7.6 Hz, 1H), 2.40-2.24 (m, 1H), 1.87 (ddd, J = 13.2, 11.8, 6.4 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.06 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.1, 174.5, 140.8, 136.2, 135.0, 133.2, 128.6, 128.5, 128.2, 126.9, 126.6, 123.5, 46.5, 42.4, 39.7, 35.0, 15.6, 14.0. HRMS (ESI) calcd for C₂₀H₂₁NaNO₂ [M+Na]⁺ : 330.1465, found: 330.1465.

5-benzoyl-1-ethyl-3-methyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3x): 44 mg; 69% yield; yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74-7.69 (m, 2H), 7.45-7.38 (m,

1H), 7.29 (dd, J = 8.4, 7.2 Hz, 2H), 7.24-7.21 (m, 2H), 6.97 (dt, J = 7.7, 4.3 Hz, 1H), 6.76 (d, J = 7.7 Hz, 1H), 4.70 (dd, J = 12.5, 6.3 Hz, 1H), 4.31 (ddd, J = 13.5, 10.3, 6.0 Hz, 1H), 3.43 (ddd, J = 13.4, 10.1, 5.0 Hz, 1H), 2.60 (td, J = 12.9, 7.5 Hz, 1H), 2.37-2.24 (m, 1H), 1.86 (ddd, J = 13.2, 11.8, 6.4 Hz, 1H), 1.74 (dddd, J = 13.3, 10.1, 7.5, 6.0 Hz, 1H), 1.68-1.53 (m, 1H), 1.05 (d, J = 6.5 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 199.1, 174.6, 141.1, 136.2, 134.8, 133.2, 128.6, 128.5, 128.2, 126.9, 126.5, 123.3, 49.4, 46.5, 39.6, 35.0, 22.1, 15.6, 11.7. HRMS (ESI) calcd for C₂₁H₂₃NaNO₂ [M+Na]⁺ : 344.1621, found: 344.1620.

5-benzoyl-1-ethyl-3-methyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3y): 47 mg; 70% yield; yellow solid; mp = 105-107 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77-7.70 (m, 2H), 7.46-7.39 (m, 1H), 7.29 (t, J = 7.8 Hz, 2H), 7.25-7.20 (m, 2H), 6.97 (ddd, J = 7.7, 5.0, 3.7 Hz, 1H), 6.81-6.74 (m, 1H), 4.71 (dd, J = 12.5, 6.3 Hz, 1H), 4.41 (ddd, J = 13.5, 9.9, 6.2 Hz, 1H), 3.44 (ddd, J = 13.5, 9.8, 5.0 Hz, 1H), 2.60 (td, J = 12.9, 7.5 Hz, 1H), 2.37-2.24 (m, 1H), 1.86 (ddd, J = 13.1, 11.8, 6.4 Hz, 1H), 1.69 (dddd, J = 12.8, 9.7, 6.2, 3.6 Hz, 1H), 1.62-1.49 (m, 1H), 1.45-1.28 (m, 2H), 1.06 (d, J = 6.5 Hz, 3H), 0.89 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.1, 174.6, 141.0, 136.2, 134.8, 133.2, 128.5, 128.2, 126.9, 126.5, 123.3, 47.4, 46.5, 39.7, 35.0, 31.1, 20.5, 15.6, 13.9. HRMS (ESI) calcd for C₂₂H₂₅NaNO₂ [M+Na]⁺ : 358.1778, found: 358.1770.

5-benzoyl-1-benzyl-3-methyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (3z): 52 mg; 71% yield; yellow solid; mp = 135-137 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (dd, J = 8.1, 1.3 Hz, 1H), 7.33 (dt, J = 7.0, 1.5 Hz, 2H), 7.29 (dt, J = 7.3, 1.4 Hz, 1H), 7.27-7.20 (m, 4H), 7.04 (t, J = 7.8 Hz, 2H), 7.00-6.94 (m, 2H), 6.91 (td, J = 7.6, 1.3 Hz, 1H), 6.58 (dd, J = 7.8, 1.5 Hz, 1H), 5.89 (d, J = 14.1 Hz, 1H), 4.35 (d, J = 14.1 Hz, 1H), 4.30 (dd, J = 12.5, 6.4 Hz, 1H), 2.57 (td, J = 12.9, 7.5 Hz, 1H), 2.41-2.28 (m, 1H), 1.84 (ddd, J = 13.2, 11.8, 6.4 Hz, 1H), 1.10 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.9, 174.8, 140.2, 137.9, 135.6, 135.1, 132.8, 129.4, 128.8, 128.5, 128.4, 128.0, 127.8, 127.1, 126.7, 123.7, 50.3, 45.9, 39.7, 34.8, 15.6. HRMS (ESI) calcd for C₂₅H₂₃NaNO₂ [M+Na]⁺ : 392.1621, found: 392.1598.

5-benzoyl-3-methyl-1-(4-methylbenzyl)-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (**3aa**): 55 mg; 72% yield; yellow solid; mp = 160-162 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (dd, J = 8.0, 1.3 Hz, 1H), 7.31 (tt, J = 7.0, 1.8 Hz, 1H), 7.26-7.20 (m, 3H), 7.05-6.96 (m, 6H), 6.90 (td, J = 7.6, 1.3 Hz, 1H), 6.56 (dd, J = 7.8, 1.4 Hz, 1H), 5.87 (d, J = 14.1 Hz, 1H), 4.33-4.23 (m, 2H), 2.56 (td, J = 12.9, 7.5 Hz, 1H), 2.40-2.27 (m, 1H), 2.24 (s, 3H), 1.85 (ddd, J = 13.2, 11.8, 6.4 Hz, 1H), 1.10 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.9, 174.8, 140.2, 137.3, 135.6, 135.3, 135.0, 132.8, 129.5, 129.3, 128.6, 128.3, 128.0, 127.1, 126.6, 123.8, 50.1, 46.1, 39.7, 34.8, 21.3, 15.6. HRMS (ESI) calcd for C₂₆H₂₅NaNO₂ [M+Na]⁺ : 406.1778, found: 406.1754.

5-benzoyl-1-(4-methoxybenzyl)-3-methyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-on e (3ab): 55 mg; 69% yield; yellow solid; mp = 105-107 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (dd, J = 8.1, 1.3 Hz, 1H), 7.31 (tt, J = 7.4, 1.3 Hz, 1H), 7.28-7.21 (m, 3H), 7.05 (t, J = 7.9 Hz, 2H), 6.99-6.87 (m, 3H), 6.78-6.70 (m, 2H), 6.58 (dd, J = 7.7, 1.5 Hz, 1H), 5.88 (d, J = 14.1 Hz, 1H), 4.33-4.19 (m, 2H), 3.66 (s, 3H), 2.56 (td, J = 12.9, 7.5 Hz, 1H), 2.39-2.26 (m, 1H), 1.83 (ddd, J = 13.1, 11.7, 6.4 Hz, 1H), 1.10 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.9, 174.7, 159.1, 140.1, 135.6, 135.2, 132.9, 130.7, 130.1, 128.6, 128.3, 128.0, 127.0, 126.7, 123.9, 114.1, 55.0, 49.6, 45.9, 39.8, 34.7, 15.6. HRMS (ESI) calcd for C₂₆H₂₅NaNO₃ [M+Na]⁺ : 422.1727, found: 422.1731.

1-benzyl-3-methyl-5-(1-phenylvinyl)-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (4): 51 mg; 70% yield; pale yellow solid; mp = 141-143 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 (dd, *J* = 7.5, 2.1 Hz, 2H), 7.30-7.23 (m, 4H), 7.21-7.17 (m, 1H), 7.10-7.05 (m, 1H), 7.02-6.95 (m, 4H), 6.71-6.66 (m, 2H), 5.72-5.65 (m, 2H), 5.26 (d, *J* = 1.6 Hz, 1H), 4.55 (d, *J* = 14.3 Hz, 1H), 3.91 (dd, J = 13.0, 5.9 Hz, 1H), 2.51-2.40 (m, 1H), 2.26 (td, J = 12.7, 7.6 Hz, 1H), 2.11 (td, J = 12.1, 6.0 Hz, 1H), 1.20 (d, J = 6.5 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 175.1, 147.3, 141.0, 140.9, 137.9, 137.5, 129.1, 128.6, 128.1, 127.6, 127.4, 127.2, 127.0, 126.3, 125.9, 122.8, 115.0, 50.7, 43.3, 41.2, 35.5, 16.0. **HRMS** (ESI) calcd for C₂₆H₂₅NaNO [M+Na]⁺ : 390.1828, found: 390.1812.

1-benzyl-3-methyl-5-(1-phenylvinyl)-2,3,4,5-tetrahydro-1H-benzo[b]azepine (3z): 54 mg; 76% yield; colorless oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54-7.48 (m, 2H), 7.33 (q, J = 3.8, 2.8 Hz, 6H), 7.29-7.23 (m, 3H), 7.07 (dd, J = 7.4, 1.8 Hz, 1H), 6.95 (ddd, J = 8.6, 7.4, 1.8 Hz, 1H), 6.57 (td, J = 7.3, 1.1 Hz, 1H), 6.41 (d, J = 8.3 Hz, 1H), 6.33 (dd, J = 7.1, 1.7 Hz, 1H), 4.72 (d, J = 17.6 Hz, 1H), 4.51 (d, J = 17.6 Hz, 1H), 3.64 (dq, J = 4.3, 2.1 Hz, 1H), 3.48 (dd, J = 7.2, 1.3 Hz, 1H), 2.85-2.68 (m, 2H), 1.57-1.48 (m, 2H), 0.93 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.9, 146.0, 139.9, 139.6, 128.7, 128.6, 128.4, 127.9, 127.9, 127.3, 126.8, 126.1, 125.6, 118.9, 116.5, 115.1, 62.7, 58.3, 44. 7, 39.1, 34.0, 23.3. HRMS (ESI) calcd for C₂₆H₂₇NaN [M+Na]⁺ : 376.2036, found: 376.2021.

1-benzyl-3-methyl-5-(2-phenyloxiran-2-yl)-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-o ne (6): 52 mg; 68% yield; pale yellow solid; mp = 153-155 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.34-7.23 (m, 6H), 7.20-7.10 (m, 5H), 7.03 (dd, *J* = 8.5, 7.0 Hz, 2H), 6.77-6.66 (m, 2H), 5.70 (d, *J* = 14.3 Hz, 1H), 4.53 (d, *J* = 14.4 Hz, 1H), 3.63 (dd, *J* = 13.0, 6.8 Hz, 1H), 3.32 (d, *J* = 4.8 Hz, 1H), 3.16 (d, *J* = 4.8 Hz, 1H), 2.35 (dt, *J* = 12.0, 6.7 Hz, 1H), 2.05 (ddd, *J* = 13.1, 12.1, 6.9 Hz, 1H), 1.60 (td, *J* = 13.1, 7.3 Hz, 1H), 1.14 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.7, 140.9, 139.5, 137.5, 136.5, 128.8, 128.6, 128.2, 127.6, 127.6, 127.3, 126.6, 126.5, 126.0, 123.6, 57.6, 52.5, 50.6, 40.0, 39.4, 34.9, 15.8. HRMS (ESI) calcd for C₂₆H₂₅NaNO₂ [M+Na]⁺ : 406.1778, found: 406.1791.

5-(hydroxy(phenyl)methyl)-1,3-dimethyl-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-on

e (7): 54 mg; 91% yield; pale yellow solid; mp = 218-219 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (dd, *J* = 7.1, 2.2 Hz, 1H), 7.33-7.21 (m, 7H), 7.12 (dd, *J* = 7.4, 1.9 Hz, 1H), 4.96 (d, *J* = 9.9 Hz, 1H), 3.29 (s, 3H), 3.12 (ddd, *J* = 12.9, 10.0, 6.6 Hz, 1H), 2.29 (s, 1H), 2.17 (dt, *J* = 11.9, 6.7 Hz, 1H), 1.48 (td, *J* = 12.9, 7.3 Hz, 1H), 1.13 (dt, *J* = 12.5, 6.2 Hz, 1H), 0.80 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.9, 143.7, 141.9, 135.5, 128.7, 128.4, 127.3, 127.0, 126.2, 125.7, 122.8, 74.9, 45.1, 41.9, 35.4, 35.1, 15.5. HRMS (ESI) calcd for C₁₉H₂₁NaNO₂ [M+Na]⁺ : 318.1465, found: 318.1465.

1,3-dimethyl-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-yl)(phenyl)methyl acetate (8): 56 mg; 83% yield; pale yellow solid; mp = 190-192 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42-7.30 (m, 6H), 7.26-7.20 (m, 3H), 6.13 (d, *J* = 10.8 Hz, 1H), 3.43 (s, 4H), 2.27 (dt, *J* = 11.9, 6.7 Hz, 1H), 1.56 (td, *J* = 13.0, 7.3 Hz, 1H), 1.29-1.24 (m, 1H), 0.90 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.7, 170.3, 143.2, 138.1, 135.1, 128.6, 128.5, 127.4, 127.3, 126.2, 124.7, 122.8, 75.5, 42. 5, 41.5, 35.3, 35.1, 21.1, 15.5. HRMS (ESI) calcd for C₂₁H₂₃NaNO₃ [M+Na]⁺ : 360.1570, found: 360.1563.

N-(2-iodophenyl)-N,2-dimethyl-5-oxo-5-phenylpentanamide (9): 76 mg; 90% yield; yellow oil; Two sets of signals were observed due to the existence of rotamers. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.86 (ddt, J = 16.8, 7.9, 1.1 Hz, 6H), 7.50-7.42 (m, 2H), 7.41-7.33 (m, 5H), 7.22 (dtd, J = 7.6, 3.6, 1.5 Hz, 2H), 7.11 (dd, J = 7.8, 1.6 Hz, 1H), 6.99 (dtd, J = 15.9, 7.6, 1.6 Hz, 2H), 3.13-3.00 (m, 7H), 2.97-2.75 (m, 3H), 2.23 (q, J = 6.7 Hz, 1H), 2.17-2.03 (m, 2H), 1.93-1.80 (m, 1H), 1.80-1.61 (m, 2H), 1.10 (d, J = 6.7 Hz, 3H), 1.00 (d, J = 6.6 Hz, 3H). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 199.9, 175.9, 175.8, 145.6, 140.2, 140.2, 136.8, 132.9, 132.8, 129.8, 129.7, 129.7, 129.7, 129.2, 129.0, 128.5, 128.4, 128.1, 127.9, 99.6, 37.3, 36.9, 36.2, 36.1, 36.0, 35.5, 28.3, 28.2, 18.8, 17.6. **HRMS** (ESI) calcd for C₁₉H₂₀NaNIO₂ [M+Na]⁺ : 444.0431, found: 444.0432.

N-benzyl-N-(2-iodophenyl)-2-methyl-5-oxo-5-phenylpentanamide (10): 87 mg; 88% yield; yellow oil; Two sets of signals were observed due to the existence of rotamers. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01-7.95 (m, 2H), 7.93 (ddd, *J* = 7.9, 2.7, 1.5 Hz, 2H),

7.87-7.81 (m, 2H), 7.58-7.51 (m, 2H), 7.48-7.41 (m, 4H), 7.28-7.16 (m, 12H), 7.11-6.98 (m, 3H), 6.71 (dd, J = 7.8, 1.6 Hz, 1H), 6.57 (dd, J = 7.7, 1.7 Hz, 1H), 5.77 (dd, J = 14.2, 2.2 Hz, 2H), 3.86 (dd, J = 14.3, 1.7 Hz, 2H), 3.20 (ddd, J = 17.0, 9.6, 4.9 Hz, 1H), 3.01 (ddd, J = 17.0, 9.0, 5.9 Hz, 1H), 2.85 (t, J = 7.4 Hz, 2H), 2.31-2.15 (m, 3H), 1.94 (dq, J = 14.0, 7.0 Hz, 2H), 1.87-1.75 (m, 2H), 1.22 (d, J = 6.6 Hz, 3H), 1.07 (d, J = 6.3 Hz, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 200.0, 199.4, 175.8, 175.7, 143.6, 143.3, 140.2, 140.2, 137.1, 136.8, 133.0, 132.8, 131.0, 130.8, 129.9, 129.7, 129.3, 129.2, 128.9, 128.9, 128.5, 128.4, 128.4, 128.3, 128.1, 127.9, 127.5, 127.4, 51.6, 51.4, 37.4, 37.1, 36.2, 35.5, 28.7, 28.1, 18.9, 17.6. HRMS (ESI) calcd for C₂₅H₂₄NaNIO₂ [M+Na]⁺ : 520.0744, found: 520.0746.

7. References

(1) (a) Liu, X.; Ma, X.; Huang, Y.; Gu, Z. *Org. Lett.* **2013**, *15*, 4814. (b) Wei, W.; Wen, J.; Yang, D.; Guo, M.; Tian, L.; You, J.; Wang, H. *RSC Adv.* **2014**, *4*, 48535. (c) Tang, X.; Thomoson, C. S.; Dolbier, W. R. *Org. Lett.* **2014**, *16*, 4594.

8. Crystallographic data of 3a

Structure of 3a CCDC: 2016010

Datablock:

Bond precision:	C-C = 0.0023 A		Wavelength = 1.54184	
Cell:	a = 15.5973(2)	b=11.2548	b=11.25487(17) c=17	
	alpha=90	beta=90	gamma=	=90
Temperature:	293 K			
	Calculated	I	Reported	
Volume	3113.32(8)		3113.31(8)	
Space group	pbca		pbca	
Hall group	-p 2ac 2ab		-p 2ac 2ab	
Moiety formula	C19 H19 N O2			
Sum formula	C19 H19 N O2	C1	C19 H19 N O2	
Mr	293.35		293.35	
Dx,g cm-3	1.252		1.252	
Z	8		8	
Mu (mm-1)	0.643		0.643	
F000	1248.0		1248.	0
F000'	1251.61			
h,k,lmax	18,13,21		18,13,	21
Nref	2788		2789	
Tmin,Tmax	0.926, 0.932		0.889), 1.000
Tmin'	0.926			
Correction method =	# Reported T Limits: Tr	nin = 0.889 Tma	x = 1.000	
AbsCorr = MULTI-SC	AN			
Data completeness = 1.000		Theta (max) = 67.214		
R (reflections) = 0.0416(2352)		wR2 (reflections) = 0.1129(2789)		
S = 1.057		Npar = 201		

9. NMR spectra

S48

