Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Table of Contents

1. General remarks	S2
2. Experimental section	
3. NMR spectra	
4. Mass spectra	
5. X-ray crystallographic structures	S10
6. Fluorescence decay curves	S15
7. Association behavior of 6 and 7 with C_{60}	S17
8. Theoretical calculation	S19
9. References	S41

1. General remarks

All reagents and solvents were commercially available and were used without further purification unless otherwise noted. For thin layer chromatography Silica gel 60 F254 plates from Merck were used and examined under UV-light irradiation (254 nm and 365 nm). Flash column chromatography was performed on silica gel (particle size: 200-300 mesh). Melting points were measured with a MPA100 OptiMelt. IR-Spectra were recorded as KBr-pellets on a Bruker VERTEX 80V spectrometer. NMR spectra were taken on Bruker AVANCE NEO (400 MHz). Chemical shifts (δ) are reported in parts per million (ppm) relative to traces of C₆H₆ in the deuterated solvent. HRMS experiments were carried out on a ThermoFisher LTQ Orbitrap XL. Absorption spectra were recorded on a Shimadzu UV2600. Emission spectra, absolute quantum yields, as well as fluorescence lifetimes were measured on FluoroMax-4 spectrometer equipped with an integral sphere and a time-correlated single photon counting system with a NanoLED laser. Crystal structure analysis was accomplished with SuperNova Dual AtlasS2 diffractometer with a Cu source. Electrochemical data were obtained in dichloromethane solution of tetrabutylammonium hexafluorophosphate (0.1 M) with ferrocene as an internal standard. Cyclic voltammograms (CV) was obtained using a glassy carbon working electrode, a platinum counter electrode, and a silver wire reference electrode tested on CHI660E station. EPR spectrum was measured on a Bruker EMX 10/12 apparatus. 1,9-dibromo-3,7-di-tert-butylphenothiazine 4 was synthesized according to the reported method.^[S1]

2. Experimental section

A 38 mL screw capped glass vial was charged with 1,9-dibromo-3,7-di-*tert*butylphenothiazine **4** (1.88 g, 4 mmol), CuI (152 mg, 0.8 mmol), 18-crown-6 (211 mg, 0.8 mmol) and anhydrous K₂CO₃ (830 mg, 6 mmol). Under the protection of argon, dry *o*-dichlorobenzene (6 mL) was added to the vial and the mixture was bubbled with argon for 3 minutes. The vial was quickly sealed and heated at 180 °C for 2 days. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water (200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/petroleum ether 1:50) to give the product **5** as pale yellow solid (1.18 g, 76%). m.p. 338-339 °C; ¹H NMR (400 MHz, benzene-*d*₆) δ (ppm) = 7.52 (d, *J* = 2.1 Hz, 2H), 7.26 (d, *J* = 2.1 Hz, 2H), 7.00 (d, *J* = 1.8 Hz, 2H), 6.93 (d, *J* = 1.7 Hz, 2H), 1.06 (s, 18H), 0.99 (s, 18H); ¹³C NMR (100 MHz, benzene- d_6) δ (ppm) = 149.4, 148.4, 137.9, 135.4, 134.7, 132.4, 130.8, 125.2, 124.5, 118.3, 115.2, 114.6, 34.5, 34.3, 31.2, 31.0; IR (KBr) \tilde{v} (cm⁻¹) = 3070, 2960, 2910, 2869, 1620, 1575, 1475, 1448, 1408, 1329, 1261, 1221, 1122, 1020, 866, 739, 694, 624, 603, 472; HRMS(ESI) (*m/z*) : [M]⁺ calcd. for C₄₀H₄₄Br₂N₂S₂, 776.1292; found, 776.1312.

A 38 mL screw capped glass vial was charged with compound 5 (466 mg, 0.60 mmol), Pd(OAc)₂ (27 mg, 0.12 mmol) and anhydrous K₂CO₃ (498 g, 3.6 mmol). Under the protection of argon, dry N,N-dimethylacetamide (2.4 mL) and PCy₃HBF₄ (88 mg, 0.24 mmol) were added to the vial and the mixture was bubbled with argon for 3 minutes. The vial was quickly sealed and heated at 170 °C for 48 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water (200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/petroleum ether 1:50) to give the product 6 as yellow solid (181 mg, 49%). m.p. > 400 °C (dec.); ¹H NMR (400 MHz, benzene- d_{δ}) δ (ppm) = 7.85 (d, J = 1.1 Hz, 2H), 7.07 (d, J = 1.1 Hz, 2H), 6.73 (s, 2H), 1.45 (s, 18H),1.28 (s, 18H); ¹³C NMR (100 MHz, benzene- d_6) δ (ppm) = 147.2, 145.6, 134.4, 132.0, 124.6, 121.2, 120.6, 120.5, 119.8, 117.1, 116.1, 110.6, 35.6, 35.4, 32.0, 29.8; IR (KBr) \tilde{v} (cm⁻¹) = 2956, 2914, 2867, 1620, 1548, 1510, 1475, 1365, 1309, 1271, 1183, 11143, 1109, 1055, 926, 858, 729, 627, 606, 519, 472; HRMS(ESI) (m/z) : $[M]^+$ calcd. for C₄₀H₄₂N₂S₂, 614.2789; found, 614.2811.

A 100 mL single neck flask was charged with compound **6** (87 mg, 0.14 mmol), chloroform (8 mL), acetic acid (8 mL) and hydrogen peroxide aqueous solution (30%, 0.30 mL, 2.94 mmol). The reaction mixture was stirred at 60 °C for 12 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water (2 x 200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/petroleum ether 2:1) to give the product **7** as yellow solid (67 mg, 70%). m.p. > 400 °C (dec.); ¹H NMR (400 MHz, benzene-*d*₆) δ (ppm) = 8.58 (d, *J* = 1.2 Hz, 2H), 8.25 (d, *J* = 1.2 Hz, 2H), 7.75 (s, 2H), 1.67 (s, 18H), 1.51 (s, 18H); ¹³C NMR (100 MHz, benzene-*d*₆) δ (ppm) = 148.4, 147.4,

134.5, 130.6, 128.7, 126.1, 124.7, 124.3, 121.8, 121.0, 119.4, 113.9, 36.2, 36.1, 31.9, 29.4; IR (KBr) \tilde{v} (cm⁻¹) = 3072, 2960, 2875, 1624, 1493, 1396, 1367, 1315, 1138, 887, 822, 777, 748, 706, 658, 615, 571, 544, 492; HRMS(ESI) (*m*/*z*) : [M]⁺ calcd. for C₄₀H₄₂N₂S₂, 678.2586; found, 678.2610.

Chemical oxidation of 6 with AgSbF₆

Compound **6** (31 mg, 0.05 mmol) was dissolved in dry dichloromethane (10 mL) and AgSbF₆ (18 mg, 0.05 mmol) was quickly added in solution. The reaction was stirred at room temperature for 20 minutes. The solution was then passed through a PTFE filter to the remove the Ag powder. After removal of the solvent by rotatory evaporation, the obtained powder was washed with hexane to give the monocation 6^{+} SbF₆⁻ (33 mg, 77%).

Compound **6** (31 mg, 0.05 mmol) was dissolved in dry dichloromethane (10 mL) and AgSbF₆ (36 mg, 0.1 mmol) was quickly added in solution. The reaction was stirred at room temperature for 20 minutes. The solution was then passed through a PTFE filter to the remove the Ag powder. After removal of the solvent by rotatory evaporation, the obtained powder was washed with hexane to the dication 6^{2+} [SbF₆]²⁻ (52 mg, 96%).

3. NMR Spectra

Figure S1. ¹H NMR spectrum (400 MHz, C₆D₆) of compound 5.

Figure S2. ¹³C NMR spectrum (100 MHz, C₆D₆) of compound 5.

Figure S3. ¹H NMR spectrum (400 MHz, C_6D_6) of compound 6.

Figure S4. ¹³C NMR spectrum (100 MHz, C₆D₆) of compound 6.

Figure S6. ¹³C NMR spectrum (100 MHz, C₆D₆) of compound 7.

4. Mass Spectra

Figure S7. Mass spectrum (ESI) of compound 5.

Figure S8. Mass spectrum (ESI) of compound 6.

Figure S9. Mass spectrum (ESI) of compound 7.

5. X-	ray	crystal	llograph	ic	struct	ures
--------------	-----	---------	----------	----	--------	------

Tuble DI Cijstal data alla stracta	
Empirical formula	$C_{40}H_{42}N_2S_2$
Formula weight	614.87
Temperature/K	293(2)
Crystal system	tetragonal
Space group	P4 ₃ 2 ₁ 2
a/Å	17.7483(2)
b/Å	17.7483(2)
c/Å	12.1031(2)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	3812.50(11)
Z	4
$\rho_{calc}g/cm^3$	1.071
μ/mm^{-1}	1.459
F(000)	1312.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.044 to 147.034
Index ranges	$-19 \le h \le 21, -21 \le k \le 14, -14 \le l \le 10$
Reflections collected	7563
Independent reflections	3735 [R _{int} = 0.0216, R _{sigma} = 0.0290]
Data/restraints/parameters	3735/0/206
Goodness-of-fit on F ²	1.041
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0379, wR_2 = 0.1035$
Final R indexes [all data]	$R_1 = 0.0400, wR_2 = 0.1053$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.21
Flack parameter	0.017(9)

 Table S1 Crystal data and structure refinement for 6 (CCDC 2024841).

Empirical formula	C77H50N2S2
Formula weight	1067.31
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	13.2343(7)
b/Å	13.6338(5)
c/Å	16.3052(6)
α/°	75.744(3)
β/°	69.165(4)
$\gamma/^{o}$	89.458(3)
Volume/Å ³	2655.0(2)
Z	2
$\rho_{calc}g/cm^3$	1.335
μ/mm^{-1}	1.299
F(000)	1116.0
Crystal size/mm ³	0.14 imes 0.12 imes 0.11
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	6.006 to 147.296
Index ranges	$-15 \le h \le 16, -14 \le k \le 16, -20 \le l \le 18$
Reflections collected	19135
Independent reflections	10392 [$R_{int} = 0.0469, R_{sigma} = 0.0605$]
Data/restraints/parameters	10392/7/765
Goodness-of-fit on F ²	1.081
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0552, wR_2 = 0.1440$
Final R indexes [all data]	$R_1 = 0.0635, wR_2 = 0.1529$
Largest diff. peak/hole / e Å ⁻³	0.84/-0.85

Table S2 Crystal data and structure refinement for 6-C₆₀ (CCDC 2024844).

Empirical formula	$C_{41}H_{44}Cl_2F_6N_2S_2Sb$
Formula weight	935.55
Temperature/K	100.01(10)
Crystal system	triclinic
Space group	P-1
a/Å	11.2189(5)
b/Å	12.4989(4)
c/Å	15.4497(6)
α/°	103.886(3)
β/°	92.811(4)
$\gamma/^{\circ}$	102.498(3)
Volume/Å ³	2041.57(15)
Z	2
$\rho_{calc}g/cm^3$	1.522
μ/mm^{-1}	8.030
F(000)	950.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.1$
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	5.926 to 147.476
Index ranges	$-11 \le h \le 13, -15 \le k \le 14, -19 \le l \le 18$
Reflections collected	14048
Independent reflections	7985 [$R_{int} = 0.0625$, $R_{sigma} = 0.0741$]
Data/restraints/parameters	7985/0/499
Goodness-of-fit on F ²	1.061
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0759, wR_2 = 0.2103$
Final R indexes [all data]	$R_1 = 0.0899, wR_2 = 0.2221$
Largest diff. peak/hole / e Å ⁻³	1.87/-1.75

Table S3 Crystal data and structure refinement for 6⁺⁺ SbF₆⁻ (CCDC 2024842).

Empirical formula	$C_{42}H_{46}Cl_4F_{12}N_2S_2Sb_2$
Formula weight	1256.23
Temperature/K	100.01(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.3204(5)
b/Å	10.4195(5)
c/Å	14.2747(6)
α/°	100.389(4)
β/°	104.598(4)
$\gamma/^{\circ}$	111.290(5)
Volume/Å ³	1191.81(11)
Z	1
$\rho_{calc}g/cm^3$	1.750
μ/mm^{-1}	12.588
F(000)	622.0
Crystal size/mm ³	$0.11\times 0.09\times 0.08$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	6.71 to 147.416
Index ranges	$-10 \le h \le 11, -12 \le k \le 12, -17 \le l \le 10$
Reflections collected	7952
Independent reflections	4644 [$R_{int} = 0.0344$, $R_{sigma} = 0.0476$]
Data/restraints/parameters	4644/0/295
Goodness-of-fit on F ²	1.046
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0343, wR_2 = 0.0850$
Final R indexes [all data]	$R_1 = 0.0367, wR_2 = 0.0868$
Largest diff. peak/hole / e Å ⁻³	0.80/-1.28

Table S4 Crystal data and structure refinement for 6^{2+} [SbF6⁻]2 (CCDC 2024843).

Empirical formula	$C_{47}H_{50}N_2O_4S_2$
Formula weight	771.01
Temperature/K	100.01(10)
Crystal system	triclinic
Space group	P-1
a/Å	11.0384(6)
b/Å	14.0757(7)
c/Å	14.1533(8)
α/°	100.408(4)
β/°	103.832(5)
$\gamma/^{\circ}$	105.597(4)
Volume/Å ³	1984.86(19)
Z	2
$\rho_{calc}g/cm^3$	1.290
μ/mm^{-1}	0.182
F(000)	820.0
Crystal size/mm ³	0.14 imes 0.13 imes 0.12
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.02 to 49.998
Index ranges	$-13 \le h \le 13, -16 \le k \le 16, -15 \le l \le 16$
Reflections collected	14009
Independent reflections	6992 [$R_{int} = 0.0322$, $R_{sigma} = 0.0540$]
Data/restraints/parameters	6992/0/509
Goodness-of-fit on F ²	1.032
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0459, wR_2 = 0.1068$
Final R indexes [all data]	$R_1 = 0.0576, wR_2 = 0.1172$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.37

Table S5 Crystal data and structure refinement for 7 (CCDC 2036398).

Figure S10. Bond lengths of crystal structures of buckybowl 6 in different oxidative state.

6. Fluorescence decay curves

Figure S11. Fluorescence decay curve of 6 in dichloromethane at room temperature.

Figure S12. Fluorescence decay curve of 6 in solid state at room temperature.

Figure S13. Fluorescence decay curve of 7 in dichloromethane at room temperature.

Figure S14. Fluorescence decay curve of 7 in solid state at room temperature.

7. Association behavior of 6 and 7 with $C_{\rm 60}$

Figure S15. The binding isotherms and average binding constant of 6 and C₆₀.

 $\times 10^{-3}$ M, toluene-*d*₈, 298 K).

Figure S17. Job plot based on ¹H NMR titration of 7 with C_{60} in toluene- d_8 .

Figure S18. The binding isotherms and average binding constant of 7 and C₆₀..

8. Theoretical calculation

All the theoretical calculations were carried out using a *Gaussian 16* software. ^[S2] All the calculations were based on the optimized geometries at B3LYP/6-31G(d,p) level of theory. The bowl-to-bowl inversion energy was calculated at B3LYP/6-311+G(2d,p) level of theory for the single-point energy, the planar transition state was checked by frequency calculations at B3LYP/6-31G(d,p) level of theory. ^[S3] The frontier molecular orbitals are calculated at the B3LYP/6-311+G(d,p) level of theory. The nucleus-independent chemical shift (NICS) calculation was done at GIAO-B3LYP/6-311+G(d,p) level of theory. Bq atoms were inserted at the calculated positions and the Bq positions that are at the 1 Å away above and below the bowls were fixed with the assistant of Multiwfn software, as well as the calculated NICS values at the *zz* tensor.^[S4] The calculations of excited state properties were performed using time-depended DFT methods at (U)B3LYP/6-311+G(d,p) level of theory in the solvent dichloromethane.

Figure S19. Energy diagram of the inversion process of the non-substituted 6.

Figure S20. Energy diagram of the inversion process of the non-substituted 7.

Figure S21. Energy diagram of the inversion process of buckybowl 1.

Figure S22. Average $NICS(1)_{zz}$ values and POAV angles of the non-substituted 6 in different oxidative state. The POAV angles are calculated based on the crystal structures.

Figure S23. Calculated Muliken atom charge (red) and spin density (blue) of 6^{++} at UB3LYP/6-311+G(d,p) level of theory. *tert*-Butyl groups are omitted for clarity.

Figure S24. Calculated frontier molecular orbitals and energy levels of **6** at B3LYP/6-311+G(d,p) level of theory.

Figure S25. UV/Vis absorption spectrum of 6 and TD-DFT calculated oscillator strength (blue column) in dichloromethane at B3LYP/6-311+G(d,p) level.

Figure S26. UV/Vis absorption spectrum of 6^{++} and TD-DFT calculated oscillator strength (blue column) in dichloromethane at UB3LYP/6-311+G(d,p) level.

Figure S27. UV/Vis absorption spectrum of 6^{2+} and TD-DFT calculated oscillator strength (blue column) in dichloromethane at UB3LYP/6-311+G(d,p) level.

Figure S28. UV/Vis absorption spectrum of 7 and TD-DFT calculated oscillator strength (blue column) in dichloromethane at B3LYP/6-311+G(d,p) level.

	u,p) ievei			
Excited State 1: S	inglet-A 2.8422 eV	436.22 nm	f=0.2117	<s**2>=0.000</s**2>
164 -> 165	0.69545			
Excited State 2: S	inglet-A 2.8862 eV	429.58 nm	f=0.0006	<s**2>=0.000</s**2>
164 -> 166	0.70164			
Excited State 3: S	inglet-A 3.3808 eV	366.73 nm	f=0.0002	<s**2>=0.000</s**2>
163 -> 165	0.22708			
164 -> 167	0.66435			
Excited State 4: S	inglet-A 3.5114 eV	353.09 nm	f=0.0034	<s**2>=0.000</s**2>
163 -> 165	0.65594			
164 -> 167	-0.22978			
Excited State 5: S	inglet-A 3.5817 eV	346.16 nm	f=0.1384	<s**2>=0.000</s**2>
163 -> 166	0.62673			
164 -> 168	0.30010			
Excited State 6: State 5: Stat	inglet-A 3.8597 eV	321.23 nm	f=0.1845	<s**2>=0.000</s**2>
162 -> 165	0.10926			
163 -> 166	-0.30020			
164 -> 168	0.61966			
Excited State 7: St	inglet-A 4.0310 eV	307.58 nm	f=0.0015	<s**2>=0.000</s**2>
161 -> 165	-0.18699			
162 -> 166	0.20549			
163 -> 168	-0.11197			
164 -> 169	0.62484			
Excited State 8: S	inglet-A 4.1093 eV	301.72 nm	f=0.0589	<s**2>=0.000</s**2>
161 -> 166	-0.11399			
162 -> 165	0.40224			
163 -> 167	0.37945			
164 -> 171	0.27866			
164 -> 172	0.27264			
Excited State 9: S	inglet-A 4.1627 eV	297.84 nm 1	=0.0036 <	<s**2>=0.000</s**2>
161 -> 165	0.10587			
162 -> 166	-0.21311			
164 -> 170	0.62640			
164 -> 175	-0.17949			
Excited State 10:	Singlet-A 4.2156 eV	294.11 nm	f=0.0000	<s**2>=0.000</s**2>
161 -> 165	-0.15882			
162 -> 166	0.56480			
163 -> 168	0.17367			
164 -> 169	-0.20432			
164 -> 170	0.23837			
1(4 110) 10 1(5				

Table S6. TD-DFT calculated first-ten electron transitions of 6 in dichloromethane atB3LYP / 6-311+G(d,p) level

164: HOMO, 165: LUMO

Excited State 1: 2.017-A	0.9991 eV	1240.92 nm	f=0.0945	<s**2>=0.767</s**2>
163B -> 164B	0.98957			
Excited State 2: 2.038-A	1.8167 eV	682.48 nm	f=0.0000	<s**2>=0.788</s**2>
160B -> 164B	0.24886			
161B -> 164B	0.95865			
Excited State 3: 2.032-A	1.8293 eV	677.77 nm	f=0.1360	<s**2>=0.783</s**2>
162B -> 164B	0.98061			
Excited State 4: 2.057-A	2.2083 eV	561.46 nm	f=0.0000	<s**2>=0.808</s**2>
164A -> 166A	-0.19484			
160B -> 164B	0.93383			
161B -> 164B	-0.25606			
Excited State 5: 2.086-A	2.4867 eV	498.59 nm	f=0.0179	<s**2>=0.837</s**2>
163A -> 166A	0.10409			
164A -> 165A	0.85819			
159B -> 164B	0.45299			
Excited State 6: 2.109-A	2.5713 eV	482.19 nm	f=0.0000	<s**2>=0.862</s**2>
164A -> 166A	0.93850			
164A -> 167A	-0.11832			
160B -> 164B	0.21095			
Excited State 7: 2.064-A	2.6763 eV	463.27 nm	f=0.2521	<s**2>=0.815</s**2>
164A -> 165A	-0.41324			
159B -> 164B	0.87158			
Excited State 8: 2.337-A	2.7673 eV	448.04 nm	f=0.0000	<s**2>=1.116</s**2>
163A -> 165A	-0.31376			
158B -> 164B	0.89028			
163B -> 165B	0.24115			
Excited State 9: 3.329-A	2.8616 eV	433.27 nm	f=0.0050	<s**2>=2.520</s**2>
160A -> 165A	-0.14159			
163A -> 166A	-0.58094			
163A -> 167A	-0.10521			
164A -> 165A	0.20288			
164A -> 168A	0.23558			
160B -> 165B	0.12672			
160B -> 168B	0.10674			
163B -> 166B	0.63406			
163B -> 167B	-0.12034			
Excited State 10: 2.928-A	2.8988 eV	/ 427.71 nm	f=0.0000	<s**2>=1.893</s**2>
160A -> 166A	-0.11870			
163A -> 165A	-0.44472			
164A -> 166A	0.13492			
164A -> 167A	0.50814			
158B -> 164B	-0.36833			

Table S7. TD-DFT calculated first-ten electron transitions of 6^{++} in dichloromethane atUB3LYP / 6-311+G(d,p) level

160B -> 166B	0.14932
162B -> 165B	-0.10769
163B -> 165B	0.48431
163B -> 168B	0.11282
164: HOMO, 165: LUMC)

Table S8. TD-DFT calculated first-ten electron transitions of 6^{2+} in dichloromethane atUB3LYP / 6-311+G(d,p) level

Excited State 1: 3.000-A	0.3750 eV 33	06.21 nm	f=0.0000	<s**2>=2.000</s**2>
163A -> 164A	-0.75591			
163B -> 164B	0.75591			
163A <- 164A	-0.27449			
163B <- 164B	0.27449			
Excited State 2: 1.000-A	1.1043 eV 11	22.74 nm	f=0.1160	<s**2>=0.000</s**2>
162A -> 164A	-0.15659			
163A -> 164A	0.69493			
162B -> 164B	-0.15659			
163B -> 164B	0.69493			
163A <- 164A	-0.11298			
163B <- 164B	-0.11298			
Excited State 3: 3.000-A	1.4024 eV	884.10 nm	f=0.0000	<s**2>=2.000</s**2>
162A -> 164A	-0.70285			
162B -> 164B	0.70285			
Excited State 4: 3.000-A	1.4715 eV	842.59 nm	f=0.0000	<s**2>=2.000</s**2>
160A -> 164A	-0.10508			
161A -> 164A	0.69590			
160B -> 164B	0.10508			
161B -> 164B	-0.69590			
Excited State 5: 3.000-A	1.8830 eV	658.46 nm	f=0.0000	<s**2>=2.000</s**2>
160A -> 164A	-0.68649			
161A -> 164A	-0.11007			
160B -> 164B	0.68649			
161B -> 164B	0.11007			
Excited State 6: 1.000-A	1.8904 eV	655.88 nm	f=0.4053	<s**2>=0.000</s**2>
162A -> 164A	0.68402			
163A -> 164A	0.16186			
162B -> 164B	0.68402			
163B -> 164B	0.16186			
Excited State 7: 1.000-A	1.9325 eV	641.56 nm	f=0.0000	<s**2>=0.000</s**2>
160A -> 164A	-0.35662			
161A -> 164A	0.60731			
160B -> 164B	-0.35662			

161B -> 164B	0.60731			
Excited State 8: 1.000-A	2.1765 eV	569.66 nm	f=0.0000	<s**2>=0.000</s**2>
160A -> 164A	0.60864			
161A -> 164A	0.35711			
160B -> 164B	0.60864			
161B -> 164B	0.35711			
Excited State 9: 3.000-A	2.1927 eV	565.44 nm	f=0.0000	<s**2>=2.000</s**2>
158A -> 164A	0.69872			
158B -> 164B	-0.69872			
Excited State 10: 3.000-A	2.3137 eV	535.88 nm	f=0.0000	<s**2>=2.000</s**2>
159A -> 164A	0.68191			
163A -> 165A	0.12505			
159B -> 164B	-0.68191			
163B -> 165B	-0.12505			

164: HOMO, 165: LUMO

Table S9. TD-DFT calculated first-ten electron transitions of 7 in dichloromethane atB3LYP / 6-311+G(d,p) level

178 -> 182	0.21269			
180 -> 185	0.65281			
Excited State 9: Sin	nglet-A 4.4155 eV	280.80 nm	f=0.3444	<s**2>=0.000</s**2>
176 -> 181	-0.33714			
178 -> 184	0.11590			
179 -> 182	0.55594			
180 -> 187	-0.14993			
Excited State 10: S	Singlet-A 4.5752 eV	/ 270.99 nm	f=0.0009	<s**2>=0.000</s**2>
175 -> 181	0.50193			
178 -> 182	0.23166			
180 -> 185	-0.12793			
180 -> 186	0.40185			
180: HOMO, 181: I	LUMO			

6				
С	2.29296562	1.47181634	-0.39889590	
С	1.08911317	0.82988030	-0.73192603	
С	-0.16783310	1.41053833	-0.75106486	
С	-0.27772280	2.76291682	-0.50845088	
С	0.92096700	3.47873057	-0.26981217	
С	2.19831753	2.89333908	-0.20381351	
С	-3.00507039	2.12838736	-0.28509454	
С	-2.53888138	0.83631955	-0.50527371	
С	-3.26450419	-0.35322449	-0.25192562	
С	-4.61487864	-0.17720400	0.11999599	
С	-5.14940762	1.10405057	0.30127621	
С	-4.32461995	2.24756208	0.13034204	
Н	0.83059892	4.54454953	-0.10697450	
Н	-5.24549676	-1.03708956	0.28698350	
Н	-4.72819164	3.23445661	0.33058099	
С	-1.08911907	-0.82989446	-0.73191568	
С	0.16782839	-1.41055327	-0.75104413	
С	-2.29296884	-1.47182800	-0.39887353	
С	0.27772449	-2.76292622	-0.50841253	
С	-2.19831990	-2.89335304	-0.20378599	
С	2.53887893	-0.83632946	-0.50526785	
С	-0.92096377	-3.47873920	-0.26977015	
С	3.26450441	0.35321952	-0.25194864	
С	3.00507944	-2.12839054	-0.28509093	
Н	-0.83058982	-4.54455782	-0.10694681	

Cartesian coordinates for theoretically optimized structures of 6, 6⁺⁺, 6²⁺, 7 and 1.

С	4.61488792	0.17721302	0.11993119	
С	4.32463835	-2.24755567	0.13032391	
С	5.14942325	-1.10403954	0.30123511	
Н	5.24551531	1.03710763	0.28684823	
Н	4.72822134	-3.23445080	0.33053739	
Ν	-1.25109174	0.53501076	-0.88084095	
Ν	1.25108436	-0.53502608	-0.88081649	
S	-1.90526332	3.54730134	-0.52957168	
S	1.90526922	-3.54730931	-0.52954212	
С	6.62051973	-1.32406227	0.71399700	
С	7.33583408	-2.17392538	-0.36344441	
Н	8.38173185	-2.34296998	-0.08358657	
Н	6.86465227	-3.15269918	-0.49199058	
Н	7.32110998	-1.66744607	-1.33394556	
С	7.39501541	-0.00105157	0.86502973	
Н	7.41915991	0.56712370	-0.07051928	
Н	6.96686497	0.63753797	1.64453799	
Н	8.43084759	-0.21365524	1.14779662	
С	6.67514072	-2.06507576	2.07152152	
Н	7.71549716	-2.22910126	2.37400566	
Н	6.18107221	-1.48165067	2.85514984	
Н	6.18663265	-3.04271271	2.02630271	
С	-3.43117695	-3.76533058	0.10049518	
С	-3.99258284	-3.38773553	1.49363549	
Н	-4.20919269	-2.32264796	1.58719527	
Н	-4.91632848	-3.94199437	1.69547459	
Н	-3.26864472	-3.64287603	2.27431706	
С	-4.49344342	-3.56023465	-1.00630320	
Н	-5.40559545	-4.11745839	-0.76519325	
Н	-4.76404769	-2.51285797	-1.14578225	
Н	-4.11736621	-3.92968251	-1.96601734	
С	-3.10836122	-5.27332066	0.13576528	
Н	-2.68850943	-5.62467827	-0.81217814	
Н	-2.41163527	-5.52974313	0.93997228	
Н	-4.03129357	-5.83364153	0.31610800	
С	-6.62050751	1.32410303	0.71400726	
С	-7.33588784	2.17347928	-0.36378417	
Н	-6.86474811	3.15222037	-0.49272506	
Н	-7.32111893	1.66660046	-1.33407588	
Н	-8.38180149	2.34257415	-0.08401263	
С	-6.67519925	2.06565195	2.07123038	
Н	-7.71557670	2.22969561	2.37363092	
Н	-6.18108613	1.48258388	2.85509642	
Н	-6.18679606	3.04332554	2.02564492	

С	-7.39488481	0.00108786	0.86559872	
Н	-7.41903423	-0.56747001	-0.06971900	
Н	-6.96663558	-0.63714735	1.64534131	
Н	-8.43072419	0.21371655	1.14831973	
С	3.43117143	3.76529944	0.10051143	
С	4.49347175	3.56020203	-1.00626072	
Н	4.11742760	3.92965933	-1.96598305	
Н	5.40562593	4.11741218	-0.76512384	
Н	4.76406604	2.51282051	-1.14574013	
С	3.99252196	3.38770046	1.49367410	
Н	4.91627451	3.94193424	1.69555346	
Н	3.26856299	3.64285661	2.27433084	
Н	4.20909842	2.32260637	1.58724331	
С	3.10833869	5.27328325	0.13576668	
Н	2.68853570	5.62462974	-0.81220175	
Н	2.41156420	5.52970741	0.93993166	
Н	4.03125813	5.83360808	0.31616735	

unsubstituted 6

С	-1.41138428	-2.28932263	-0.09819582	
С	-0.61741820	-1.20474903	-0.49218549	
С	0.76722906	-1.20388236	-0.50263456	
С	1.45166505	-2.37192796	-0.20433896	
С	0.68089498	-3.52276782	0.09727038	
С	-0.71789496	-3.49354202	0.15961748	
С	3.62184925	-0.61740391	0.06071750	
С	2.64965864	0.34046400	-0.20678097	
С	2.75885044	1.72466169	0.08369864	
С	4.00439637	2.17845267	0.54562082	
С	5.01915654	1.24479987	0.75926475	
С	4.83330053	-0.13945659	0.55896362	
Н	1.19536736	-4.45144733	0.32270416	
Н	4.17393605	3.22822130	0.76282209	
Н	5.63425638	-0.82942848	0.80498878	
С	0.61742091	1.20475491	-0.49216688	
С	-0.76722627	1.20388837	-0.50262418	
С	1.41138479	2.28932383	-0.09815976	
С	-1.45166397	2.37193036	-0.20431855	
С	0.71789392	3.49354008	0.15966413	
С	-2.64965757	-0.34046155	-0.20680068	
С	-0.68089566	3.52276657	0.09730931	
С	-2.75885091	-1.72466259	0.08366196	
С	-3.62184955	0.61740320	0.06070417	
Н	-1.19536942	4.45144332	0.32275128	

С	-4.00439924	-2.17845912	0.54557226	
С	-4.83330343	0.13944996	0.55893826	
С	-5.01916054	-1.24480890	0.75922194	
Н	-4.17394003	-3.22823041	0.76275985	
Н	-5.63426056	0.82941892	0.80496748	
Ν	1.37377392	0.05113004	-0.65330194	
Ν	-1.37377036	-0.05112216	-0.65331153	
S	3.26004126	-2.36929795	-0.21604597	
S	-3.26004008	2.36930046	-0.21603648	
Н	-1.24935367	-4.39504256	0.44645539	
Н	-5.98175887	-1.58635761	1.12674036	
Н	1.24935092	4.39503724	0.44651579	
Н	5.98175289	1.58634427	1.12679231	

6^{•+}

0			
С	-2.32202500	-1.48911200	-0.00011800
С	-1.08522900	-0.83269300	-0.00015800
С	0.17369600	-1.40480800	-0.00018500
С	0.28680200	-2.79222400	-0.00017400
С	-0.92779200	-3.50605700	-0.00015200
С	-2.22576400	-2.91833200	-0.00012800
С	3.04374000	-2.13534900	-0.00012200
С	2.55827800	-0.83207100	-0.00014300
С	3.31653600	0.36645000	-0.00006300
С	4.70911000	0.18339900	0.00001000
С	5.26556100	-1.11117500	0.00001300
С	4.42892000	-2.25838100	-0.00004400
Н	-0.86651900	-4.58589700	-0.00014600
Н	5.37102500	1.03587400	0.00007000
Н	4.87895500	-3.24457900	-0.00002000
С	1.08523400	0.83269100	-0.00011500
С	-0.17369200	1.40480600	-0.00010300
С	2.32203000	1.48911000	-0.00004500
С	-0.28679900	2.79222100	-0.00001000
С	2.22576600	2.91833000	0.00002600
С	-2.55827500	0.83206900	-0.00008200
С	0.92779500	3.50605500	0.00004500
С	-3.31653200	-0.36645300	-0.00006800
С	-3.04373700	2.13534600	0.00001800
Н	0.86652300	4.58589600	0.00011500
С	-4.70910600	-0.18340400	0.00002200
С	-4.42891800	2.25837700	0.00011100
С	-5.26555800	1.11117000	0.00010400
Н	-5.37102000	-1.03588000	0.00003500

Н	-4.87895300	3.24457400	0.00019600	
Ν	1.22737600	-0.53133800	-0.00018700	
Ν	-1.22737100	0.53133600	-0.00015100	
S	1.91442900	-3.55026500	-0.00019100	
S	-1.91442700	3.55026300	0.00002600	
С	-6.79282500	1.33249800	0.00020900	
С	-7.19388500	2.13045700	-1.26468700	
Н	-8.27628200	2.29220000	-1.27535100	
Н	-6.71526800	3.11324500	-1.30428500	
Н	-6.92390600	1.58774600	-2.17608700	
С	-7.57999300	0.00832800	0.00021500	
Н	-7.37102900	-0.59530300	-0.88909300	
Н	-7.37090300	-0.59536800	0.88945000	
Н	-8.65168400	0.22524100	0.00029900	
С	-7.19372500	2.13037400	1.26520600	
Н	-8.27612000	2.29212200	1.27601500	
Н	-6.92363500	1.58760200	2.17653600	
Н	-6.71510000	3.11315800	1.30481100	
С	3.47165100	3.82065400	0.00009900	
С	4.29906500	3.53347500	1.27791600	
Н	4.56873700	2.48124400	1.38327800	
Н	5.22380300	4.11863000	1.26049400	
Н	3.73737900	3.82024600	2.17235600	
С	4.29916900	3.53354200	-1.27766500	
Н	5.22391000	4.11868800	-1.26013300	
Н	4.56884000	2.48131500	-1.38306600	
Н	3.73755900	3.82036900	-2.17213500	
С	3.13347700	5.32489300	0.00012400	
Н	2.57070500	5.62398600	-0.88979900	
Н	2.57060100	5.62393300	0.88999900	
Н	4.06490400	5.89770000	0.00019500	
С	6.79282800	-1.33250400	0.00009600	
С	7.19387500	-2.13041800	-1.26483200	
Н	6.71525500	-3.11320300	-1.30446200	
Н	6.92389000	-1.58767400	-2.17621000	
Н	8.27627100	-2.29216500	-1.27551000	
С	7.19374000	-2.13042600	1.26506100	
Н	8.27613500	-2.29217200	1.27585500	
Н	6.92365600	-1.58768700	2.17641300	
Н	6.71511700	-3.11321200	1.30463500	
С	7.57999700	-0.00833500	0.00014300	
Н	7.37103300	0.59532400	-0.88914700	
Н	7.37090600	0.59533500	0.88939500	
Н	8.65168700	-0.22524800	0.00022000	_

С	-3.47165700	-3.82064500	-0.00010100	
С	-4.29916900	-3.53345800	-1.27785200	
Н	-3.73756100	-3.82024400	-2.17233600	
Н	-5.22391700	-4.11859400	-1.26035100	
Н	-4.56882800	-2.48122200	-1.38319600	
С	-4.29907300	-3.53351300	1.27772500	
Н	-5.22381600	-4.11865900	1.26027500	
Н	-3.73739200	-3.82032400	2.17215500	
Н	-4.56873700	-2.48128400	1.38312800	
С	-3.13350900	-5.32489200	-0.00014700	
Н	-2.57074800	-5.62395500	-0.89008700	
Н	-2.57063500	-5.62398300	0.88971100	
Н	-4.06494600	-5.89768100	-0.00009900	

unsubstituted 6^{•+}

С	-0.34129100	4.67718400	0.16605700	
С	-0.02644000	3.32304500	0.01187800	
С	-1.13838500	2.44019600	-0.07183200	
С	-2.48773400	2.76196700	0.02696900	
С	-2.75931300	4.12361500	0.18664100	
С	-1.69368000	5.04394100	0.24224200	
С	-2.81607500	-0.05142300	-0.06379300	
С	-1.42417100	0.00281100	-0.17927700	
С	-0.68633900	-1.16709000	-0.18512700	
С	-1.18497300	-2.46603800	-0.05485200	
С	-2.59071500	-2.52622900	0.03940300	
С	-3.37302100	-1.34590900	0.03019500	
Н	0.42953500	5.43674000	0.23510100	
Н	-3.77958500	4.48134600	0.27495900	
Н	-1.93856600	6.09386800	0.36361500	
Н	-3.10654300	-3.47502700	0.14124700	
Н	-4.44920100	-1.45050600	0.11909200	
С	0.68633900	1.16709000	-0.18512700	
С	1.42417100	-0.00281100	-0.17927700	
С	1.18497300	2.46603800	-0.05485200	
С	2.81607500	0.05142300	-0.06379300	
С	2.59071500	2.52622900	0.03940300	
С	1.13838500	-2.44019600	-0.07183200	
С	3.37302100	1.34590900	0.03019500	
Н	3.10654300	3.47502700	0.14124700	
С	0.02644000	-3.32304500	0.01187800	
С	2.48773400	-2.76196700	0.02696900	
Н	4.44920100	1.45050600	0.11909200	
С	0.34129100	-4.67718400	0.16605700	

С	2.75931300	-4.12361500	0.18664100	
С	1.69368000	-5.04394100	0.24224200	
Н	-0.42953500	-5.43674000	0.23510100	
Н	3.77958500	-4.48134600	0.27495900	
Н	1.93856600	-6.09386800	0.36361500	
Ν	-0.68633900	1.15581300	-0.21044000	
Ν	0.68633900	-1.15581300	-0.21044000	
S	-3.75937500	1.47703300	-0.03449800	
S	3.75937500	-1.47703300	-0.03449800	
6 ²⁺				
С	-2.31325100	-1.49475100	-0.00374100	
С	-1.08046900	-0.83299900	-0.00636200	
С	0.18658200	-1.39426100	-0.00606100	
С	0.30777100	-2.79808800	-0.00348500	
С	-0.89943600	-3.50509500	-0.00179000	
С	-2.21312500	-2.91894300	-0.00177900	
С	3.04533400	-2.13748300	-0.00181100	
С	2.55772800	-0.82896800	-0.00385300	
С	3.31450100	0.37482200	-0.00249700	
С	4.69912500	0.19551600	0.00025100	
С	5.26271800	-1.10817300	0.00187400	
С	4.43120600	-2.25809000	0.00105600	
Н	-0.84423400	-4.58543200	0.00005900	
Н	5.36463000	1.04496300	0.00138700	
Н	4.88636300	-3.24148900	0.00289700	
С	1.08043500	0.83301500	-0.00646400	
С	-0.18662200	1.39428500	-0.00605200	
С	2.31327200	1.49471100	-0.00388800	
С	-0.30781700	2.79809800	-0.00345300	
С	2.21300600	2.91894200	-0.00187400	
С	-2.55776600	0.82896800	-0.00370700	
С	0.89938100	3.50514700	-0.00181200	
С	-3.31455800	-0.37484700	-0.00240300	
С	-3.04529700	2.13752000	-0.00166100	
Н	0.84418500	4.58548100	0.00009100	
С	-4.69917700	-0.19540200	0.00019700	
С	-4.43116100	2.25820500	0.00121200	
С	-5.26269900	1.10833100	0.00194700	
Н	-5.36483200	-1.04471500	0.00110300	
Н	-4.88627800	3.24162200	0.00310500	
Ν	1.22964900	-0.53301500	-0.00644100	
Ν	-1.22967700	0.53300600	-0.00633300	
S	1.92739500	-3.54145900	-0.00250500	

S	-1.92737700	3.54149400	-0.00235200
С	-6.78694100	1.31875300	0.00532700
С	-7.18753900	2.12113500	-1.26015000
Н	-8.27060200	2.27211300	-1.26491400
Н	-6.72080000	3.10964800	-1.29464200
Н	-6.91802000	1.58428100	-2.17474800
С	-7.56732600	-0.00939200	0.00498500
Н	-7.36297700	-0.61039700	-0.88728400
Н	-7.35980300	-0.61269600	0.89496900
Н	-8.63846900	0.20590700	0.00720500
С	-7.18215600	2.11731400	1.27492400
Н	-8.26514200	2.26861800	1.28460000
Н	-6.90903700	1.57749900	2.18670800
Н	-6.71489900	3.10554500	1.31056400
С	3.44384700	3.83534100	0.00055000
С	4.27025700	3.55028600	1.28242400
Н	4.55566600	2.50206800	1.38746500
Н	5.18618100	4.14738400	1.26187900
Н	3.70781500	3.83197500	2.17740600
С	4.27357000	3.55251200	-1.27966700
Н	5.18955800	4.14938800	-1.25564800
Н	4.55906000	2.50443600	-1.38595000
Н	3.71352300	3.83596800	-2.17559500
С	3.08962200	5.33619000	0.00133300
Н	2.52957500	5.63420700	-0.89063300
Н	2.52788600	5.63293700	0.89266100
Н	4.01645800	5.91491900	0.00264700
С	6.78696900	-1.31852400	0.00516200
С	7.18751000	-2.12100500	-1.26027100
Н	6.72086600	-3.10956600	-1.29461400
Н	6.91785000	-1.58427500	-2.17490100
Н	8.27058600	-2.27188000	-1.26512900
С	7.18232800	-2.11694000	1.27480100
Н	8.26532100	-2.26820300	1.28439800
Н	6.90926500	-1.57704600	2.18655300
Н	6.71510800	-3.10518400	1.31057300
С	7.56728200	0.00966400	0.00461600
Н	7.36278300	0.61059000	-0.88767300
Н	7.35985000	0.61302300	0.89458400
Н	8.63843800	-0.20557500	0.00671200
С	-3.44389300	-3.83548400	0.00042800
С	-4.27334800	-3.55296700	-1.28002200
Н	-3.71299000	-3.83639300	-2.17577000
Н	-5.18920300	-4.15005200	-1.25620200

Н	-4.55904300	-2.50497400	-1.38653200
С	-4.27072000	-3.55089100	1.28210300
Н	-5.18632400	-4.14846200	1.26129800
Н	-3.70835000	-3.83233500	2.17720800
Н	-4.55672700	-2.50285700	1.38716000
С	-3.08925700	-5.33630100	0.00124000
Н	-2.52843900	-5.63410000	-0.89029300
Н	-2.52822600	-5.63315600	0.89295400
Н	-4.01599700	-5.91519500	0.00169900
unsubstituted 6 ²⁺			
С	2.14423400	4.18005300	-0.00016100
С	1.71176800	2.85683700	0.00005500
С	0.29701800	2.67783000	0.00015600
С	-0.69698900	3.65867300	0.00000200
С	-0.21840500	4.97579900	-0.00015000
С	1.16874500	5.20282900	-0.00022800
С	-2.43498700	1.44088800	0.00004400
С	-1.20198400	0.74994000	0.00012000
С	-1.18897800	-0.63704300	0.00000600
С	-2.29685000	-1.48664200	0.00001900
С	-3.52431600	-0.80172400	0.00001000
С	-3.57864000	0.62358300	0.00000600
Н	3.19621300	4.44258900	-0.00024100
Н	-0.89925300	5.82028600	-0.00021700
Н	1.50974600	6.23303900	-0.00040600
Н	-4.46829700	-1.33690200	0.00007100
Н	-4.56041600	1.08589800	-0.00001400
С	1.18897800	0.63704300	0.00000600
С	1.20198400	-0.74994000	0.00012000
С	2.29685000	1.48664200	0.00001900
С	2.43498700	-1.44088800	0.00004400
С	3.52431600	0.80172400	0.00001000
С	-0.29701800	-2.67783000	0.00015600
С	3.57864000	-0.62358300	0.00000600
Н	4.46829700	1.33690200	0.00007100
С	-1.71176800	-2.85683700	0.00005500
С	0.69698900	-3.65867300	0.00000200
Н	4.56041600	-1.08589800	-0.00001400
С	-2.14423400	-4.18005300	-0.00016100
С	0.21840500	-4.97579900	-0.00015000
С	-1.16874500	-5.20282900	-0.00022800
Н	-3.19621300	-4.44258900	-0.00024100
Н	0.89925300	-5.82028600	-0.00021700

Н	-1.50974600	-6.23303900	-0.00040600	
Ν	0.01238400	1.34351200	0.00011400	
Ν	-0.01238400	-1.34351200	0.00011400	
S	-2.43498700	3.22387600	0.00004500	
S	2.43498700	-3.22387600	0.00004500	
7				
С	-2.12741800	-1.68496700	-0.39241700	
С	-1.00299500	-0.93386600	-0.76328300	
С	0.30695900	-1.38680500	-0.78901400	
С	0.53574600	-2.72205500	-0.51404500	
С	-0.57643600	-3.55121300	-0.24158500	
С	-1.89998800	-3.09002200	-0.16637700	
С	3.18006700	-1.82811100	-0.26296400	
С	2.59716800	-0.59188000	-0.51560000	
С	3.19857200	0.66102700	-0.22831900	
С	4.53161300	0.60303400	0.21563800	
С	5.18011400	-0.62504100	0.43754500	
С	4.48043400	-1.83562100	0.22605500	
Н	-0.36737600	-4.59529000	-0.05266800	
Н	5.06906800	1.51641000	0.42099900	
Н	4.94692000	-2.78759100	0.45327600	
С	1.00302100	0.93388500	-0.76337100	
С	-0.30693500	1.38682100	-0.78898300	
С	2.12744900	1.68497900	-0.39249100	
С	-0.53572000	2.72206800	-0.51400100	
С	1.90003200	3.09003900	-0.16645800	
С	-2.59713800	0.59189300	-0.51546900	
С	0.57647300	3.55122900	-0.24161100	
С	-3.19854700	-0.66103100	-0.22823400	
С	-3.18005400	1.82812300	-0.26288100	
Н	0.36743500	4.59531100	-0.05269100	
С	-4.53161800	-0.60303900	0.21562200	
С	-4.48047000	1.83562300	0.22602300	
С	-5.18014500	0.62503300	0.43748000	
Н	-5.06910000	-1.51640700	0.42094900	
Н	-4.94699700	2.78758300	0.45318100	
Ν	1.29619600	-0.41479200	-0.90376800	
Ν	-1.29617100	0.41480700	-0.90362700	
С	-6.63877300	0.69977900	0.93661800	
С	-7.49061200	1.48350800	-0.09057100	
Н	-8.52927300	1.54940100	0.25107500	
Н	-7.12391900	2.50392200	-0.23379300	
Н	-7.48454000	0.98691200	-1.06615400	

	С	-7.27145300	-0.69292600	1.11728700
	Н	-7.29507200	-1.25737300	0.17925500
	Н	-6.74326400	-1.29076000	1.86746900
	Н	-8.30517600	-0.58164500	1.45831100
	С	-6.68046100	1.42714200	2.30187900
	Н	-7.71211800	1.49112800	2.66443600
	Н	-6.08988800	0.88993400	3.05100700
	Н	-6.28995700	2.44675000	2.23729200
	С	3.03832500	4.06822500	0.17854700
	С	3.58681200	3.73635100	1.58856800
	Н	3.89571100	2.69486200	1.69050600
	Н	4.45026100	4.37041900	1.81832700
	Н	2.81979900	3.92381900	2.34663000
	С	4.14761700	3.97033700	-0.89615000
	Н	4.99376300	4.61038200	-0.62407100
	Н	4.52345300	2.95533200	-1.03237200
	Н	3.76827100	4.30909500	-1.86556400
	С	2.57091900	5.53821500	0.20677500
	Н	2.14335000	5.85033800	-0.75114600
	Н	1.83359100	5.72549700	0.99329900
	Н	3.43148800	6.18286800	0.41058500
	С	6.63868900	-0.69984500	0.93678600
	С	7.49062300	-1.48324900	-0.09059300
	Н	7.12389800	-2.50359800	-0.23419400
	Н	7.48465300	-0.98631200	-1.06599900
	Н	8.52924700	-1.54927900	0.25113900
	С	6.68029300	-1.42762600	2.30181700
	Н	7.71191800	-1.49171500	2.66444600
	Н	6.08965300	-0.89066600	3.05107100
	Н	6.28979800	-2.44722100	2.23690600
	С	7.27129700	0.69283100	1.11792800
	Н	7.29522300	1.25745500	0.18000900
	Н	6.74285500	1.29051900	1.86804500
	Н	8.30491100	0.58148800	1.45926200
	С	-3.03827600	-4.06820500	0.17865900
	С	-4.14753600	-3.97039800	-0.89607400
	Н	-3.76814800	-4.30915500	-1.86547100
	Н	-4.99366500	-4.61047400	-0.62401200
	Н	-4.52341300	-2.95541300	-1.03231700
	С	-3.58682600	-3.73624800	1.58863700
	Н	-4.45027200	-4.37032100	1.81839300
	Н	-2.81984300	-3.92365800	2.34674500
	Н	-3.89575000	-2.69475700	1.69049000
_	С	-2.57084900	-5.53818000	0.20700700

Н	-2.14321500	-5.85036500	-0.75086700	
Η	-1.83356100	-5.72539300	0.99358500	
Η	-3.43141500	-6.18284200	0.41080500	
S	2.23395100	-3.33412000	-0.60931300	
Ο	2.49612400	-3.72924200	-2.00171300	
Ο	2.46446500	-4.30336400	0.47139500	
S	-2.23393000	3.33416000	-0.60910400	
Ο	-2.46437000	4.30326300	0.47174900	
Ο	-2.49617800	3.72949000	-2.00143000	

unsubstituted 7

С	-0.64786700	2.60042500	0.04990800
С	-0.22395300	1.33704600	0.47318700
С	1.09676100	0.91490100	0.48659800
С	2.09105900	1.82902100	0.16078400
С	1.71278900	3.15226200	-0.17075600
С	0.37221000	3.53979500	-0.23769900
С	3.62778700	-0.49402000	-0.13028200
С	2.41917000	-1.11325900	0.16726300
С	2.10177600	-2.46303500	-0.14703900
С	3.13585700	-3.24391900	-0.67426000
С	4.38037400	-2.65179600	-0.92597000
С	4.62738300	-1.28804500	-0.69277400
Н	2.49152200	3.86489000	-0.41975300
Н	2.97453600	-4.28739900	-0.92593600
Н	5.58094100	-0.84719500	-0.96270700
С	0.22394500	-1.33705200	0.47317100
С	-1.09677000	-0.91490700	0.48656900
С	0.64786500	-2.60042600	0.04988500
С	-2.09106200	-1.82902300	0.16072800
С	-0.37220700	-3.53979200	-0.23775000
С	-2.41917400	1.11325700	0.16724000
С	-1.71278700	-3.15226000	-0.17082300
С	-2.10177500	2.46303700	-0.14704100
С	-3.62778500	0.49402100	-0.13033400
Н	-2.49151600	-3.86488500	-0.41984200
С	-3.13584500	3.24392600	-0.67427300
С	-4.62737000	1.28805200	-0.69283700
С	-4.38035700	2.65180500	-0.92601300
Н	-2.97451900	4.28740900	-0.92593300
Н	-5.58092300	0.84720400	-0.96279200
Ν	1.29540700	-0.45901900	0.61584600
Ν	-1.29541800	0.45901200	0.61583600

S	3.81224800	1.27130600	0.22949400	
Ο	4.27465700	1.41007000	1.61764800	
0	4.56844900	1.90500100	-0.85842600	
S	-3.81225100	-1.27130800	0.22942200	
0	-4.56843900	-1.90499200	-0.85851300	
0	-4.27467700	-1.41008400	1.61756900	
Н	5.17465700	-3.25801500	-1.34864700	
Н	0.12869300	4.54937600	-0.55059300	
Н	-5.17463300	3.25803000	-1.34869800	
Н	-0.12868600	-4.54937000	-0.55065200	
1				
C	0.22586100	4.38914300	-0.62505600	
C	-0.05136500	3.21677100	0.04157000	
С	1.09209100	2.39902200	0.36571600	
С	2.41207000	2.55855200	-0.11435000	
С	2.64464100	3.82492000	-0.75181200	
С	1.59032800	4.69337300	-0.96332400	
С	3.26407500	1.41215400	-0.11700800	
С	2.78321400	0.12641200	0.25702100	
С	1.46261300	0.04886400	0.80463400	
С	0.77220900	-1.17572700	0.84836100	
С	1.26691400	-2.37089700	0.33315000	
С	2.64464100	-2.34451400	-0.05919400	
С	3.37086200	-1.15598600	-0.06891500	
Н	-0.55545000	5.07246800	-0.94747100	
Н	3.63577100	4.08365000	-1.11518300	
Н	1.78539700	5.63353800	-1.47122300	
Н	4.25821500	1.50066900	-0.54962700	
Н	3.13167900	-3.24467100	-0.42531000	
Н	4.39538400	-1.18238600	-0.43114400	
С	-0.77220900	1.17572700	0.84836100	
С	-1.46261300	-0.04886400	0.80463400	
С	-1.26691400	2.37089700	0.33315000	
С	-2.78321400	-0.12641200	0.25702100	
С	-2.64464100	2.34451400	-0.05919400	
С	-1.09209100	-2.39902200	0.36571600	
С	-3.26407500	-1.41215400	-0.11700800	
С	-3.37086200	1.15598600	-0.06891500	
Н	-3.13167900	3.24467100	-0.42531000	
С	0.05136500	-3.21677100	0.04157000	
С	-2.41207000	-2.55855200	-0.11435000	
Н	-4.25821500	-1.50066900	-0.54962700	
Н	-4.39538400	1.18238600	-0.43114400	

С	-0.22586100	-4.38914300	-0.62505600	
С	-2.64464100	-3.82492000	-0.75181200	
С	-1.59032800	-4.69337300	-0.96332400	
Н	0.55545000	-5.07246800	-0.94747100	
Н	-3.63577100	-4.08365000	-1.11518300	
Н	-1.78539700	-5.63353800	-1.47122300	
С	-0.66597800	-1.18635700	0.87253500	
С	0.66597800	1.18635700	0.87253500	

9. References

[S1] K. Yamamoto, S. Higashibayashi, Chem. Eur. J. 2016, 22, 663-671.

[S2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, **2016**.
[S3] T. Amaya, H. Sakane, T. Nakata, T. Hirao, *Pure Appl. Chem.* **2010**, *82*, 969-978.
[S4] T. Lu, F. Chen, *J. Comput. Chem.* **2012**, *33*, 580-592.