Supporting Information for

Merging radical-polar crossover/cycloisomerization processes: access to polyfunctional furans enabled by metallaphotoredox catalysis

Yongjun Liu, Wenping Luo, Tingting Xia, Yewen Fang, ${ }^{*}$ Chan Du, Xiaoping Jin, ${ }^{*}$ Yan Li, ${ }^{\text {Li }}$ Zhang, Wan Lei and Hao Wu

Table of Contents

1 General information S1
1.1 Solvents, reagents, and starting materials S1
1.2 Instruments S1
1.3 Picture of a typical reaction setup S2
2 Synthesis of various 2-(1-alkynyl)-2-alken-1-ones S2
2.1 General procedure for the preparation of various 2-(1-alkynyl)-2-alken-1-ones 1a-v S2
2.2 General procedure for the preparation of various 2-(1-alkynyl)-2-alken-1-ones 1 w -x. S3
3 Further screening of transition metal catalyst S9
4 General procedures of dual photoredox/copper-catalyzed reactions S10
4.1 General procedure for the preparation of polyfunctional furans $3,5 a, 6 a, 6 e, 10 a-0$, $11 a-c$, and 11f-i S10
4.2 General procedure for the preparation of polyfunctional furans $5 c, 5 e, 5 g, 6 c, 6 f, 6 h$, and 11e S11
4.3 General procedure for the preparation of polyfunctional furans $5 b, 5 d, 5 f, 6 b, 6 d$, and 6 g S11
4.4 General procedure for the preparation of polyfunctional furans $9 a-j$ S12
5 Mechanistic experiments S29
5.1 Cyclopropanation vs cycloisomerization S29
5.2 Deuteration study S30
6 Dehydrogenation of furan product S32
7 Reference S33
8 NMR spectra of new compounds S34

1 General information

1.1 Solvents, reagents, and starting materials

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware. Photocatalysts $\left.\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}{ }^{1 \mathrm{a}} \quad 4 \mathrm{CzIPN},{ }^{1 \mathrm{~b}}$ and $\mathrm{Ru}(\mathrm{bpz})_{3}\left(\mathrm{PF}_{6}\right)_{2}{ }^{\text {1c }}$ were prepared according to published procedures. Alkyl bis(catecholato)silicates 2 were reported in our previous literatures. ${ }^{2}$ 4Alkyldihydropyridines 7, ${ }^{\text {3a }}$ 4-benzoyl-1,4-dihydropyridine, ${ }^{3 b}$ 4-carbamoyl-1,4dihydropyridine, ${ }^{3 \mathrm{c}}$ and Hantzsch nitrile $\mathbf{8}^{3 \mathrm{a}}$ were prepared using available protocols. Dried solvents were obtained from commercial sources and used without further purification unless otherwise noted.

1.2 Instruments

Hydrogen-1 and carbon-13 nuclear magnetic resonance spectra were recorded on Bruker Avance 500 spectrometer (500 MHz), Agilent 400 MHz NMR Spectrometer, Bruker Ultrashield 400 PLUS, Varian AS400 (400 MHz). Fluorine-19 nuclear magnetic resonance spectra were recorded on an Agilent 400MHz NMR Spectrometer. Deuterium-2 nuclear magnetic resonance spectra were recorded on Bruker Ultrashield 400 PLUS, Varian AS400 (400 MHz).Chemical shifts were reported in ppm downfield from tetramethylsilane, and calibrated using residue undeuterated solvent (CDCl_{3} at $7.26 \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR, $77.0 \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR). Spectra were reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, m $=$ multiplet, $\mathrm{br}=$ broad), coupling constants (Hz) and integration. High resolution mass spectra (HRMS) were recorded on Agilent 6210 ESI/TOF MS, Thermo Q Exactive Plus, and Waters G2-Xs QTOF mass spectrometers. Analytical thin layer chromatography was performed on Polygram SIL G/UV 254 plates. Visualization was accomplished with short wave UV light, or KMnO_{4} staining solutions. Flash column chromatography was performed using silica gel (300-400 mesh) with solvents to use.

1.3 Picture of a typical reaction setup

2 Synthesis of various 2-(1-alkynyl)-2-alken-1-ones

2.1 General procedure for the preparation of various 2-(1-alkynyl)-2-alken-1-

 ones 1a-v

A solution of 2-iodo-cyclohexenone ${ }^{4}(1.11 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.0$ equiv) in THF (25 mL) was treated with $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(176 \mathrm{mg}, 0.25 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathrm{CuI}(95.2$ $\mathrm{mg}, 0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and cooled down to $0^{\circ} \mathrm{C}$ under a N_{2} atmosphere and in the dark. After 10 min of stirring, 3,3-dimethylbut-1-yne ($822.0 \mathrm{mg}, 10.0 \mathrm{mmol}, 2.0$ equiv) and diisopropylamine ($1.52 \mathrm{~g}, 15.0 \mathrm{mmol}, 3.0$ equiv) were added, and the resulting yellow to dark brown solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was partitioned between ethyl acetate and 0.5 N aqueous HCl solution. The aqueous layer was extracted three times with ethyl acetate and the combined organic phases were washed with brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The
crude product was purified by flash column chromatography to yield alkyne 1a as a yellow solid.

2.2 General procedure for the preparation of various 2-(1-alkynyl)-2-alken-1-

 ones 1w-x.

A solution of 2-bromo-1,3-diphenylprop-2-en-1-one ${ }^{5}(1.44 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.0$ equiv) in THF (25 mL) was treated with $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(176 \mathrm{mg}, 0.25 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathrm{CuI}\left(95.2 \mathrm{mg}, 0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%\right.$) and cooled down to $0^{\circ} \mathrm{C}$ under a N_{2} atmosphere and in the dark. After 10 min of stirring, 3,3-dimethylbut-1-yne $(822.0 \mathrm{mg}$, $10.0 \mathrm{mmol}, 2.0$ equiv) and diisopropylamine ($1.52 \mathrm{~g}, 15.0 \mathrm{mmol}, 3.0$ equiv) were added, and the resulting dark brown solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was partitioned between ethyl acetate and 0.5 N aqueous HCl solution. The aqueous layer was extracted three times with ethyl acetate and the combined organic phases were washed with brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude product was purified by flash column chromatography to yield alkyne $\mathbf{1 w}$ as a yellow liquid.

2-(3,3-dimethylbut-1-yn-1-yl)cyclohex-2-en-1-one (1a). ${ }^{6}{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.96(\mathrm{~m}$, 2 H), 1.27 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.9,152.8,125.5,101.4,73.4$, 38.2, 30.9, 27.9, 26.3, 22.5.

2-(phenylethynyl)cyclohex-2-en-1-one (1b). ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.52$7.47(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 2.56-2.47(\mathrm{~m}, 4 \mathrm{H}), 2.09-$ $2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.5,154.1,131.8,128.4,128.2,125.3$, 122.9, 92.1, 83.8, 38.2, 26.5, 22.4.

2-([1,1'-biphenyl]-4-ylethynyl)cyclohex-2-en-1-one (1c). ${ }^{8}{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) δ 7.64-7.57 (m, 6H), 7.48-7.44 (m, 2H), 7.42-7.36 (m, 2H), 2.59-2.53 (m, 4H), 2.13-2.07 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.3, 154.1, 141.0, 140.2, 132.1, $128.8,127.6,126.9,126.8,125.3,121.7,92.0,84.6,38.3,26.7,22.6$.

2-(p-tolylethynyl)cyclohex-2-en-1-one (1d). ${ }^{7}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 4 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.6, 153.8, 138.5, 131.7, 129.0, 125.4, 119.8, 92.3, 83.1, 38.2, 26.5, 22.4, 21.5.

2-((4-ethylphenyl)ethynyl)cyclohex-2-en-1-one (1e). The product 1e was obtained in 29% yield as a pale yellow solid after column chromatography. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.66-2.62 (m, 2H), 2.55-2.49 (m, 4H), 2.09-2.04 (m, 2H), $1.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.7,153.8,144.8,131.8,127.8,125.4,120.0,92.3,83.1$, 38.2, 28.8, 26.5, 22.4, 15.3.HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}: 225.1274$ found 225.1287.

2-((4-pentylphenyl)ethynyl)cyclohex-2-en-1-one (1f). ${ }^{1}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.57$ $(\mathrm{m}, 2 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 4 \mathrm{H}), 2.09-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.29(\mathrm{~m}, 4 \mathrm{H})$, $0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8,153.9,143.6,131.9$, 128.5, 125.7, 120.1, 92.5, 83.3, 38.3, 36.0, 31.6, 31.0, 26.7, 22.7, 22.6, 14.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}: 267.1743$, found 267.1741.

2-((4-(tert-butyl)phenyl)ethynyl)cyclohex-2-en-1-one (1g). ${ }^{7}{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 2.47-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.39$ (m, 2H), 2.10-2.05 (m, 2H), 1.32 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.6,153.8$, $151.7,131.5,125.4,125.2,119.8,92.3,83.2,38.2,34.8,31.2,26.5,22.4$.

2-((4-methoxyphenyl)ethynyl)cyclohex-2-en-1-one (1h). ${ }^{7}{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right)$ 8 7.44-7.42 (m, 2H), 7.34-7.29 (m, 1H), 6.85-6.83 (m, 2H), 3.81 (s, 3H), 2.55$2.48(\mathrm{~m}, 4 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.7, 159.7, 153.4, 133.3, 125.5, 115.0, 113.9, 92.1, 82.5, 55.3, 38.2, 26.5, 22.5.

2-(m-tolylethynyl)cyclohex-2-en-1-one (1i). ${ }^{7}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ $7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.5,153.9,137.9,132.4,129.3,128.8,128.1,125.4,122.7,92.3,83.4,38.2,26.5$, 22.5, 21.2.

2-((4-fluorophenyl)ethynyl)cyclohex-2-en-1-one (1j). ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 4 \mathrm{H})$, 2.10-2.04 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.2,162.3(\mathrm{~d}, J=249.2 \mathrm{~Hz}$), $154.0,133.5(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 125.0,118.8(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=21.9 \mathrm{~Hz})$, $90.9,83.4(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 38.2,26.6,22.5$.

2-(naphthalen-2-ylethynyl)cyclohex-2-en-1-one (1k). ${ }^{9}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}$, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.7,154.3,132.9(2), 132.8(8), 131.8,128.5,127.9,127.8(4), 127.7(5)$, 126.7(3), $126.5,125.4,120.2,92.5,84.1,38.2,26.6,22.5$.

2-(cyclopropylethynyl)cyclohex-2-en-1-one (11). ${ }^{8}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.18(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 2 \mathrm{H})$, 1.45-1.39 (m, 1H), 0.85-0.80 (m, 2H), 0.79-0.75 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4,153.3,125.6,96.6,70.2,38.3,26.5,22.6,8.9,0.4$.

2-(hex-1-yn-1-yl)cyclohex-2-en-1-one (1m). ${ }^{8}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20$ (t, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{q}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.04-1.99 (m, 2H), 1.58-1.52 (m, 2H), 1.47-1.40 (m, 2H), $0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4,153.2,125.7,93.6,75.0,38.3,30.9,26.5,22.6$, 22.2, 19.3, 13.8 .

2-(hept-1-yn-1-yl)cyclohex-2-en-1-one (1n). ${ }^{10}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21$ (t, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{q}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2H), 2.05-2.00 (m, 2H), 1.60-1.55 (m, 2H), 1.44-1.29 (m, 4H), 0.91 (t, $J=7.1 \mathrm{~Hz}$, 3H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.2,153.1,125.6,93.5,74.9,38.1,31.1,28.4,26.3$, 22.5, 22.2, 19.4, 14.0.

2-(oct-1-yn-1-yl)cyclohex-2-en-1-one (1o). ${ }^{11}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21$ (t, J $=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.06-2.00 (m, 2H), 1.60-1.54 (m, 2H), 1.45-1.39 (m, 2H), 1.34-1.27 (m, 4H), $0.90(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.2,153.1,125.6,93.5,74.9,38.1$, 31.4, 28.6(4), 28.6(1), 26.3, 22.5(5), 22.5(0), 19.5, 14.1.

(8R,9S,13S,14S)-13-methyl-3-((6-oxocyclohex-1-en-1-yl)ethynyl)-
$\mathbf{6 , 7 , 8 , 9 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 - d e c a h y d r o - 1 7 H - c y c l o p e n t a [a] p h e n a n t h r e n - 1 7 - o n e ~ (1 p) . ~}$ The product $\mathbf{1 p}$ was obtained in 53% yield as a pale yellow solid after column chromatography. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}$, $3 H), 2.89-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 1 \mathrm{H})$, 2.18-1.93 (m, 6H), 1.65-1.39 (m, 7H), $0.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $220.7,195.6,153.7,140.4,136.5,132.3,129.1,125.5,125.2,120.2,92.3,83.2,50.5$, $47.9,44.5,38.2,37.9,35.8,31.6,29.0,26.5,26.3,25.6,22.5,21.6,13.8$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{O}_{2}: 373.2162$, found 373.2160

2-(3,3-dimethylbut-1-yn-1-yl)-4,4-dimethylcyclohex-2-en-1-one (1q). ${ }^{12}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.27(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.7,161.6,122.7,101.2$, 73.4, 35.7, 34.4, 33.5, 30.9, 27.9, 27.7.

2-(3,3-dimethylbut-1-yn-1-yl)-5,5-dimethylcyclohex-2-en-1-one (1r). ${ }^{12}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.02(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.1,150.6,124.8,101.6,73.3,51.8,40.5,34.0$, 31.0, 28.4, 28.0.

2-(3,3-dimethylbut-1-yn-1-yl)-6,6-dimethylcyclohex-2-en-1-one (1s). ${ }^{12}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.6,150.9,123.7$, $100.8,74.1,41.7,36.1,31.1,28.1,24.4,23.7$.

2-(3,3-dimethylbut-1-yn-1-yl)cyclohept-2-en-1-one (1t). The product 1t was obtained in 44% yield as a pale yellow oil after column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 2 \mathrm{H})$, 1.83-1.74 (m, 4H), $1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 201.0,149.2,128.7$, $99.2,75.8,42.3,31.0,28.3,28.0,25.0,21.6$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}: 191.1430$, found 191.1431

3-(phenylethynyl)-4H-chromen-4-one (1u). ${ }^{13}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33-$ $8.27(\mathrm{~m}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.38-7.37 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 175.3,157.9,156.0,134.0,131.8$, $128.6,128.3,126.3,125.8,123.6,122.7,118.2,111.5,95.0,79.5$.

benzyl 5-(3,3-dimethylbut-1-yn-1-yl)-4-oxo-3,4-dihydropyridine-1(2H)-carboxy-
late (1v). The product $1 \mathbf{v}$ was obtained in 21% yield as a gray solid after column chromatography . ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 5 \mathrm{H}), 5.25(\mathrm{~s}$, $2 \mathrm{H}), 4.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.9,151.8,145.1,134.6,128.7,128.6,128.4,104.8,100.7,71.3$, 69.4, 42.6, 35.6, 31.1, 28.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3}$: 312.1594 , found 312.1591 .

(E)-2-benzylidene-5,5-dimethyl-1-phenylhex-3-yn-1-one (1w). The product 1w was obtained in 52% yield as a pale yellow oil after column chromatography. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.50(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 5 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.0$, 143.6, 137.3, 135.0, 132.2, 130.2, 130.1, 129.7, 128.3, 127.8, 121.5, 110.7, 77.2, 30.3, 28.7. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}$ 289.1587, found 289.1590.

(\boldsymbol{E})-2-benzylidene-4-phenylbut-3-ynal (1x)..$^{14}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.68$ (s, $1 \mathrm{H}), 8.22-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.40$ $(\mathrm{m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.9,151.2,134.2,131.9,131.6,130.7$, 129.1, 128.8, 128.5, 122.7, 122.5, 100.9, 83.2.

3 Further screening of transition metal catalyst

Entry	Deviation from standard conditions	Yield of $\mathbf{3}(\%)$
1	$\operatorname{In}(\mathrm{OTf})_{3}$ instead of $\mathrm{Cu}(\mathrm{OTf})_{2}$	8
2	$\mathrm{Sc}(\mathrm{OTf})_{3}$ instead of $\mathrm{Cu}(\mathrm{OTf})_{2}$	0
3	$\mathrm{Ni}(\mathrm{OTf})_{2}$ instead of $\mathrm{Cu}(\mathrm{OTf})_{2}$	0

4	$\mathrm{Ce}(\mathrm{OTf})_{3}$ instead of $\mathrm{Cu}(\mathrm{OTf})_{2}$	0
5	$\mathrm{Y}(\mathrm{OTf})_{3}$ instead of $\mathrm{Cu}(\mathrm{OTf})_{2}$	0

4 General procedures of dual photoredox/copper-catalyzed

reactions

4.1 General procedure for the preparation of polyfunctional furans $\mathbf{3 , 5 a}, \mathbf{6 a}, \mathbf{6 e}$,

10a-o, 11a-c, and 11f-i.

To an oven dried transparent 10 mL Schlenk tube equipped with stirring bar, $\left.\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(4.5 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and the 2-(1-alkynyl)-2-alken-1-ones 1 ($0.2 \mathrm{mmol}, 1.0$ equiv) were added. In a glovebox, potassium [18-Crown-6] bis(catecholato) alkylsilicate $2\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{Cu}(\mathrm{OTf})_{2}(14.4$ $\mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ were added in the tube. The tube was sealed with a rubber septum and removed from the glovebox. The tube was then charged with degassed DMSO ($6.0 \mathrm{~mL}, 0.033 \mathrm{M}$) via a syringe under N_{2}. The tube was irradiated with a 9 W blue LEDs strip spiraled within a bowel for 24 h (cooling with a fan). After the reaction was complete, the reaction solution was diluted with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution, and was extracted with $\mathrm{EtOAc}(4 \times 5 \mathrm{~mL})$. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product (eluent $=$ petroleum ether / ethyl acetate $100: 1 \mathrm{v} / \mathrm{v}$).

4.2 General procedure for the preparation of polyfunctional furans $5 \mathrm{c}, 5 \mathrm{e}, 5 \mathrm{~g}, \mathbf{6 c}$, 6f, 6h, and 11e.

To an oven dried transparent 10 mL Schlenk tube equipped with stirring bar, $\left.\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(4.5 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and the 2-(1-alkynyl)-2-alken-1-ones 1 ($0.2 \mathrm{mmol}, 1.0$ equiv) were added. In a glovebox, potassium [18-Crown-6] bis(catecholato) alkylsilicate 2 ($0.6 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{Cu}(\mathrm{OTf})_{2}(14.4$ $\mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ were added in the tube. The tube was sealed with a rubber septum and removed from the glovebox. The tube was then charged with degassed DMSO ($6.0 \mathrm{~mL}, 0.033 \mathrm{M}$) via a syringe under N_{2}. The tube was irradiated with a 9 W blue LEDs strip spiraled within a bowel for 36 h (cooling with a fan). After the reaction was complete, the reaction solution was diluted with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution, and was extracted with EtOAc ($4 \times 5 \mathrm{~mL}$). The organic layer was washed with brine, dried over MgSO_{4}, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product (eluent $=$ petroleum ether / ethyl acetate $100: 1 \mathrm{v} / \mathrm{v}$).

4.3 General procedure for the preparation of polyfunctional furans $\mathbf{5 b}, \mathbf{5 d}, \mathbf{5 f}, \mathbf{6 b}$,

 6d, and 6g.

To an oven dried transparent 10 mL Schlenk tube equipped with stirring bar, $\left.\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(4.5 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and the 2 -alkynylcyclohexenones 1 ($0.2 \mathrm{mmol}, 1.0$ equiv) were added. In a glovebox, potassium [18-Crown-6] bis(catecholato) alkylsilicate 2 ($0.4 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cu}(\mathrm{OTf})_{2}(14.4$ $\mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ were added in the tube. The tube was sealed with a rubber septum and removed from the glovebox. The tube was then charged with degassed DMSO ($6.0 \mathrm{~mL}, 0.033 \mathrm{M}$) via a syringe under N_{2}. The tube was irradiated with a 9 W blue LEDs strip spiraled within a bowel for 24 h (cooling with a fan). After 24 h , an additional portion of $\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right)\right.$ ppy $\left.)\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(2.2 \mathrm{mg}, 0.002 \mathrm{mmol}, 1 \mathrm{~mol} \%)$, potassium [18-Crown-6] bis(catecholato) alkylsilicate 2 ($0.2 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{Cu}(\mathrm{OTf})_{2}(7.7 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were added under N_{2}, and the reaction was stirred for an additional 24 h under irradiation. After the reaction was complete, the reaction solution was diluted with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution, and was extracted with EtOAc ($4 \times 5 \mathrm{~mL}$). The organic layer was washed with brine, dried over MgSO_{4}, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product (eluent = petroleum ether / ethyl acetate $100: 1 \mathrm{v} / \mathrm{v}$).

4.4 General procedure for the preparation of polyfunctional furans 9a-j

To an oven dried transparent 10 mL Schlenk tube equipped with stirring bar, $\left.\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(4.5 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, Hantzsch ester 7 or Hantzsch nitrile $\mathbf{8}$ ($0.4 \mathrm{mmol}, 2.0$ equiv) and 2-alkynyl-cyclohexenones $\mathbf{1}(0.2 \mathrm{mmol}$, 1.0 equiv) were added. In a glovebox, $\mathrm{Cu}(\mathrm{OTf})_{2}(14.4 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ was added in the tube. The tube was sealed with a rubber septum and removed from the glovebox. The tube was then charged with degassed DMSO ($6.0 \mathrm{~mL}, 0.033 \mathrm{M}$) via a syringe under N_{2}. The tube was irradiated with a 9 W blue LEDs strip spiraled within a bowel for 24 h (cooling with a fan). After the reaction was complete, the reaction
solution was diluted with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution, and was extracted with EtOAc (4 x 5 mL). The organic layer was washed with brine, dried over MgSO_{4}, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product (eluent = petroleum ether / ethyl acetate $100: 1 \mathrm{v} / \mathrm{v}$).

2-(tert-butyl)-4-(methoxymethyl)-4,5,6,7-tetrahydrobenzofuran (3). The product $\mathbf{3}$ was obtained in $87 \%(39.0 \mathrm{mg})$ yield as a colorless oil after column chromatography . ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.86(\mathrm{~s}, 1 \mathrm{H}), 3.50-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.32$ $(\mathrm{m}, 1 \mathrm{H}), 2.84-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 1 \mathrm{H})$, $1.51-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1,149.1,117.9$, 101.6, 76.8, 58.8, 33.7, 32.5, 29.2, 26.4, 23.1, 21.1. HRMS (ESI) [M+Na] ${ }^{+}$: calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NaO}_{2}$: 245.1512 , found 245.1521 .

2-(tert-butyl)-4-ethyl-4,5,6,7-tetrahydrobenzofuran (5a). The product 5a was obtained in 73% (30.2 mg) yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{~s}, 1 \mathrm{H}), 2.55-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 1 \mathrm{H})$, $1.95-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 0.96$ (t, $J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.9,148.2,121.3,101.6,34.8,32.5,29.3$, 28.6, 28.3, 23.2, 21.6, 11.8. HRMS (ESI) [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}: 207.1743$, found 207.1740.

2-(tert-butyl)-4-propyl-4,5,6,7-tetrahydrobenzofuran (5b). The product 5b was obtained in $86 \%(37.8 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81(\mathrm{~s}, 1 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.73-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.9,148.1,121.5,101.6,38.1,32.9,32.5,29.3$, 29.2, 23.2, 21.6, 20.5, 14.4. HRMS (ESI) [M+H]: calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}: 221.1900$, found 221.1897.

2-(tert-butyl)-4-hexyl-4,5,6,7-tetrahydrobenzofuran (5c); The product 5c was obtained in $68 \%(35.7 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 5.81(\mathrm{~s}, 1 \mathrm{H}), 2.54-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.95-$ $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 10 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 161.7,148.0,121.4,101.5,35.8,33.3,32.6$, $32.0,29.7,29.4,29.3,27.5,23.4,22.8,21.7,14.3$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]$: calculated for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}: 263.2369$, found 263.2369 .

2-(tert-butyl)-4-octyl-4,5,6,7-tetrahydrobenzofuran (5d). The product 5d was obtained in $62 \%(36.1 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{~s}, 1 \mathrm{H}), 2.54-2.48(\mathrm{~m}, 3 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.73-$ $1.61(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 14 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.6,148.0,121.4,101.5,35.8,33.3,32.6,32.0,30.1,29.8,29.5$, $29.4,29.3,27.5,23.4,22.8,21.7,14.3$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]$: calculated for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}$: 291.2682, found 291.2694.

2-(tert-butyl)-4-isobutyl-4,5,6,7-tetrahydrobenzofuran (5e). The product 5e was obtained in $73 \%(34.4 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80(\mathrm{~s}, 1 \mathrm{H}), 2.54-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.96-$ $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H})$, $1.24-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.7,147.9,121.5,101.5,45.4,32.6,30.7,29.4,25.5,23.8,23.4$, 22.2, 21.6. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}: 235.2056$, found 235.2061.

(2-(tert-butyl)-4,5,6,7-tetrahydrobenzofuran-4-yl)methyl acetate (5f). The product 5f was obtained in $87 \%(43.5 \mathrm{mg})$ yield as a colorless oil after column
chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.15(\mathrm{~m}, 1 \mathrm{H})$, 4.03-3.99 (m, 1H), 2.90-2.84 (m, 1H), 2.56-2.53 (m, 2H), 2.09 (s, 3H), 1.96-1.84 (m, $2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,162.4,149.4,116.9,101.5,67.8,32.8,32.5,29.2,26.2,23.0,21.0,20.8$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}:$calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3}: 251.1642$, found 251.1643.

2-(tert-butyl)-4-cyclohexyl-4,5,6,7-tetrahydrobenzofuran (5g). The product $\mathbf{5 g}$ was obtained in $56 \%(29.0 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78(\mathrm{~s}, 1 \mathrm{H}), 2.54-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $1.87(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.46(\mathrm{~m}, 10 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 3 \mathrm{H}), 1.01-0.93(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6,148.7,120.0,102.1,41.5,39.0,32.5,31.5,29.3$, 29.2, 27.0, 26.9, 26.8, 24.9, 23.3, 21.9. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}$: 261.2213, found 261.2209.

4-ethyl-2-phenyl-4,5,6,7-tetrahydrobenzofuran (6a). The product $\mathbf{6 a}$ was obtained in $70 \%(3.8 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.55$ (s, 1H), 2.68-2.63 (m, 2H), 2.54-2.49 (m, 1H), 2.02-1.95 (m, 1H), 1.94-1.88 (m, 1H), $1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.5,150.6,131.4,128.5,126.5,123.5,123.2,105.1,34.6,28.5,28.2,23.4$, 21.4, 11.6; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}: 249.1250$, found 249.1256.

2-phenyl-4-propyl-4,5,6,7-tetrahydrobenzofuran (6b). The product 6b was obtained in 37% (17.9 mg) yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.18(\mathrm{~m}$, $1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 2.65-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88$ $(\mathrm{m}, 1 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.33(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5,150.5,131.4,128.5,126.5,123.7,123.2$,
105.1, 38.0, 32.8, 29.0, 23.4, 21.4, 20.4, 14.4; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}: 263.1406$, found 263.1408.

4-hexyl-2-phenyl-4,5,6,7-tetrahydrobenzofuran (6c). The product $\mathbf{6 c}$ was obtained in $55 \%(31.2 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.54$ $(\mathrm{s}, 1 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H})$, 1.79-1.66 (m, 2H), 1.45-1.27 (m, 10H), 0.92-0.90 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.5,150.5,131.5,128.5,126.5,123.7,123.2,105.1,35.7,33.1,31.9,29.6$, 29.0, 27.2, 23.4, 22.7, 21.4, 14.1; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}$: 283.2055, found 283.2055.

4-octyl-2-phenyl-4,5,6,7-tetrahydrobenzofuran ($\mathbf{6 d}$). The product $\mathbf{6 d}$ was obtained in $41 \%(25.5 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H})$, 2.67-2.62 (m, 2H), 2.62-2.55 (m, 1H), 2.02-1.88 (m, 2H), 1.78-1.66 (m, 2H), 1.41$1.30(\mathrm{~m}, 14 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.3,150.3$, $131.3,128.4,126.4,123.6,123.1,105.0,35.8,33.2,32.0,30.1,29.8,29.5,29.1,27.4$, 23.5, 22.8, 21.6, 14.3. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}: 311.2369$, found 311.2365 .

N-(3-(2-phenyl-4,5,6,7-tetrahydrobenzofuran-4-yl)propyl)aniline (6e). The product $6 \mathbf{e}$ was obtained in $38 \%(25.1 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.72-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H})$, $3.64(\mathrm{br}, 1 \mathrm{H}), 3.19-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.61(\mathrm{~m}, 3 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.69(\mathrm{~m}$, $4 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.7$, $150.7,148.4,131.3,129.2,128.5,126.6,123.2,123.1,117.2,112.7,104.9,44.3,33.1$, 32.9, 29.0, 27.2, 23.3, 21.4; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}$: 332.2009 , found 332.2012 .

4-isobutyl-2-phenyl-4,5,6,7-tetrahydrobenzofuran (6f). The product $\mathbf{6 f}$ was obtained in $22 \%(11.4 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.18(\mathrm{~m}$, $1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 2.69-2.61(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.48$ $(\mathrm{m}, 1 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 151.5,150.5,131.4,128.5,126.5,123.8,123.2,105.1$, $45.3,30.5,29.2,25.4,23.5,23.4,22.1,21.2$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}: 255.1743$, found 255.1742 .

(2-phenyl-4,5,6,7-tetrahydrobenzofuran-4-yl)methyl acetate ($\mathbf{6 g}$). The product $\mathbf{6 g}$ was obtained in $45 \%(24.2 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19$ $(\mathrm{m}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.09(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.68-$ $2.65(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.52(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,152.0,151.5,131.1,128.6,126.8,123.3$, $119.3,104.8,67.6,32.8,26.1,23.2,21.0,20.8$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{3}: 293.1148$, found 293.1148.

4-cyclohexyl-2-phenyl-4,5,6,7-tetrahydrobenzofuran (6h). The product $\mathbf{6 h}$ was obtained in $51 \%(28.8 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}$, $1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.58$ $(\mathrm{m}, 8 \mathrm{H}), 1.30-1.14(\mathrm{~m}, 5 \mathrm{H}), 1.06-0.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.3$, $151.2,131.5,128.5,126.5,123.2,122.2,105.6,41.6,38.9,31.4,29.1,27.0,26.9,26.8$, 24.8, 23.4, 21.8. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}: 281.1900$, found 281.1896.

tert-butyl ((2-(tert-butyl)-4,5,6,7-tetrahydrobenzofuran-4-yl)methyl)carbamate (9a). The product 9 a was obtained in $39 \%(23.8 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{br}, 1 \mathrm{H})$, $3.45-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,155.9,149.2,117.8,101.1,79.1,44.8,33.9$, 32.6, 29.3, 28.6, 27.0, 23.2, 21.3. HRMS (ESI) $[M+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{3}$: 308.2220 found 308.2212.

4-isopropyl-2-phenyl-4,5,6,7-tetrahydrobenzofuran (9b). The product 9b was obtained in $50 \%(24.0 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}$, $1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 2.66-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.4,151.3,131.5,128.5,126.5,123.2,122.4,105.4$, 39.4, 30.9, 24.0, 23.4, 21.9, 20.6, 18.3; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}: 263.1406$, found 263.1402.

4-(pentan-3-yl)-2-phenyl-4,5,6,7-tetrahydrobenzofuran (9c). The product 9c was obtained in 25% (13.4 mg) yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H})$, $6.51(\mathrm{~s}, 1 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.65(\mathrm{~m}$, $2 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.3,151.2,131.3$, 128.4, 126.3, 123.1, 122.5, 104.8, 44.9, 35.3, 24.2, 23.9, 23.5, 23.3, 22.5, 13.1, 12.7. HRMS (ESI) [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}: 269.1900$, found 269.1899.

2,4-di-tert-butyl-4,5,6,7-tetrahydrobenzofuran (9d). The product 9d was obtained in 33% (15.4 mg) yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.92(\mathrm{~s}, 1 \mathrm{H}), 2.51-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H})$, 1.84-1.76 (m, 1H), 1.66-1.59 (m, 1H), 1.48-1.39 (m, 1H), $1.25(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8,149.7,118.4,103.6,44.1,34.1,32.5,29.4,28.7$, 26.1, 23.5, 22.7. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}: 235.2056$, found 235.2051.

2-([1,1'-biphenyl]-4-yl)-4-benzyl-4,5,6,7-tetrahydrobenzofuran (9e). The product 9e was obtained in $45 \%(32.9 \mathrm{mg})$ yield as a pale yellow solid after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H})$, 7.37-7.29 (m, 3H), 7.26-7.20 (m, 3H), $6.38(\mathrm{~s}, 1 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.88(\mathrm{~m}$, $1 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.3,151.1,140.7(3), 140.6(8), 139.2,130.3,129.2$, $128.8,128.3,127.2(2), 127.1(8), 126.8,126.0,123.6,123.1,105.3,42.1,35.0,28.8$, 23.4, 21.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}: 365.1900$, found 365.1905 .

2-([1,1'-biphenyl]-4-yl)-4-(4-methoxybenzyl)-4,5,6,7-tetrahydrobenzofuran (9f). The product 9 f was obtained in $31 \%(24.4 \mathrm{mg})$ yield as a pale yellow solid after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.47-7.41$ (m, 2H), 7.36-7.31 (m, 1H), 7.15 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.87 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.39$ (s, $1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.57$ $(\mathrm{m}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,151.2,151.1,140.7,139.1,132.7,130.3,130.1,128.8$, 127.2(1), 127.1(6), 126.8, 123.6, 123.1, 113.6, 105.3, 55.3, 41.2, 35.1, 28.8, 23.4, 21.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{O}_{2}$: 395.2006, found 395.2014.

2-([1,1'-biphenyl]-4-yl)-4-(4-chlorobenzyl)-4,5,6,7-tetrahydrobenzofuran (9g). The product 9 g was obtained in $46 \%(36.9 \mathrm{mg})$ yield as a pale yellow solid after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.46-7.42$ (m, 2H), 7.36-7.31 (m, 1H), $7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~s}$, $1 \mathrm{H}), 3.03-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.59(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H})$, 1.81-1.72 (m, 2H), 1.42-1.35 (m, 1H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.4,151.1$, $140.7,139.3,139.1,131.8,130.6,130.2,128.8,128.4,127.3,127.2,126.8,123.7$, $122.7,105.1,41.4,34.9,28.8,23.4,21.1$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{ClO}: 399.1510$, found 399.1508 .

2-([1,1'-biphenyl]-4-yl)-4-(naphthalen-1-ylmethyl)-4,5,6,7-tetrahydrobenzofuran $(9 h)$. The product 9 h was obtained in $16 \%(13.5 \mathrm{mg})$ yield as a pale yellow solid after column chromatography; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.58(\mathrm{~m}, 6 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.47-7.40 (m, 3H), $7.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=13.3,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H})$, 1.77-1.69 (m, 2H), 1.53-1.47 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.4,151.1$, $140.7,139.2,136.6,134.0,132.1,130.3,128.9,128.8,127.4,127.2(4), 127.1(8)$, $126.9,126.8,125.8,125.5,125.3,123.9,123.7,123.3,105.3,39.3,34.0,29.1,23.5$, 21.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{O}: 415.2056$, found 415.2065 .

phenyl(2-phenyl-4,5,6,7-tetrahydrobenzofuran-4-yl)methanone (9i). The product $\mathbf{9 i}$ was obtained in $25 \%(15.2 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.60$ $(\mathrm{m}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.61-$
$4.58(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.87(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.9,152.1,151.9,136.6,133.2,131.1,128.7$, 128.6, 128.5, 126.8, 123.4, 117.1, 105.3, 41.8, 27.1, 23.0, 21.4; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NaO}_{2}$: 325.1199 , found 325.1197.

4-(methoxymethyl)-2-phenyl-4,5,6,7-tetrahydrobenzofuran (10a). The product 10a was obtained in $57 \%(27.8 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}$, $1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 3.51-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.39(\mathrm{~m}, 4 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.64$ $(\mathrm{m}, 2 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.8,151.3,131.3,128.5,126.59,123.3,120.4$, 105.2, 76.7, 58.9, 33.7, 26.3, 23.3, 21.1; HRMS (ESI) [M+Na] ${ }^{+}$: calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{2}$: 265.1199 , found 265.1196.

4-(methoxymethyl)-2-(p-tolyl)-4,5,6,7-tetrahydrobenzofuran (10b). The product 10b was obtained in $69 \%(35.3 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.39(\mathrm{~m}, 4 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H})$, 2.68-2.62 (m, 2H), 2.34 (s, 3H), 2.01-1.94 (m, 1H), 1.93-1.87 (m, 1H), 1.82-1.74 (m, $1 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0,150.8,136.3,129.2$, 128.6, 123.2, 120.2, 104.4, 76.8, 58.9, 33.7, 26.3, 23.2, 21.2, 21.1; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}_{2}$: 279.1356, found 279.1359.

2-(4-ethylphenyl)-4-(methoxymethyl)-4,5,6,7-tetrahydrobenzofuran (10c). The product 10 c was obtained in $60 \%(32.3 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.39(\mathrm{~m}, 4 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 1 \mathrm{H})$,
2.66-2.62 (m, 4H), 2.01-1.94 (m, 1H), 1.93-1.87 (m, 1H), 1.82-1.74 (m, 1H), 1.53$1.49(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,150.9$, $142.8,128.9,128.0,123.4,120.2,104.5,76.8,58.9,33.7,28.6,26.3,23.3,21.1,15.5$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2}$: 271.1693, found 271.1705.

5-(methoxymethyl)-2-(4-pentylphenyl)-4,5,6,7-tetrahydrobenzofuran (10d). The product 10 d was obtained in $52 \%(32.4 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.39(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.89(\mathrm{~m}, 1 \mathrm{H})$, 2.66-2.64 (m, 2H), 2.61-2.58 (m, 2H), 2.00-1.95 (m, 1H), 1.93-1.88 (m, 1H), 1.82$1.75(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.91-0.88(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,150.9,141.5,128.9,128.6,123.3,120.2$, 104.5, 76.8, 58.9, 35.7, 33.7, 31.5, 31.1, 26.3, 23.3, 22.5, 21.1, 14.0. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{2}: 313.2162$, found 313.2167.

2-(4-(tert-butyl)phenyl)-4-(methoxymethyl)-4,5,6,7-tetrahydrobenzofuran (10e). The product 10e was obtained in $68 \%(40.5 \mathrm{mg})$ yield as a pale yellow solid after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.93-2.87(\mathrm{~m}$, $1 \mathrm{H}), 2.67-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H})$, 1.56-1.50 (m, 1H), $1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0,150.9,149.6$, 128.7, 125.5, 123.1, 120.2, 104.6, 76.8, 58.9, 34.6, 33.7, 31.3, 26.3, 23.3, 21.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{2}: 299.2006$, found 299.2009.

4-(methoxymethyl)-2-(4-methoxyphenyl)-4,5,6,7-tetrahydrobenzofuran (10f). The product 10 f was obtained in $60 \%(32.6 \mathrm{mg})$ yield as a colorless oil after column
chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.39(\mathrm{~m}, 4 \mathrm{H}), 2.92-$ $2.85(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.74(\mathrm{~m}$, $1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,151.9,150.6,124.7$, $124.5,120.2,114.0,103.6,76.8,58.9,55.3,33.7,26.3,23.3,21.2$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3}: 273.1485$, found 273.1483.

2-([1,1'-biphenyl]-4-yl)-4-(methoxymethyl)-4,5,6,7-tetrahydrobenzofuran (10g). The product $\mathbf{1 0 g}$ was obtained in $66 \%(42.2 \mathrm{mg})$ yield as a pale yellow solid after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63-7.58 (m, 4H), 7.46-7.42 (m, 2H), 7.35-7.32 (m, 1H), $6.65(\mathrm{~s}, 1 \mathrm{H}), ~ 3.53-3.49(\mathrm{~m}$, $1 \mathrm{H}), 3.44-3.41(\mathrm{~m}, 4 \mathrm{H}), 2.94-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H})$, 1.95-1.88 (m, 1H), 1.84-1.76 (m, 1H), 1.56-1.49 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.6,151.5,140.7,139.2,130.3,128.7,127.2(1), 127.1(7), 126.8,123.7,120.6$, 105.5, 76.8, 58.9, 33.7, 26.3, 23.3, 21.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2}: 319.1693$, found 319.1689.

4-(methoxymethyl)-2-(m-tolyl)-4,5,6,7-tetrahydrobenzofuran (10h). The product 10h was obtained in $56 \%(28.8 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.91-$ $2.88(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 1 \mathrm{H})$, 1.83-1.75 (m, 1H), 1.56-1.49 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.9,151.1$, 138.1, 131.2, 128.4, 127.4, 123.9, 120.5, 120.3, 105.1, 76.8, 58.9, 33.7, 26.3, 23.5, 21.5, 21.1. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}_{2}$: 279.1356, found 279.1359 .

2-(4-fluorophenyl)-4-(methoxymethyl)-4,5,6,7-tetrahydrobenzofuran (10i). The product $10 \mathbf{i}$ was obtained in $58 \%(30.0 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 2 \mathrm{H})$, $6.53(\mathrm{~s}, 1 \mathrm{H}), 3.50-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.61(\mathrm{~m}$, $2 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.7(\mathrm{~d}, J=244.4 \mathrm{~Hz}), 151.3,150.9,127.7(\mathrm{~d}, J=3.1$ $\mathrm{Hz}), 124.9(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 120.5,115.50(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 104.9,58.9,33.7,26.2$, 23.2, 21.1, one carbon atom was not assigned due to the overlap with the peaks of $\mathrm{CDCl}_{3} ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-115.5 . \mathrm{HRMS}(\mathrm{ESI})[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FNaO}_{2}$: 283.1105, found 283.1109 .

4-(methoxymethyl)-2-(naphthalen-2-yl)-4,5,6,7-tetrahydrobenzofuran (10j). The product 10 j was obtained in $76 \%(44.5 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.49-$ $7.39(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 4 \mathrm{H}), 2.97-2.90(\mathrm{~m}, 1 \mathrm{H})$, 2.75-2.67 (m, 2H), 2.06-1.98 (m, 1H), 1.97-1.89 (m, 1H), 1.87-1.76 (m, 1H), 1.60$1.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.9,151.7,133.6,132.3,128.6,128.2$, $128.0,127.7,126.3,125.5,122.2,121.2,120.6,106.0,76.8,58.9,33.7,26.3,23.3$, 21.1.HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{2}: 293.1536$, found 293.1537.

2-cyclopropyl-4-(methoxymethyl)-4,5,6,7-tetrahydrobenzofuran (10k). The product 10 k was obtained in $58 \%(24.0 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.87(\mathrm{~s}, 1 \mathrm{H}), 3.45-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.37$ $(\mathrm{s}, 3 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.79(\mathrm{~m}, 3 \mathrm{H})$, $1.75-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 1 \mathrm{H}), 0.83-0.79(\mathrm{~m}, 2 \mathrm{H}), 0.74-0.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 155.2,149.1,118.5,103.5,77.2,58.8,33.7,26.4,23.1$, $21.1,8.8,6.4,6.3 ; \operatorname{HRMS}(\mathrm{ESI})[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NaO}_{2}$: 229.1199, found 229.1205 .

2-butyl-4-(methoxymethyl)-4,5,6,7-tetrahydrobenzofuran (10I). The product 101 was obtained in $19 \%(8.6 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88(\mathrm{~s}, 1 \mathrm{H}), 3.47-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.32$ $(\mathrm{m}, 1 \mathrm{H}), 2.83-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.62-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,149.2,118.3,104.4,76.8,58.8,33.7,30.3,27.9$, 26.4, 23.1, 22.4, 21.1, 13.9; HRMS (ESI) [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{2}$: 223.1693, found 223.1692.

4-(methoxymethyl)-2-pentyl-4,5,6,7-tetrahydrobenzofuran (10m). The product $\mathbf{1 0 m}$ was obtained in $46 \%(21.7 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89(\mathrm{~s}, 1 \mathrm{H}), 3.47-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.38$ $(\mathrm{s}, 3 \mathrm{H}), 3.36-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H})$, 1.76-1.69 (m, 1H), 1.64-1.60 (m, 2H), 1.52-1.43 (m, 1H), 1.35-1.32 (m, 4H), 0.92$0.89(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,149.2,118.4,104.4,76.8,58.8$, $33.7,31.5,28.2,27.9,26.4,23.1,22.5,21.2,14.0$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2}: 237.1849$, found 237.1848.

2-hexyl-4-(methoxymethyl)-4,5,6,7-tetrahydrobenzofuran (10n). The product 10n was obtained in 70% (35.2 mg) yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.89(\mathrm{~s}, 1 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.32$ $(\mathrm{m}, 1 \mathrm{H}), 2.84-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.51(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,149.2,118.4,104.4,76.8,58.8,33.7,31.6,29.0$, 28.2(3), 28.2(1), 26.4, 23.1, 22.6, 21.2, 14.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2}: 251.2006$, found 251.2011 .

(8R,9S,13S,14S)-3-(4-(methoxymethyl)-4,5,6,7-tetrahydrobenzofuran-2-yl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta [a]phenanthren-17one (100). The product $\mathbf{1 0 0}$ was obtained in $66 \%(55.2 \mathrm{mg})$ yield as a pale yellow solid after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.36$ (m, $2 \mathrm{H}), 7.29-7.28(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.41(\mathrm{~m}, 4 \mathrm{H}), 2.99-2.87$ $(\mathrm{m}, 3 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 1 \mathrm{H})$, 2.22-2.13 (m, 1H), 2.13-1.97 (m, 4H), 1.96-1.89 (m, 1H), 1.85-1.75 (m, 1H), 1.70$1.46(\mathrm{~m}, 7 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.5,151.7,150.8,138.1$, $136.4,128.8,125.4,123.6,120.8,120.1,104.6,76.8,58.9,50.6,48.1,44.5,38.2,35.9$, $33.8,31.7,29.5,26.6,26.4,25.8,23.4,21.7,21.2,14.0$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}:$ calculated for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{3}: 419.2581$, found 419.2583 .

2-(tert-butyl)-4-(methoxymethyl)-5,5-dimethyl-4,5,6,7-tetrahydrobenzofuran (11a). The product 11 a was obtained in $86 \%(43.1 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89(\mathrm{~s}, 1 \mathrm{H}), 3.60-3.54(\mathrm{~m}$, $1 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 4 \mathrm{H}), 2.54-2.44(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}$, $3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3,147.3,118.5,102.6,74.7$, 58.6, 43.3, 36.9, 32.5, 32.4, 29.2, 28.6, 22.2, 20.5. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2}: 251.2006$, found 251.2002.

2-(tert-butyl)-4-(methoxymethyl)-6,6-dimethyl-4,5,6,7-tetrahydrobenzofuran (11b). The product 11b was obtained in $64 \%(32.1 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.87(\mathrm{~s}, 1 \mathrm{H}), 3.58-3.54(\mathrm{~m}$, $1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.57$ $(\mathrm{m}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.21-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.5,148.8,116.5,101.0,77.3,58.9,41.0,36.9,32.5,31.8,31.7$, 31.4, 29.2, 25.6. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2}: 251.2006$, found 251.2006.

2-(tert-butyl)-4-(methoxymethyl)-7,7-dimethyl-4,5,6,7-tetrahydrobenzofuran
(11c). The product 11 c was obtained in $64 \%(32.0 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79(\mathrm{~s}, 1 \mathrm{H}), 3.50-3.47(\mathrm{~m}$,
$1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.6,155.5,115.9,101.1,76.8,58.8,37.4,34.3,32.7,32.2,29.2$, 27.8, 23.9. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2}: 251.2006$, found 251.2016.

2-(tert-butyl)-4-(methoxymethyl)-5,6,7,8-tetrahydro-4H-cyclohepta[b]furan (11d). The product 11d was obtained in $32 \%(15.2 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.76(\mathrm{~s}, 1 \mathrm{H}), 3.51-3.48(\mathrm{~m}, 1 \mathrm{H})$, $3.47-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.65(\mathrm{~m}$, $6 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,150.8,120.8,103.6,75.5$, 58.7, 36.4, 32.4, 30.9, 29.3, 28.9, 27.3, 26.6. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2}: 237.1849$, found 237.1855.

4-(methoxymethyl)-2-phenyl-4H-furo[3,2-c]chromene (11f). The product 11f was obtained in $11 \%(6.4 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-$ $7.39(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H})$, 5.70-5.67 (m, 1H), 3.84-3.80 (m, 1H), 3.73-3.70(m, 1H), 3.48 (s, 3H); ${ }^{13}$ C NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,152.3,145.8,130.3,128.7,128.6,127.6,123.7,121.4,119.4$, $116.5,116.2,116.0,103.4,75.8,75.1,59.6$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{3}$: 293.1172, found 293.1179.

benzyl-2-(tert-butyl)-4-(methoxymethyl)-6,7-dihydrofuro[3,2-c]pyridine-5(4H)carboxylate (11 g). The product 11 g was obtained in $76 \%(54.2 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, isolated as a mixture of rotamers) $\delta 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.85-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.10(\mathrm{~m}, 3 \mathrm{H}), 4.59-$ $4.36(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 3 \mathrm{H}), 3.30-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{br}, 1 \mathrm{H})$, 2.60-2.50 (m, 1H), 1.27 (s, 9H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a mixture of rotamers) $\delta 163.0,155.4,155.2,147.0,146.5,136.6,128.3,127.8,127.7,115.8$, $115.5,100.8,74.1,73.8,67.3,59.1,50.8,38.9,38.6,32.7,29.2,24.0,23.7$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{4}: 358.2013$, found 358.2013.

5-(tert-butyl)-3-(2-methoxy-1-phenylethyl)-2-phenylfuran (11h). The product $\mathbf{1 1 h}$ was obtained in $8 \%(5.9 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H})$, $6.10(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9,147.2,142.0,131.5,128.3,128.2,128.0,126.6$, 126.4, 125.7, 121.3, 104.1, 76.9, 58.9, 42.3, 32.8, 29.3. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{2}: 335.2006$, found 335.2003.

5-(2-methoxy-1-phenylethyl)-2-phenylfuran (11i). The product $\mathbf{1 1 i}$ was obtained in $26 \%(14.6 \mathrm{mg})$ yield as a colorless oil after column chromatography; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 9 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.9,141.5$, $139.1,130.9,128.6,128.5,128.2,128.1,127.2,126.8,123.7,106.1,76.5,58.9,42.8$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{2}: 279.1380$, found 279.1383.

5 Mechanistic experiments

5.1 Cyclopropanation vs cycloisomerization

To an oven dried transparent 10 mL Schlenk tube equipped with stirring bar, $\left.\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(4.5 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and the $2-(3,3-$ dimethylbut-1-yn-1-yl)cyclohex-2-en-1-one 1a ($39.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) were added. In a glovebox, 12a or $\mathbf{1 2 b}\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{Cu}(\mathrm{OTf})_{2}(14.4 \mathrm{mg}, 0.04$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$) were added in the tube. The tube was sealed with a rubber septum and removed from the glovebox. The tube was then charged with degassed DMSO $(6.0 \mathrm{~mL}, 0.033 \mathrm{M})$ via a syringe under N_{2}. The tube was irradiated with a 9 W blue LEDs strip spiraled within a bowel for 24 h (cooling with a fan). After the reaction was complete, the reaction solution was diluted with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution, and was extracted with $\operatorname{EtOAc}(4 \times 5 \mathrm{~mL})$. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product $\mathbf{1 3}$ (eluent $=$ petroleum ether /ethyl acetate $20: 1 \mathrm{v} / \mathrm{v}$).

($1 R^{*}, \quad 6 S^{*}$)-6-methyl-1-(phenylethynyl)bicyclo[4.1.0]heptan-2-one (13). ${ }^{15}$ The product $\mathbf{1 3}$ was obtained as a pale yellow solid after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 1 \mathrm{H})$, 2.26-2.19 (m, 2H), 2.13-2.02 (m, 2H), 1.82-1.77 (m, 2H), 1.69-1.64 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.8,131.9,128.1,127.9,123.2,89.2,79.8,36.4,29.4$, 27.0, 21.3(3), 21.2(7), 18.3.

5.2 Deuteration study

To an oven dried transparent 10 mL Schlenk tube equipped with stirring bar, $\left.\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(4.5 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and the 2-(3,3-dimethylbut-1-yn-1-yl)cyclohex-2-en-1-one $\mathbf{1 a}$ ($0.2 \mathrm{mmol}, 1.0$ equiv) were added. In a glovebox, potassium [18-Crown-6] bis(catecholato) alkylsilicate 2a ($238.9 \mathrm{mg}, 0.4$ mmol, 2.0 equiv) and $\mathrm{Cu}\left(\mathrm{OTf}_{2}(14.4 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)\right.$ were added in the tube. The tube was sealed with a rubber septum and removed from the glovebox. The tube was then charged with degassed DMSO ($6.0 \mathrm{~mL}, 0.033 \mathrm{M}$) via a syringe under N_{2}. Then $\mathrm{CD}_{3} \mathrm{OD}(244.0 \mu \mathrm{~L}, 6 \mathrm{mmol}, 30.0$ equiv) was added via a micro syringe. The tube was irradiated with a 9 W blue LEDs strip spiraled within a bowel for 24 (cooling with a fan). After the reaction was complete, the reaction solution was diluted with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution, and was extracted with EtOAc (4 x 5 mL). The organic layer was washed with brine, dried over MgSO_{4}, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product 14 in 78% yield (33.1 mg) (eluent = petroleum ether /ethyl acetate $100: 1 \mathrm{v} / \mathrm{v}$). The product $\mathbf{1 4}$ with 73% D-incorporation was determined by ${ }^{1} \mathrm{H}$ NMR.

2-(tert-butyl)-4-(methoxymethyl)-4,5,6,7-tetrahydrobenzofuran-3-d (14), colorless oil. The product 14 was obtained as an inseparable mixture after column chromatography; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.84(\mathrm{~s}, 0.27 \mathrm{H}), 3.49-3.45(\mathrm{~m}, 1 \mathrm{H})$, $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.79$ $(\mathrm{m}, 2 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.1,162.0,149.1,117.9(4), 117.8(7), 101.6,101.4$ (t, $\left.J=25.7 \mathrm{~Hz}, \mathrm{C}-\mathrm{D}\right)$, $76.8,58.8,33.7,32.4(9), 32.4(8), 29.2,26.4,23.1,21.1 .{ }^{2} \mathrm{H}$ NMR ($61 \mathrm{MHz}, \mathrm{CHCl}_{3}$) δ
5.96. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{DO}_{2}: 224.1755$, found 224.1753

${ }^{2}{ }^{H}$ NMR

6 Dehydrogenation of furan product

To an oven dried transparent 10 mL Schlenk tube equipped with stirring bar, 2-(tert-butyl)-4-(methoxymethyl)-4,5,6,7-tetrahydrobenzofuran $\mathbf{3 a}$ ($22.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was added. The tube was evacuated and filled with nitrogen for 3 times, The tube was then charged with DMF ($3.0 \mathrm{~mL}, 0.033 \mathrm{M}$) via a syringe under N_{2}. Then DDQ ($79.5 \mathrm{mg}, 0.35 \mathrm{mmol}, 3.5$ equiv) was added under N_{2}. The resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 12 h , After the reaction was complete, the reaction solution was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The organic layer was washed with brine, dried over MgSO_{4}, filtered, and solvent was evaporated to obtain crude product. Flash chromatography over silica gel afforded the product $\mathbf{1 5}$ (eluent = petroleum ether
/ethyl acetate 100:1 v/v).

2-(tert-butyl)-4-(methoxymethyl)benzofuran (15). The product 15 was obtained in $42 \%(9.2 \mathrm{mg})$ yield as a colorless oil after column chromatography. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H})$, $3.40(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,154.7,130.1,127.9$, 122.8, 121.8, 110.4, 97.5, 73.0, 58.1, 33.0, 28.8. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}: 219.1380$, found 219.1379.

7 Reference

1. (a) M. S. Oderinde and J. W. Johannes, Org. Synth., 2017, 94, 77-92; (b) J. Luo and J. Zhang, ACS Catal., 2016, 6, 873-877; (c) D. M. Schultz, J. W. Sawicki and T. P. Yoon, Beilstein J. Org. Chem., 2015, 11, 61-65.
2. (a) Y. Liu, W. Luo, J. Wu, Y. Fang, Y. Li, X. Jin, L. Zhang, Z. Zhang, F. Xu and C. Du, Org. Chem. Front., 2020, 7, 1588-1592; (b) T. Guo, L. Zhang, X. Liu, Y. Fang, X. Jin, Y. Yang, Y. Li, B. Chen and M. Ouyang, Adv. Synth. Catal., 2018, 360, 4459-4463; (c) W. Luo, Y. Yang, Y. Fang, X. Zhang, X. Jin, G. Zhao, L. Zhang, Y. Li, W. Zhou, T. Xia and B. Chen, Adv. Synth. Catal., 2019, 361, 4215-4221; (d) W. Luo, Y. Fang, L, Zhang, T. Xu, Y. Liu, Y. Li, X. Jin, J. Bao, X. Wu and Z. Zhang, Eur. J. Org. Chem., 2020, 17781781.
3. (a) J. L. Schwarz, H.-M. Huang, T. O. Paulisch and F. Glorius, ACS Catal., 2020, 10, 1621-1627; (b) G. Goti, B. Bieszczad, A. Vega-Peñaloza and P. Melchiorre, Angew. Chem. Int. Ed., 2019, 58, 1213-1217; (c) N. Alandini, L. Buzzetti, G. Favi, T. Schulte, L. Candish, K. D. Collins and P. Melchiorre, Angew. Chem. Int. Ed., 2020, 59, 5248-5253.
4. Z. Zhang, V. Smal, P. Retailleau, A. Voituriez, G. Frison, A. Marinetti and X. Guinchard, J. Am. Chem. Soc., 2020, 142, 3797-3805.
5. H. H. Kong, H. L. Pan and M. W. Ding, J. Org. Chem., 2018, 83, 1292112930.
6. S. Sugita, N. Takeda, N. Tohnai, M. Miyata, O. Miyata and M. Ueda, Angew. Chem. Int. Ed., 2017, 56, 2469-2472.
7. V. Rauniyar, Z. J. Wang, H. E. Burks and F. D. Toste, J. Am. Chem. Soc., 2011, 133, 8486-8489.
8. S. M. Wilkerson-Hill, D. Yu, P. P. Painter, E. L. Fisher, D. J. Tantillo, R. Sarpong and J. E. Hein, J. Am. Chem. Soc., 2017, 139, 10569-10577.
9. Z. Li, J. Peng, C. He, J. Xu and H. Ren, Org. Lett., 2020, 22, 5768-5772.
10. Z. Zhang, V. Smal, P. Retailleau, A. Voituriez, G. Frison, A. Marinetti and X. Guinchard, J. Am. Chem. Soc., 2020, 142, 3797-3805.
11. H. Stefani, K. Gueogjian, F. Singh, J. Pena and M. Amaral, Synlett, 2010, 427-432.
12. P. Scrimin, P. Tecilla and U. Tonellato, J. Org. Chem., 1994, 59, 18-24.
13. M. O. Akram, S. Bera and N. T. Patil, Chem. Commun., 2016, 52, 1230612309.
14. H. H. Kong, H. L. Pan and M. W. Ding, J. Org. Chem., 2018, 83, 1292112930.
15. J. Zhang and H.-G. Schmalz, Angew. Chem. Int. Ed., 2006, 45, 6704-6707.

8 NMR spectra of new compounds

안

1t

0	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$\stackrel{\infty}{\infty} \stackrel{\infty}{\infty} \stackrel{\sim}{\infty}$

$1 \mathbf{w}$

3

5a

5b

$6 a$

. 0	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

6b

$6 c$

6d

$\stackrel{m}{\cup} \frac{m}{U}$
ロ0

6d

No
rrarrarrarooboo

6 e

0	0	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	0	0
											f1	(ppm)						10	0	-	0

$6 f$

M $\frac{m}{0} \frac{m}{0}$
00
 iㅜㄴ MON

$6 f$

6 g

$\frac{m}{U} \frac{m}{U} \frac{m}{u}$
-

∞ ぃ No

$\underbrace{-1}$

$6 g$

 $\underbrace{\boldsymbol{N} \boldsymbol{r}} \boldsymbol{\sim}$

6h

 $\underbrace{-r-N}$

9b

9c

 NNNNNNNNNNNNNN。

9e

M $\frac{m}{0}$

$9 f$

 ヘNNNNNNNNNNNNNO

9g

$9 i$

Ph

10a

10c

10d

$10 e$

$10 f$

10 g

1	1		1		1		1	1	1	1	1	1	1	1	1	1	1			
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										(ppm)										

10h

かんinnoño

10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											ppm)										

10j

10k

	200	190	180	170	160	150	140	130	120	110		90	${ }^{1}$	70	60	50	40	30	10	10	0
10	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{f1} \end{array}$	$\begin{gathered} 100 \\ (\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

101

0	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{f1} \end{array}$	$\begin{gathered} 100 \\ (\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

10 m

10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											ppm)										

10n

$\begin{array}{ll}\text { m } & m \\ 0 & \\ 0 & 0 \\ 0 & 0\end{array}$
 NNツツ

Noonntren r

10n

씅 $\begin{gathered}\text { M } \\ 0\end{gathered}$

 ल $\stackrel{\infty}{\infty}$ナMNNNかのナMNN～mo

11c

$\frac{m}{0} \frac{m}{0}$
$\begin{array}{ll}\frac{6}{\circ} & 0 \\ \frac{6}{1} & \frac{1}{5}\end{array}$

∞
∞
∞
0
いn n HOUN

11d

NNNNN

11e

11g

11h

M 0U
 -58.9

$\begin{array}{lllllllllll}77.8 & 77.6 & 77.4 & 77.2 & 77.0 & 76.8 & 76.6 & 76.4 & 76.2\end{array}$ f1 (ppm)

 NNNNNNN

13

