Supporting Information for

Copper-Catalyzed Three-component Oxycyanation of Alkenes

Yuehua Zeng,^a Yajun Li,^a Daqi Lv^a and Hongli Bao*^{a,b}

^a Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China.

^b University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China.

Table of content

Materials and methods
Synthesis of diacyl peroxides 4
General procedure
Characterization data for products
Transformations of the oxycyanation products 17
1. Synthesis of compound 8 17
2. Synthesis of compound 9 17
3. Synthesis of compound 10 18
Mechanism studies
1. Radical trapping experiments 19
2. Ring-opening experiment 20
Asymmetric oxycyanation
Single crystal data of (<i>R</i>)-4e
References
NMR spectra

Materials and methods

All reactions were carried out under an atmosphere of nitrogen in glassware with magnetic stirring unless otherwise indicated. Commercially obtained reagents were used as received. Solvents were dried by Inert PureSolv MD5. Liquids and solutions were transferred via syringe. All reactions were monitored by thin-layer chromatography. ¹H and ¹³C NMR spectra were recorded on Bruker-BioSpin AVANCE III HD. Data for ¹H NMR spectra are reported relative to chloroform as an internal standard (7.26 ppm) and are reported as follows: chemical shift (ppm), multiplicity, coupling constant (Hz), and integration. Data for ¹³C NMR spectra are reported relative to chloroform as an internal standard (77.23 ppm) and are reported in terms of chemical shift (ppm). HRMS data were recorded on Bruker Impact II UHR-TOF, Waters Micromass GCT Premier or Thermo Fisher Scientific LTQ FT Ultra. IR data were obtained from Bruker VERTEX 70. GC-MS data were recorded on Thermo ISQ QD. High performance liquid chromatography (HPLC) analysis was performed on chiral columns. Optical rotations were measured in the solvent indicated.

Synthesis of diacyl peroxides

Caution: Diacyl peroxides and peresters have potentials to explode. Any diacyl peroxide involved reaction (as product or substrate) should be carried out with precautions!

Benzoyl peroxide (BPO) 2a was purchased from Adamas. Other peroxides were prepared according to our previous work.¹

General procedure

To a flame-dried Schlenk tube with a stirring bar were added $Cu(CH_3CN)_4PF_6$ (5 mol %), 1,10-Phen (7 mol %), BPO (0.75 mmol, 1.5 equiv), TFEA (0.5 mL), TMSCN (1.0 mmol, 2 equiv), and styrene (0.5 mmol, 1 equiv) sequentially under the nitrogen atmosphere. The reaction mixture was heated at 50 °C for 24 hours, and then was cooled to room temperature. The solvent was removed by rotary evaporation under vacuum and the residue was chromatographed on silica gel (petroleum ether/ethyl acetate = 10:1~3:1) to yield the desired product.

Characterization data for products

Following the general procedure, product **4a** was obtained as a colorless liquid (102 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.03 (m, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.50 – 7.41 (m, 6H), 7.41 – 7.37 (m, 1H), 4.67 (dd, *J* = 10.9, 5.6 Hz, 1H), 4.52 (dd, *J* = 10.9, 8.5 Hz, 1H), 4.32 (dd, *J* = 8.5, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.89, 133.59, 131.49, 129.82, 129.39, 129.08, 128.98, 128.57, 127.80, 118.51, 65.50, 37.58. IR (thin film): v 2248, 1720 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₁₃NNaO₂]⁺ ([M+Na]⁺): 274.0844, found: 274.0839.

Following the general procedure, product **4b** was obtained as a yellow liquid (70 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.04 (m, 2H), 7.63 – 7.51 (m, 2H), 7.46 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.28 (dd, *J* = 5.7, 3.4 Hz, 2H), 7.251 – 7.218 (m, 1H), 4.64 (dd, *J* = 10.5, 4.8 Hz, 1H), 4.50 (dd, *J* = 9.1, 4.8 Hz, 1H), 4.42 (dd, *J* = 10.5, 9.1 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.05, 135.74, 133.62, 131.29, 129.85, 129.68, 129.12, 129.06, 128.59, 128.12, 127.11, 119.05, 64.36, 34.62, 19.16. IR (thin film): v 2247, 1724 cm⁻¹. HRMS (ESI) calcd for [C₁₇H₁₅NNaO₂]⁺ ([M+Na]⁺): 288.1000, found: 288.0995.

Following the general procedure, product **4c** was obtained as a yellow liquid (73 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.6 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.45 (t, J = 7.7 Hz, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.27 – 7.21 (m, 2H), 7.19 (d, J = 7.5 Hz, 1H), 4.64 (dd, J = 10.9, 5.6 Hz, 1H), 4.49 (dd, J = 10.9, 8.7 Hz, 1H), 4.28 (dd, J = 8.7, 5.5 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.90, 139.30, 133.58, 131.35, 129.83, 129.70, 129.24, 129.14, 128.56, 128.47, 124.85, 118.68,

65.57, 37.51, 21.36. IR (thin film): υ 2247, 1724 cm⁻¹. HRMS (ESI) calcd for $[C_{17}H_{15}NNaO_2]^+$ ($[M+Na]^+$): 288.1000, found: 288.0996.

Following the general procedure, product **4d** was obtained as a colorless liquid (57 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dd, J = 8.4, 1.4 Hz, 2H), 7.66 – 7.55 (m, 1H), 7.45 (dd, J = 8.4, 7.2 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 4.63 (dd, J = 10.9, 5.6 Hz, 1H), 4.49 (dd, J = 10.9, 8.5 Hz, 1H), 4.28 (dd, J = 8.5, 5.6 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.90, 138.91, 133.56, 130.03, 129.83, 129.15, 128.56, 128.46, 127.66, 118.72, 65.59, 37.22, 21.14. IR (thin film): v 2247, 1724 cm⁻¹. HRMS (ESI) calcd for [C₁₇H₁₅NNaO₂]⁺ ([M+Na]⁺): 288.1000, found: 288.0995.

Following the general procedure, product **4e** was obtained as a white solid (101 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.01 (m, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.51 – 7.42 (m, 4H), 7.42 – 7.37 (m, 2H), 4.67 (dd, *J* = 10.9, 5.5 Hz, 1H), 4.50 (dd, *J* = 10.9, 8.7 Hz, 1H), 4.32 (dd, *J* = 8.8, 5.5 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.92, 152.12, 133.56, 129.84, 129.19, 128.57, 128.43, 127.53, 126.34, 118.75, 65.60, 37.14, 34.69, 31.26. IR (thin film): v 2248, 1725 cm⁻¹. HRMS (ESI) calcd for [C₂₀H₂₁NNaO₂]⁺ ([M+Na]⁺): 330.1470, found: 330.1463.

Following the general procedure, product **4f** was obtained as a yellow liquid (102 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 7.96 (m, 2H), 7.71 – 7.54 (m, 1H), 7.484 – 7.435 (m, 4H), 7.16 (d, *J* = 8.6 Hz, 2H), 4.65 (dd, *J* = 10.9, 5.6 Hz, 1H), 4.50 (dd, *J* = 11.0, 8.4 Hz, 1H), 4.33 (dd, *J* = 8.4, 5.6 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.19, 165.86, 151.06, 133.64, 129.82, 129.01, 128.99, 128.59, 122.65, 118.32, 65.37, 37.01, 21.10. IR (thin film): v 2248, 1724 cm⁻¹. HRMS (ESI) calcd for [C₁₈H₁₅NNaO₄]⁺ ([M+Na]⁺): 332.0899, found: 332.0892.

Following the general procedure, product **4g** was obtained as a yellow liquid (90 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.01 (m, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.52 – 7.39 (m, 4H), δ 7.12 (t, *J* = 8.5 Hz, 2H). 4.64 (dd, *J* = 11.0, 5.7 Hz, 1H), 4.51 (dd, *J* = 11.0, 8.2 Hz, 1H), 4.31 (dd, *J* = 8.2, 5.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.84, 162.91 (d, *J* = 248.9 Hz), 133.67, 129.80, 129.61 (d, *J* = 8.4 Hz), 128.95, 128.60, 127.36 (d, *J* = 3.5 Hz), 118.30, 116.47 (d, *J* = 22.0 Hz), 65.35 (d, *J* = 1.1 Hz), 36.86. IR (thin film): v 2248, 1724 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₁₂FNNaO₂]⁺ ([M+Na]⁺): 292.0750, found: 292.0744.

Following the general procedure, product **4h** was obtained as a colorless liquid (88 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 8.3, 1.4 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.45 (dd, *J* = 8.4, 7.2 Hz, 2H), 7.41-7.37 (m, 4H), 4.63 (dd, *J* = 10.9, 5.7 Hz, 1H), 4.51 (dd, *J* = 10.9, 8.0 Hz, 1H), 4.30 (dd, *J* = 8.0, 5.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.79, 135.09, 133.69, 130.11, 129.80, 129.60, 129.18, 128.93, 128.62, 118.12, 65.20, 36.97. IR (thin film): v 2248, 1723 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₁₂ClNNaO₂]⁺ ([M+Na]⁺): 308.0454, found: 308.0451.

Following the general procedure, product **4i** was obtained as a yellow liquid (87 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H), 7.57 – 7.45 (m, 3H), 7.39 (t, *J* = 7.7 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 4.56 (dd, *J* = 11.0, 5.7 Hz, 1H), 4.44 (dd, *J* = 10.9, 8.0 Hz, 1H), 4.21 (dd, *J* = 8.0, 5.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.81, 133.70, 132.58, 130.59, 129.81, 129.45, 128.90, 128.62, 123.22, 118.00, 65.12, 37.07. IR (thin film): v 2248, 1723 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₁₂BrNNaO₂]⁺ ([M+Na]⁺): 351.9949, found: 351.9944.

Following the general procedure, product 4j was obtained as a yellow liquid (105 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.01 (m, 2H), 7.68 – 7.57 (m, 2H), 7.551 – 7.524 (m, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.4415 – 7.388 (m, 1H), 7.31 (t, J = 7.9 Hz, 1H), 4.66 (dd, J = 10.9, 5.7 Hz, 1H), 4.52 (dd, J = 10.9, 8.2 Hz, 1H), 4.30 (dd, J = 8.2, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.80, 133.70, 133.64, 132.25, 130.98, 130.89, 129.82, 128.89, 128.62, 126.43, 123.33, 117.85, 65.16, 37.11. IR (thin film): v 2248, 1721 cm⁻¹. HRMS (ESI) calcd for $[C_{16}H_{12}BrNNaO_2]^+$ ($[M+Na]^+$): 351.9949, found: 351.9945.

Following the general procedure, product 4k was obtained as a yellow liquid (97 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, J = 8.4, 1.4 Hz, 2H), 7.63 – 7.55 (m, 1H), 7.45 (t, J = 7.7 Hz, 3H), 7.38 (dd, J = 8.5, 1.8 Hz, 1H), 7.32 (dd, J = 9.5, 1.9 Hz, 1H), 4.66 - 4.54 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.62, 159.73 (d, J = 253.4 Hz), 133.67, 130.67 (d, J = 3.5 Hz), 129.78, 128.86, 128.60, 128.47 (d, J = 3.7 Hz), 123.74 (d, J = 9.5 Hz), 119.83 (d, J = 24.4 Hz), 118.40 (d, J = 14.2 Hz), 117.15, 63.60 (d, J = 1.5 Hz), 31.35 (d, J = 2.9 Hz). IR (thin film): v 2251, 1725 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₁₂FBrNNaO₂]⁺ ([M+Na]⁺): 369.9855, found: 369.9848.

Following the general procedure, product **4** was obtained as a yellow liquid (70 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.87 (m, 2H), 7.53 – 7.43 (m, 3H), 7.38 - 7.30 (m, 4H), 7.30 - 7.23 (m, 1H), 4.47 (d, J = 1.4 Hz, 2H), 1.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 165.71, 136.71, 133.51, 129.79, 129.20, 129.15, 128.68, 128.56, 125.94, 121.64, 69.58, 42.59, 23.63. IR (thin film): v 2241, 1726 cm⁻¹. HRMS (ESI) calcd for [C₁₇H₁₅NNaO₂]⁺ ([M+Na]⁺): 288.1000, found: 288.0994.

Following the general procedure, product 4m was obtained as a yellow liquid (70 mg, 53% yield, dr = 1:1 as detected by GC-MS and ŌΒz one of the isomer was lost during separation). ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.05 (m, 2H), 7.64 – 7.57 (m, 1H), 7.50 – 7.35 (m, 7H), 5.37 (qd, J =6.4, 4.7 Hz, 1H), 4.44 (d, J = 4.7 Hz, 1H), 1.43 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.24, 133.39, 131.98, 129.73, 129.45, 129.10, 128.77, 128.50, 128.26, 118.08, 71.36, 43.67, 18.35. IR (thin film): v 2318, 1721 cm⁻¹. HRMS (ESI) calcd for $[C_{17}H_{15}NNaO_2]^+$ ($[M+Na]^+$): 288.1000, found: 288.0994.

Following the general procedure, product **4n** was obtained as a yellow liquid (67 mg, 51% yield, dr > 20:1 as detected by GC-MS). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.91 (m, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.40 – 7.31 (m, 3H), 7.26 – 7.16 (m, 3H), 5.80 (dt, *J* = 7.3, 5.7 Hz, 1H), 4.30 (d, *J* = 5.7 Hz, 1H), 3.58 (dd, *J* = 16.6, 7.2 Hz, 1H), 3.05 (dd, *J* = 16.6, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.77, 138.21, 133.28, 132.53, 128.74, 128.38, 128.08, 127.47, 127.04, 124.25, 123.57, 117.57, 76.82, 40.24, 37.07. IR (thin film): v 2243, 1722 cm⁻¹. HRMS (ESI) calcd for [C₁₇H₁₃NNaO₂]⁺ ([M+Na]⁺): 286.0844, found: 286.0837.

Following the general procedure, product **40** was obtained as a yellow liquid (60 mg, 43% yield, dr = 5:1 as detected by ¹H NMR). ¹H NMR (400 MHz, CDCl₃, major and minor) δ 8.16 – 8.06 (m, 0.17H), 8.07 – 7.98 (m, 1.99H), 7.66 – 7.52 (m, 1.09H), 7.48 – 7.38 (m, 3.25H), 7.34 – 7.10 (m, 3.55H), 5.70 – 5.56 (m, 1H), 5.45 (ddd, *J* = 10.4, 5.3, 3.3 Hz, 0.08H), 4.30 (d, *J* = 7.0 Hz, 0.99H), 4.11 (q, *J* = 7.1 Hz, 0.06H), 3.21 – 2.97 (m, 2.23H), 2.464 – 2.391 (m, 1.08H), 2.14 – 1.97 (m, 1.12H). ¹³C NMR (100 MHz, CDCl₃, major and minor) δ 165.53, 135.08, 133.51, 129.92, 129.78, 129.56, 129.49, 129.31, 129.02, 128.78, 128.53, 127.53, 127.10, 119.14, 70.63, 36.64, 26.63, 25.95. IR (thin film): v 2251, 1725 cm⁻¹. HRMS (ESI) calcd for [C₁₈H₁₅NNaO₂]⁺ ([M+Na]⁺): 300.1000, found: 300.0996.

Following the general procedure, product **4p** was obtained as a yellow liquid (49 mg, 30% yield, dr = 2:1 as detected by GC-MS). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (dd, *J* = 8.3, 1.4 Hz, 2H), 7.64 – 7.55 (m, 1H), 7.47 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.36 – 7.32 (m, 5H), 7.31 – 7.28 (m, 3H), 7.32 – 7.22 (m, 2H), 6.24 (d, *J* = 5.7 Hz, 1H), 4.34 (d, *J* = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.80, 136.33, 133.60, 131.69, 129.86, 129.23, 129.12, 128.99, 128.81, 128.71, 128.63, 128.47, 126.58, 117.92, 76.63, 45.15.

IR (thin film): v 2318, 1724 cm⁻¹. HRMS (ESI) calcd for $[C_{22}H_{17}NNaO_2]^+$ ([M+Na]⁺): 350.1157, found: 350.1151.

Following the general procedure, 5 mol % of Hantzsch ester (diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate) was added and product **4q** was obtained as a yellow liquid (98 mg, 46% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.12 – 8.02 (m, 2H), 7.64 – 7.55 (m, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.25 – 7.16 (m, 2H), 4.64 (dd, *J* = 10.7, 5.4 Hz, 1H), 4.48 (dd, *J* = 10.9, 8.7 Hz, 1H), 4.26 (dd, *J* = 8.7, 5.5 Hz, 1H), 2.97 – 2.89 (m, 2H), 2.51 (dd, *J* = 18.7, 8.7 Hz, 1H), 2.448 – 2.397 (m, 1H), 2.30 (td, *J* = 10.7, 4.3 Hz, 1H), 2.22 – 2.10 (m, 1H), 2.11 – 1.99 (m, 2H), 2.02 – 1.92 (m, 1H), 1.69 – 1.57 (m, 2H), 1.60 – 1.40 (m, 4H), 0.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.91, 140.73, 137.83, 133.58, 129.83, 129.14, 128.81, 128.56, 128.32, 126.40, 125.12, 118.72, 65.58, 50.47, 47.93, 44.28, 37.95, 37.16, 35.84, 31.55, 29.34, 26.30, 25.67, 21.59, 13.84. IR (thin film): v 2246, 1727 cm⁻¹. HRMS (ESI) calcd for [C₂₈H₂₉NNaO₃]⁺ ([M+Na]⁺): 450.2054, found: 450.2039.

6a

Following the general procedure, product **6a** was obtained as a colorless liquid (52 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 8.3, 1.3 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.46 (dd, J = 8.4, 7.1 Hz, 2H), 4.47 (dd, J = 11.0, 5.4 Hz, 1H), 4.38 (dd, J = 11.0, 7.5 Hz, 1H), 3.04 (ddt, J = 9.1, 7.5, 5.5 Hz, 1H), 1.81 – 1.45 (m, 4H), 1.41 – 1.25 (m, 6H), 0.92 – 0.85 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.97, 133.51, 129.79, 129.20, 128.54, 119.79, 63.60, 31.75, 31.45, 28.94, 28.68, 26.87, 22.49, 14.01. IR (thin film): v 2244, 1725 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₂₁NNaO₂]⁺ ([M+Na]⁺): 282.1470, found: 282.1464.

Following the general procedure, product **6b** was obtained as a colorless liquid (64.6 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.05 (m, 2H), 7.62 – 7.56 (m, 1H), 7.46 (dd, *J* = 8.4, 7.1 Hz, 2H), 4.47 (dd, *J* = 11.0, 5.4 Hz, 1H), 4.38 (dd, *J* = 11.0, 7.5 Hz, 1H), 3.08 – 2.99 (m, 1H), 1.82 – 1.67 (m, 2H), 1.66 – 1.56 (m, 1H), 1.56 – 1.45 (m, 1H), 1.40 – 1.22 (m, 10H), 0.93 – 0.85 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.97, 133.51, 129.79, 129.20, 128.54, 119.79, 63.59, 31.79, 31.76, 29.24, 29.13,

29.03, 28.95, 26.91, 22.63, 14.09. IR (thin film): υ 2245, 1726 cm⁻¹. HRMS (ESI) calcd for $[C_{18}H_{25}NNaO_2]^+$ ($[M+Na]^+$): 310.1783, found: 310.1778.

Following the general procedure, product **6c** was obtained as a colorless liquid (46 mg, 34% yield). ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 – 7.98 (m, 2H), 7.73 – 7.55 (m, 1H), 7.47 (dd, J = 8.4, 7.1 Hz, 2H), 4.47 (dd, J = 10.9, 5.3 Hz, 1H), 4.35 (dd, J = 11.0, 7.6 Hz, 1H), 3.17 – 3.08 (m, 1H), 1.89 – 1.65 (m, 6H), 1.53 – 1.44 (m, 1H), 1.36 – 1.23 (m, 3H), 1.22 – 1.08 (m, 1H), 1.06 – 0.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.99, 133.51, 129.80, 129.20, 128.54, 119.98, 63.96, 36.32, 35.18, 33.44, 32.30, 29.28, 26.26, 25.97, 25.85. IR (thin film): υ 2244, 1724 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₂₁NNaO₂]⁺ ([M+Na]⁺): 294.1470, found: 294.1466.

Following the general procedure, product **6d** was obtained as a colorless liquid (46 mg, 33% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 7.91 (m, 2H), 7.66 – 7.54 (m, 1H), 7.45 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.32 (dd, *J* = 7.9, 6.6 Hz, 2H), 7.26 – 7.19 (m, 3H), 4.55 – 4.24 (m, 2H), 3.02 – 2.92 (m, 2H), 2.81 (dt, *J* = 14.0, 8.2 Hz, 1H), 2.19 – 2.06 (m, 1H), 2.06 – 1.94 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.91, 139.48, 133.56, 129.81, 129.12, 128.81, 128.57, 128.45, 126.70, 119.48, 63.43, 32.89, 31.06, 30.65. IR (thin film): v 2244, 1722 cm⁻¹. HRMS (ESI) calcd for [C₁₈H₁₇NNaO₂]⁺ ([M+Na]⁺): 302.1157, found: 302.1151.

Following the general procedure, product **6e** was obtained as a yellow liquid (39 mg, 30% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 8.05 (m, 2H), 7.62 – 7.56 (m, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 4.45 (dd, *J* = 10.9, 5.2 Hz, 1H), 4.30 (dd, *J* = 10.8, 8.4 Hz, 1H), 3.11 – 3.02 (m, 1H), 1.05 (dd, *J* = 14.7, 10.6 Hz, 1H), 0.89 (dd, *J* = 14.7, 5.2 Hz, 1H), 0.16 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.35, 134.85, 131.16, 129.89, 122.26, 67.36, 28.81, 17.86, 0.01. IR (thin film): υ 2243, 1725 cm⁻¹. HRMS (ESI) calcd for [C₁₄H₁₉NNaO₂Si]⁺ ([M+Na]⁺): 284.1083, found: 284.1078.

Following the general procedure, product **6f** was obtained as a yellow liquid (45 mg, 39% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 – 8.04 (m, 2H), 7.64 – 7.55 (m, 1H), 7.47 (dd, J = 8.4, 7.1 Hz, 2H), 4.42 (d, J = 11.1 Hz, 1H), 4.32 (d, J = 11.0 Hz, 1H), 2.03 (p, J = 6.8 Hz, 1H), 1.41 (s, 3H), 1.17 (d, J = 6.8 Hz, 3H), 1.09 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.91, 133.48, 129.76, 129.30, 128.56, 121.85, 67.12, 41.69, 32.74, 18.77, 18.37, 17.39. IR (thin film): υ 2237, 1726 cm⁻¹. HRMS (ESI) calcd for [C₁₄H₁₇NNaO₂]⁺ ([M+Na]⁺): 254.1157, found: 254.1150.

6g

Following the general procedure, product **6g** was obtained as a yellow liquid (63.7 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.05 (m, 2H), 7.59 (d, *J* = 7.4 Hz, 1H), 7.47 (dd, *J* = 8.3, 7.0 Hz, 2H), 4.50 (d, *J* = 10.9 Hz, 1H), 4.32 (d, *J* = 10.9 Hz, 1H), 1.45 (s, 3H), 1.16 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.15, 133.45, 129.78, 129.36, 128.56, 122.04, 66.14, 45.11, 35.27, 26.03, 17.98. IR (thin film): υ 2236, 1725 cm⁻¹. HRMS (ESI) calcd for [C₁₅H₁₉NNaO₂]⁺ ([M+Na]⁺): 268.1313, found: 268.1309.

6h

Following the general procedure, product **6h** was obtained as a yellow liquid (58 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.12 – 8.06 (m, 2H), 7.65 – 7.56 (m, 1H), 7.47 (dd, J = 8.4, 7.1 Hz, 2H), 4.39 (d, J = 10.9 Hz, 1H), 4.23 (d, J = 10.9 Hz, 1H), 1.77 (d, J = 14.6 Hz, 1H), 1.54 (d, J = 14.7 Hz, 1H), 1.54 (s, 3H), 1.15 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.86, 133.49, 129.77, 129.29, 128.58, 122.90, 69.62, 48.72, 35.56, 31.58, 30.86, 24.26. IR (thin film): υ 2237, 1726 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₂₁NNaO₂]⁺ ([M+Na]⁺): 282.1470, found: 282.1464.

Following the general procedure, product **6i** was obtained as a yellow liquid (46 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.03 (m, 2H), 7.63 – 7.56 (m, 1H),

7.47 (dd, J = 8.4, 7.1 Hz, 2H), 4.37 (s, 2H), 1.78 (d, J = 7.6 Hz, 4H), 1.11 (t, J = 7.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.87, 133.48, 129.74, 129.30, 128.56, 121.41, 65.55, 42.49, 26.92, 8.78. IR (thin film): υ 2238, 1726 cm⁻¹. HRMS (ESI) calcd for [C₁₄H₁₇NNaO₂]⁺ ([M+Na]⁺): 254.1157, found: 254.1152.

Following the general procedure, product **6j** was obtained as a white liquid (74 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.01 (m, 2H), 7.63 – 7.54 (m, 1H), 7.46 (dd, J = 8.4, 7.1 Hz, 2H), 4.31 (s, 2H), 2.10 (dd, J = 12.8, 2.1 Hz, 2H), 1.79 – 1.75 (m, 3H), 1.74 – 1.59 (m, 2H), 1.40 (td, J = 13.0, 3.5 Hz, 2H), 1.30 – 1.16 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.92, 133.45, 129.78, 129.31, 128.53, 121.64, 69.07, 39.60, 32.48, 25.23, 22.40. IR (thin film): v 2237, 1725 cm⁻¹. HRMS (ESI) calcd for [C₁₅H₁₇NNaO₂]⁺ ([M+Na]⁺): 266.1157, found: 266.1152.

Following the general procedure, product **6k** was obtained as a colorless liquid (73 mg, 64% yield, dr > 20:1 as detected by GC-MS). ¹H NMR (400 MHz, CDCl₃, major and minor) δ 8.10 – 8.02 (m, 2H), 7.62 – 7.52 (m, 1H), 7.49 – 7.40 (m, 2H), 5.17 – 5.00 (m, 1H), 3.27 (q, *J* = 4.1 Hz, 0.32H), 2.87 (td, *J* = 9.2, 4.0 Hz, 0.69H), 2.26 – 2.05 (m, 1.56H), 2.00 – 1.90 (m, 0.64H), 1.89 – 1.73 (m, 2.77H), 1.66 (tq, *J* = 7.7, 3.5 Hz, 0.72H), 1.58 – 1.32 (m, 2.49H), 0.93 – 0.79 (m, 0.36H). ¹³C NMR (100 MHz, CDCl₃, major and minor) δ 165.50, 165.37, 133.39, 133.31, 129.80, 129.74, 129.72, 129.64, 119.88, 119.29, 71.86, 70.72, 33.60, 33.29, 30.16, 28.33, 27.70, 27.29, 23.48, 23.06, 22.65, 21.67. IR (thin film): v 2243, 1721 cm⁻¹. HRMS (ESI) calcd for [C₁₄H₁₅NNaO₂]⁺ ([M+Na]⁺): 252.1000, found: 252.0995.

Following the general procedure, product **6**I was obtained as a colorless liquid (55 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 8.05 (m, 2H), 7.62 – 7.55 (m, 1H), 7.46 (dd, J = 8.4, 7.1 Hz, 2H), 4.44 (d, J = 11.0 Hz, 1H), 4.33 (d, J = 11.0 Hz, 1H), 4.00 – 3.90 (m, 1H), 2.05 (dt, J = 14.3, 6.5 Hz, 2H), 1.89 (dt, J = 14.2, 6.3 Hz, 1H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.91, 133.58, 129.78, 129.17, 128.60, 122.07, 68.48, 58.93, 38.43, 36.10, 22.17. IR (thin film): υ 2240, 1724, 1274 cm⁻¹. HRMS (ESI) calcd for [C₁₃H₁₅NNaO₃]⁺ ([M+Na]⁺): 256.0950, found: 256.0945.

Following the general procedure, product **7a** was obtained as a colorless liquid (89 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.92 (m, 2H), 7.50 – 7.34 (m, 5H), 7.32 – 7.21 (m, 2H), 4.64 (dd, *J* = 10.9, 5.7 Hz, 1H), 4.50 (dd, *J* = 10.9, 8.5 Hz, 1H), 4.31 (dd, *J* = 8.5, 5.6 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.94, 144.42, 131.58, 129.86, 129.36, 129.28, 128.93, 127.81, 126.33, 118.57, 65.36, 37.60, 21.75. IR (thin film): v 2248, 1721 cm⁻¹. HRMS (ESI) calcd for [C₁₇H₁₅NNaO₂]⁺ ([M+Na]⁺): 288.1000, found: 288.0994.

Following the general procedure, product **7b** was obtained as a colorless liquid (86 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 6.8, 1.5 Hz, 2H), 7.49 – 7.36 (m, 6H), 7.38 – 7.29 (m, 1H), 4.64 (dd, *J* = 10.9, 5.6 Hz, 1H), 4.51 (dd, *J* = 10.9, 8.6 Hz, 1H), 4.32 (dd, *J* = 8.6, 5.6 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.07, 138.40, 134.37, 131.54, 130.33, 129.38, 129.01, 128.96, 128.46, 127.81, 126.97, 118.57, 65.47, 37.58, 21.30. IR (thin film): v 2248, 1721 cm⁻¹. HRMS (ESI) calcd for [C₁₇H₁₅NNaO₂]⁺ ([M+Na]⁺): 288.1000, found: 288.0996.

Following the general procedure, product **7c** was obtained as a colorless liquid (58 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.47 – 7.35 (m, 6H), 7.29 – 7.22 (m, 2H), 4.63 (dd, *J* = 10.9, 5.6 Hz, 1H), 4.50 (dd, *J* = 10.9, 8.5 Hz, 1H), 4.31 (dd, *J* = 8.5, 5.6 Hz, 1H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.64, 140.82, 132.66, 131.86, 131.56, 130.93, 129.38, 128.95, 128.28, 127.81, 125.93, 118.65, 65.39, 37.55, 21.86. IR (thin film): v 2248, 1723 cm⁻¹. HRMS (ESI) calcd for [C₁₇H₁₅NNaO₂]⁺ ([M+Na]⁺): 288.1000, found: 288.0992.

Following the general procedure, product **7d** was obtained as a colorless liquid (85 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 1.6 Hz, 2H), 7.50 – 7.37 (m, 5H), 7.23 (s, 1H), 4.64 (dd, *J* = 10.9, 5.6 Hz, 1H), 4.51 (dd, *J* = 10.9, 8.7 Hz, 1H), 4.32 (dd, *J* = 8.7, 5.6 Hz, 1H), 2.37 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.26, 138.24, 135.27, 131.56, 129.37, 128.95, 127.82, 127.53, 118.61, 65.45, 37.59, 21.19. IR (thin film): 2248, 1720 cm⁻¹. IR (thin film): v 2248, 1723 cm⁻¹. HRMS (ESI) calcd for [C₁₈H₁₇NNaO₂]⁺ ([M+Na]⁺): 302.1157, found: 302.1152.

7e

Following the general procedure, product **7e** was obtained as a colorless liquid (102 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.03 (m, 2H), 7.50 – 7.35 (m, 5H), 7.13 (t, *J* = 8.6 Hz, 2H), 4.66 (dd, *J* = 10.9, 5.6 Hz, 1H), 4.51 (dd, *J* = 10.9, 8.5 Hz, 1H), 4.32 (dd, *J* = 8.5, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.12 (d, *J* = 255.1 Hz), 164.87, 132.43 (d, *J* = 9.5 Hz), 131.40, 129.41, 129.01, 127.78, 125.33 (d, *J* = 3.0 Hz), 118.48, 115.81 (d, *J* = 22.1 Hz), 65.56, 37.55. IR (thin film): v 2248, 1723 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₁₂FNNaO₂]⁺ ([M+Na]⁺): 292.0750, found: 292.0744.

Following the general procedure, product **7f** was obtained as a yellow liquid (76 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.87 (m, 2H), 7.63 – 7.56 (m, 2H), 7.48 – 7.36 (m, 5H), 4.65 (dd, *J* = 10.9, 5.6 Hz, 1H), 4.52 (dd, *J* = 10.9, 8.5 Hz, 1H), 4.31 (dd, *J* = 8.5, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.16, 131.97, 131.32, 131.29, 129.43, 129.05, 128.87, 127.96, 127.77, 118.40, 65.63, 37.53. IR (thin film): v 2249, 1722 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₁₂BrNNaO₂]⁺ ([M+Na]⁺): 351.9949, found: 351.9943.

Transformations of the oxycyanation products

1. Synthesis of compound 8

A solution of **4a** (0.1 mmol), EtOH (0.2 mL), and H₂SO₄ (1 mL) was stirred at rt for 12 h. On completion the reaction was quenched with ice-H₂O (3 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers was washed with brine (10 mL), dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography to yield **8** (12 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.35 (m, 5H), 6.21 – 6.17 (m, 2H), 5.68 – 5.65 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.35, 144.11, 137.07, 128.72, 128.59, 128.16, 123.25. These data matches with the reported value.²

2. Synthesis of compound 9

A solution of **4a** (0.2 mmol), CH₃OH (0.6 mL), and CBr₄ (0.04 mmol) was stirred at 70 °C for 16 h. On completion the reaction was quenched with H₂O (3 mL). The aqueous layer was extracted with diethyl ether and the combined organic layers was washed with brine (3 mL), dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography to yield **9** as a clear oil (18 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.33 (m, 5H), 4.04 – 3.88 (m, 3H), 2.25 (t, *J* = 6.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 132.16, 129.29, 128.69, 127.81, 119.35, 65.36, 40.98. These data matches with the reported value.³

3. Synthesis of compound 10

A solution of **4a** (0.18 mmol), TMSN₃ (3 mmol), and Bu₂SnO (0.6 equiv), toluene was stirred at 70 °C for 2 d. On completion the reaction was quenched with H₂O (3 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers was washed with brine (3 mL), dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography to yield **10** as a yellow oil (72 mg, 82% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.83 – 7.77 (m, 2H), 7.64 – 7.58 (m, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.24 – 7.18 (m, 1H), 4.89 – 4.59 (m, 3H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ 165.91, 159.24, 140.04, 133.80, 130.02, 129.48, 129.16, 128.81, 128.79, 127.39, 67.60, 41.86. IR (thin film): v 1714 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₁₄N₄NaO₂]⁺ ([M+Na]⁺): 317.1014, found: 317.1008.⁴

Mechanism studies

1. Radical trapping experiments

(a) With TEMPO

In a flame-dried Schlenk tube, $Cu(CH_3CN)_4PF_6$ (0.025 mmol, 5 mol %) and 1,10-phenanthroline (0.035 mmol, 7 mol %) were dissolved in TFEA (0.5 mL) under a nitrogen atmosphere, and the mixture was stirred at room temperature for 30 minutes. Then styrene **1a** (0.5 mmol, 1.0 equiv), BPO (0.75 mmol, 1.5 equiv), TEMPO (0.75 mmol, 1.5 equiv) and TMSCN (1 mmol, 2 equiv) were sequentially added. The reaction mixture was stirred at 50 °C for 24 hours. The reaction mixture was detected by GC-MS analysis and no trace of product **4a** was detected.

(b) With BHT

In a flame-dried Schlenk tube, $Cu(CH_3CN)_4PF_6$ (0.025 mmol, 5 mol %) and 1,10-phenanthroline (0.035 mmol, 7 mol %) were dissolved in TFEA (0.5 mL) under a nitrogen atmosphere, and the mixture was stirred at room temperature for 30 minutes. Then styrene **1a** (0.5 mmol, 1.0 equiv), BPO (0.75 mmol, 1.5 equiv), BHT (0.75 mmol, 1.5 equiv) and TMSCN (1 mmol, 2 equiv) were sequentially added. The reaction mixture was stirred at 50 °C for 24 hours. The reaction mixture was detected by GC-MS analysis and no trace of product **4a** was detected.

2. Ring-opening experiment

In a flame-dried Schlenk tube, $Cu(CH_3CN)_4PF_6$ (0.025 mmol, 5 mol %) and 1,10-phenanthroline (0.035 mmol, 7 mol %) were dissolved in TFEA (0.5 mL) under a nitrogen atmosphere, and the mixture was stirred at room temperature for 30 minutes. Then styrene **11** (0.5 mmol, 1.0 equiv), BPO (0.75 mmol, 1.5 equiv) and TMSCN (1 mmol, 2 equiv) were sequentially added. The reaction mixture was stirred at 50 °C for 24 hours. After the reaction completion, the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford the product **12**.

Product **12** was obtained as a yellow liquid (61 mg, 33% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.81 (m, 2H), 7.48 – 7.40 (m, 1H), 7.36 – 7.31 (m, 3H), 7.29 (t, *J* = 4.4 Hz, 6H), 7.27 – 7.19 (m, 3H), 5.98 (t, *J* = 7.8 Hz, 1H), 5.07 (d, *J* = 12.6 Hz, 1H), 4.97 (d, *J* = 12.6 Hz, 1H), 3.92 (dd, *J* = 7.6, 6.6 Hz, 1H), 3.01 – 2.85 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.33, 139.97, 138.68, 134.91, 133.09, 129.87, 129.64, 129.20, 128.52, 128.39, 128.36, 127.90, 127.82, 127.43, 126.40, 120.22, 61.33, 37.53, 34.73. IR (thin film): v 2242, 1719 cm⁻¹. HRMS (ESI) calcd for [C₂₅H₂₁NNaO₂]⁺ ([M+Na]⁺): 390.1470, found: 390.1466.

Asymmetric oxycyanation

Table S1. Optimization of reaction conditions

Entry	Cat.	Ligand	Solvent	Temp	Yield	Er value
				(^{o}C)	$(\%)^b$	
1	Cu(CH ₃ CN) ₄ PF ₆	*L1	TFEA	50	54	33:67
2	Cu(CH ₃ CN) ₄ PF ₆	*L2	TFEA	50	62	63.5:36.5
3	Cu(CH ₃ CN) ₄ PF ₆	*L3	TFEA	50	75	81.5:18.5
4	Cu(CH ₃ CN) ₄ PF ₆	*L4	TFEA	50	31	32.5:67.5
5	Cu(CH ₃ CN) ₄ PF ₆	*L5	TFEA	50	35	65.5:34.5
6	Cu(CH ₃ CN) ₄ PF ₆	*L6	TFEA	50	32	65.5:34.5
7	Cu(CH ₃ CN) ₄ PF ₆	*L7	TFEA	50	70	82:18
8	Cu(CH ₃ CN) ₄ PF ₆	*L8	TFEA	50	77	77.5:22.5
9	Cu(CH ₃ CN) ₄ PF ₆	*L9	TFEA	50	66	83:17
10	Cu(CH ₃ CN) ₄ PF ₆	*L10	TFEA	50	54	71:29
11	Cu(CH ₃ CN) ₄ PF ₆	*L11	TFEA	50	69	77:23
12 ^c	Cu(CH ₃ CN) ₄ PF ₆	*L9	TFEA	50	80	87:13
13	Cu(OAc) ₂	*L9	TFEA	50	82	89:11
14	CuTc	*L9	TFEA	50	86	85:15
15	Cu(OAc) ₂	*L9	TFEA	RT	84	88:12
16	Cu(OAc) ₂	*L12	TFEA	RT	89	85:15
17	Cu(OAc) ₂	*L13	TFEA	RT	88	90:10
18	Cu(OAc) ₂	*L14	TFEA	RT	84	23.5:76.5
19	Cu(OAc) ₂	*L15	TFEA	RT	71	14:86
20	Cu(OAc) ₂	*L16	TFEA	RT	80	70:30
21 ^c	Cu(OAc) ₂	*L13	TFEA	RT	83	91:9

^a Reaction conditions: styrene **1a** (0.2 mmol), BPO **2a** (0.3 mmol), TMSCN **3** (0.4 mmol), cat. (5 mol %), ligand (7 mol %), solvent (0.5 mL), 24 h. ^b isolated yields. ^c 2.5 mol % of Cu(OAc)₂ and 3.5 mol % of ligand were used instead.

The reaction was conducted following the general procedure: the mixture of Cu(OAc)₂ (2.5 mol %), *L13 (3.5 mol %), BPO (181.5 mg, 0.75 mmol, 1.5 equiv), TFEA (0.5 mL), TMSCN (0.75 mmol, 1.5 equiv), and styrene (0.5 mmol, 1 equiv) was stirred at rt for 24 hours, and (*R*)-4a was obtained (102 mg, 81% yield, 91:9 er). $[\alpha]^{24.5}_{D} = 44.596$ (*c* 0.32, CHCl₃). HPLC (Chiralcel OD-H, hexane: *i*-PrOH = 91:9, flow rate: 1 mL/min, $\lambda = 254$ nm), $t_{minor} = 11.308$, $t_{major} = 13.455$.

The reaction was conducted following the general procedure: the mixture of Cu(OAc)₂ (2.5 mol %), *L13 (3.5 mol %), BPO (181.5 mg, 0.75 mmol, 1.5 equiv), TFEA (0.5 mL), TMSCN (0.75 mmol, 1.5 equiv), and 1-(tert-butyl)-4-vinylbenzene (0.5 mmol, 1 equiv) was stirred at rt for 24 hours, and (*R*)-4e was obtained (101 mg, 66% yield, 90:10 er). $[\alpha]^{24.6}_{D} = 10.964$ (*c* 0.59, CHCl₃). HPLC (Chiralcel OD-H, hexane: *i*-PrOH = 95:5, flow rate: 1 mL/min, $\lambda = 254$ nm), $t_{minor} = 8.675$, $t_{major} = 10.051$.

The reaction was conducted following the general procedure: the mixture of Cu(OAc)₂ (2.5 mol %), *L13 (3.5 mol %), BPO (181.5 mg, 0.75 mmol, 1.5 equiv), TFEA (0.5 mL), TMSCN (0.75 mmol, 1.5 equiv), and 4-vinylphenyl acetate (0.5 mmol, 1 equiv) was stirred at rt for 24 hours, and (*R*)-4f was obtained (102 mg, 66% yield, 81:19 er). $[\alpha]^{24.7}_{D} = -31.627$ (*c* 0.35, CHCl₃). HPLC (Chiralcel OD-H, hexane: *i*-PrOH = 90: 10, flow rate: 1 mL/min, $\lambda = 254$ nm), $t_{minor} = 27.204$, $t_{major} = 28.266$.

The reaction was conducted following the general procedure: the mixture of Cu(OAc)₂ (2.5 mol %), *L13 (3.5 mol %), BPO (181.5 mg, 0.75 mmol, 1.5 equiv), TFEA (0.5 mL), TMSCN (0.75 mmol, 1.5 equiv), and 1-chloro-4-vinylbenzene (0.5 mmol, 1 equiv) was stirred at rt for 24 hours, and (*R*)-4h was obtained (88 mg, 62% yield, 88:12 er). $[\alpha]^{24.5}_{D} = -25.986$ (*c* 0.97, CHCl₃). HPLC (Chiralcel OD-H, hexane: *i*-PrOH = 90: 10, flow rate: 1 mL/min, $\lambda = 254$ nm), $t_{minor} = 10.504$, $t_{major} = 12.446$.

0

10

11

14.060

Peak# Ret. Time 1 11.553

Total

The reaction was conducted following the general procedure: the mixture of Cu(OAc)₂ (2.5 mol %), ***L13** (3.5 mol %), 4-methylbenzoic peroxyanhydride (0.75 mmol, 1.5 equiv), TFEA (0.5 mL), TMSCN (0.75 mmol, 1.5 equiv), and styrene (0.5 mmol, 1 equiv) was stirred at rt for 24 hours, and (*R*)-7a was obtained (89 mg, 67% yield, 90.5:9.5 er). [α]^{24.7}_D = 37.425 (*c* 1.65, CHCl₃). Chiralcel (Chiralcel OD-H, hexane: *i*-PrOH = 90: 10, flow rate: 1 mL/min, λ = 254 nm), *t*_{major} = 11.553, *t*_{minor} = 14.060.

Height% 91.860

8.140

100.000

12

Height 380991

33762

414753

13

Area 5859226

617223

6476449

14

9.530

100.000

Area% 90.470 15 min

The reaction was conducted following the general procedure: the mixture of Cu(OAc)₂ (2.5 mol %), ***L13** (3.5 mol %), 4-chlorobenzoic peroxyanhydride (0.75 mmol, 1.5 equiv), TFEA (0.5 mL), TMSCN (0.75 mmol, 1.5 equiv), and styrene (0.5 mmol, 1 equiv) was stirred at rt for 24 hours, and (*R*)-7g was obtained (71 mg, 46% yield, 86:14 er). [α]^{24.7}_D = 31.391 (*c* 0.41, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.6 Hz, 1H), 7.54 – 7.36 (m, 4H), 4.66 (dd, J = 10.9, 5.6 Hz, 1H), 4.51 (dd, J = 10.9, 8.5 Hz, 1H), 4.32 (dd, J = 8.5, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.02, 140.16, 131.31, 131.20, 129.44, 129.06, 128.98, 127.78, 127.48, 118.46, 65.64, 37.53. IR (thin film): v 2248, 1725 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₁₂ClNNaO₂]⁺ ([M+Na]⁺): 308.0454, found: 308.0448. HPLC (Chiralcel IC, hexane/*i*-PrOH = 95:5, flow rate: 1 mL/min, λ = 254 nm), *t*_{major} = 12.158, *t*_{minor} = 14.009.

<Chromatogram>

Single crystal data of (R)-4e

CCDC 2040065 (**R**)-4e contains the supplementary crystallographic data (dimer). Crystal data and structure refinements of (**R**)-4e is listed in Table S2. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/

Table S2. Crystal data and structure refinement for (<i>R</i>)-4e.					
Identification code	(<i>R</i>)-4e				
Empirical formula	$C_{20}H_{21}NO_2$				
Formula weight	307.38				
Temperature (K)	100(2)				
Wavelength (Å)	1.54178				
Crystal system	monoclinic				
Space group	$P2_1$				
Unit cell dimensions (Å,)	a = 9.4303(5)	$\alpha = 90$			
	b = 19.9537(11)	$\beta = 111.9060(10)$			
	c = 9.8206(5)	$\gamma = 90$			
Volume (Å)	1714.51(16)				
Ζ	4				
Calculated density (g cm ⁻³)	1.191				
Absorption coefficient (mm ⁻¹)	0.605				
F_{000}	656				
Crystal size (mm ³)	x x				
θ range for data collection (°)	4.432 to 72.480				
Miller index ranges	$-11 \le h \le 10, -24 \le k \le 24, -12$	$\leq l \leq 12$			
Reflections collected	32674				
Independent reflections	6739 [$R_{int} = 0.0377$]				
Completeness to θ_{max} (%)	0.995				
Max. and min. transmission	and				
Refinement method	Full-matrix least-squares on F^2	2			
2	0				

Data / restraints / parameters	6739 / 2 / 443
Goodness-of-fit on F^2	1.052
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0354, wR2 = 0.0864
R indices (all data)	R1 = 0.0356, wR2 = 0.0866
Extinction coefficient	0.0041(7)
Largest diff. peak and hole (e Å ⁻³)	0.321 and -0.221
Absolute structure parameter	.11(5)

References

1 B. Qian, S. Chen, T. Wang, X. Zhang and H. Bao, Iron-Catalyzed Carboamination of Olefins: Synthesis of Amines and Disubstituted beta-Amino Acids, *J. Am. Chem. Soc.*, 2017, **139**, 13076.

2 X. Ji, B. Gao, X. Zhou, Z. Liu and H. Huang, Palladium-Catalyzed Regioselective Hydroaminocarbonylation of Alkynes to alpha,beta-Unsaturated Primary Amides with Ammonium Chloride, *J. Org. Chem.*, 2018, **83**, 10134.

3 E. Farber, J. Herget, J. A. Gascon and A. R. Howell, Unexpected cleavage of 2-azido-2-(hydroxymethyl)oxetanes: conformation determines reaction pathway?, *J. Org. Chem.*, 2010, **75**, 7565.

4 A. L. Fuentes de Arriba, E. Lenci, M. Sonawane, O. Formery and D. J. Dixon, Iridium-Catalyzed Reductive Strecker Reaction for Late-Stage Amide and Lactam Cyanation, *Angew. Chem. Int. Ed.*, 2017, **56**, 3655.

NMR spectra

8.086 8.086 8.062 8.062 7.557 7.557 7.5587 7.5587 7.5587 7.5587 7.558 7.5587 7.558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7558 7.7529 7.7528 7.7529 7.7528 7.7529 7.7529 7.7529 7.7529 7.7529 7.7529 7.7529 7.7529 7.7529 7.7529 7.7529 7.7529 7.7529 7.7529 7.7527

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8.068 8.068 8.050 7.572 7.572 7.555 7.572 7.555 7.572 7.435 7.435 7.532 7.532 7.532 7.532 7.532 7.532 7.532 7.532 7.532 7.532 7.532 7.532 7.532 7.532 7.532 7.532 7.532 7.555 7.555 7.573 7.555 7.555 7.556 7.573 7.556 7.573 7.557 7.557 7.556 7.557 7.556 7.557 7.556 7.557 7.557 7.556 7.557 7.557 7.557 7.557 7.556 7.557 7.557 7.556 7.557 7.556 7.556 7.556 7.556 7.556 7.556 7.556 7.556 7.556 7.556 7.578

7, 972 9689 7, 7, 9689 7, 7, 948 7, 7, 948 7, 7, 7, 948 7, 7, 7, 7, 948 7, 7, 7, 7, 7, 948 7, 7, 490 7, 7, 490 7, 7, 407

7.951 7.910 7.510 7.510 7.510 7.417 7.417 7.417 7.417 7.417 7.417 7.417 7.417 7.417 7.351 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.252 7.251 7.252 7.252 7.722 7.252 7.722 7.252 7.722 7.252 7.722 7.252 7.722 7.252 7.722 7.252 7.722 7.252 7.722 7.252 7.722 7.722 7.722 7.722 7.722 7.722 7.722 7.722 7.722 7.722 7.722 7.722 7.722 7.722 7.722 7.7221 7.72

8.081 8.081 8.064 8.078 8.077 7.575 7.575 7.575 7.575 7.575 7.575 7.575 7.575 7.575 7.458 7.458 7.4555 7.4555 7.4555 7.4555 7.4555 7.4555 7.4555 7.4555 7

210 200 130 120 110 100 90 f1 (ppm) -10

$\begin{array}{c} 8.082\\ 8.065\\ 8.057\\ 8.056\\ 8.056\\ 8.056\\ 8.056\\ 7.582\\ 7.582\\ 7.582\\ 7.582\\ 7.582\\ 7.582\\ 7.582\\ 7.582\\ 7.582\\ 7.582\\ 7.446\\ 8.056\\ 7.446\\ 8.056\\ 7.446\\ 8.056\\ 7.446\\ 8.056\\ 7.446\\ 8.056\\ 7.446\\ 8.056\\ 7.125\\ 7.125\\ 7.123\\ 8.132\\ 3.112\\ 3.122\\ 3.122\\ 3.122\\ 3.122\\ 3.122\\ 3.122\\ 3.122\\ 7.466\\ 1.726\\ 1.725\\ 1.$

8.064
8.064

8.050
8.065

8.051
8.065

8.050
8.065

8.051
7.7582

7.7582
7.7582

7.7582
7.7582

7.7565
7.7565

7.7565
7.7565

7.7557
7.465

7.7455
7.7553

7.7553
7.7553

7.7553
7.7553

7.7333
7.7333

7.7333
7.7333

7.7254
7.7333

7.7333
7.7333

7.7333
7.7333

7.7333
7.7333

7.7333
7.7333

7.7333
7.7333

7.7333
7.7333

7.7334
7.7334

7.7335
7.7334

7.7336
7.7334

7.7337
7.7334

7.7337
7.7334

7.7337
7.7334

7.7337
7.7334

7.7337
7.7334

7.7337
<td

2.01<u>4</u> 1.09<u>4</u>

3.0

1.19-1.09-

2.5

2.0

1.5

1.0

0.5

L

0.0

8.094

8.091

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.077

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.076

8.077

8.076

8.076

8.077

8.076

8.076

8.076

8.076

8.077

8.076

8.076</

8.093 8.093 8.011 8.015 8.015 8.016 8.017 8.016 8.017 8.016 8.017</t

210 200 160 150 140 130 120 110 100 f1 (ppm) -10

$\begin{array}{c} 7.962\\ 7.947\\ 7.947\\ 7.931\\ 7.457\\ 7.457\\ 7.457\\ 7.457\\ 7.4538\\ 17.438\\ 17.438\\ 17.4328\\ 17.402\\ 17.402\\ 17.295\\ 17.3955\\ 17.3955\\ 17.3955\\ 17.294\\ 17.294\\ 17.294\\ 17.294\\ 17.294\\ 14.525\\ 17.294\\ 14.525\\ 14.525\\ 17.294\\ 14.522\\ 14.525\\ 14.526\\ 14.5222\\ 14.5222\\ 14.522\\ 14.5222\\ 14.5222\\ 14.5222\\ 14.5222\\ 14.52$

7,674 7,477 7,4455 7,4455 7,4455 7,4451 7,4451 7,4451 7,4433 7,4338 7,4409 7,4409 7,4409 7,4409 7,4409 7,4409 7,4409 7,4409 7,4409 7,422 7,422 7,422 7,423 7,733 7,522 7,733 7,522 4,53224,5322

- 37.551

$\begin{array}{c} 7, 921\\ 2, 7, 915\\ 2, 7, 894\\ 2, 896\\ 2, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 896\\ 3, 7, 996\\$

7,807 7,804 7,787 7,783 7,783 7,783 7,534 7,534 7,534 7,596 7,596 7,596 7,596 7,596 7,596 7,239 7,239 7,239 7,239 7,239 7,239 7,230 7,230 7,230 7,230 7,230 7,231 7,231 7,232 7,232 7,232 7,233

$\begin{array}{c} 7.838\\ 7.834\\ 7.834\\ 7.834\\ 7.834\\ 7.834\\ 7.327\\ 7.3347\\ 7.332\\ 7.327\\ 7.327\\ 7.327\\ 7.327\\ 7.327\\ 7.228\\ 7.223\\ 7.226\\ 7.228\\ 7.226\\ 7.226\\ 7.228\\ 7.226\\ 7.228\\ 7.229\\ 7.293$ 7.293 7

