Supporting Information

Regioselective Synthesis of Fused Oxa-Heterocycles via Iodine-Mediated Annulation

of Cyclic 1,3-Dicarbonyl Compounds with Propargylic Alcohols

Liang Zhang,^[a] Neng-Jie Mou,^[a] Dong-Rong Xiao,^[a] Xin Zhuang,^[a] Xiao-Long Lin,^[a] Tian Cai*^[a, b], and Qun-Li Luo*^[a, b]

^[a] College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China. ^[b] Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing 400715, China.

content

1 General Methods	3
2 Reaction optimizations	4
2.1 Optimization for the reaction with cyclic 1,3-diones as 1,3-bis-nucleophiles	4
2.2 Optimization for the reaction with 4-hydroxycoumarins as 1,3-bis-nucleophiles	5
2.3 Optimization for the catalytic synthesis of 2-acyl-dihydrobenzofuranones	6
3 Scope for the cascade annulation of cyclo-pentane-1,3-dione	7
4 Investigations on the mechanism of cascade electrophilic cyclization	8
4.1 Regioselectivity of the cascade annulations of 4-hydroxycoumarin series	8
4.2 Regioselectivity of the cascade annulations of cyclohexane-1,3-dione series	8
4.3 Regioselectivity of the cascade annulations of cyclopentane-1,3-dione series	9
4.4 Proposed mechanism for the formations of 5x, 3y and 3z	9
5 Crystallographic data of 3a, 4a and 5a	11
5.1 Crystallographic data of 3a	11
5.2 Crystallographic data of 4a	13
5.3 Crystallographic data of 5a	15
6 Syntheses of compounds 3—6	17
6.1 General procedure for the synthesis of 3 and 4	17
6.2 General procedure for the synthesis of 5	30
6.3 General procedure for the synthesis of 6	36
7 Scale-up synthesis and synthetic transformations of 3a	41

91	NMR spectra of compounds 3–11	45
8 I	Reference	44
	7.4 Synthesis of 11 from 3a	43
	7.3 Pd-catalyzed cross couplings of 3a	42
	7.2 Base-catalyzed hydrolysis of 3a	41
	7.1 Scale-up synthesis of 3a	41

1 General Methods

Unless otherwise noted, commercially available reagents were used as received. Propargylic alcohols **1** and 4-Hydroxycoumarins **2g–2j** were prepared according to literature procedures.^{1, 2} Compounds **2a–2f** were commercially available. All solvents for chromatographic separations were distilled before use. Solvents for the water-free reactions were dried with standard procedures and stored with Schlenk flasks over molecular sieves. Column chromatography was carried out with 200–300 mesh silica gel. Thin-layer chromatography (TLC) was performed on glassbacked silica plates. UV light, I₂, and solutions of 2,4-dinitrophenylhydrazine were used to visualize products. Concentrating a solution under reduced pressure refers to distillation using a rotary evaporator attached to a vacuum pump (3–10 mmHg). Products obtained as solids or high boiling oils were dried under vacuum (1–3 mmHg). 1 H and 13C NMR spectra were recorded on a 600 MHz NMR spectrometer at 293 K, and the chemical shifts (δ) were internally referenced by the residual solvent signals relative to tetramethylsilane (CDCI3 at 7.26 ppm for 1 H, and at 77.00 ppm for 13C). Data are reported as s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad; coupling constant(s) in Hz; integration. The yields in the text refer to isolated yields of compounds.

2 Reaction optimizations

2.1 Optimization for the reaction with cyclic 1,3-diones as 1,3-bis-nucleophiles.

Table S1. Optimization for the iodine-mediated propargylation/iodocyclization with cyclic 1,3diones as 1,3-bis-nucleophiles.^{*a*}

OH Ph 1a	+ <u>I2 (1 equiv)</u> solvent, 70 °C 2a	, 1 h 3a
Entry	Solvent	Yield (%)
1	DMF	trace
2	DMSO	trace
3	THF	40
4	DCE	59
5	Toluene	61
6	CH₃CN	64
7	MeNO ₂	70
8	EtNO ₂	65
9 ^b	MeNO ₂	42
10 ^c	MeNO ₂	55
11 ^d	MeNO ₂	51
12 ^e	MeNO ₂	77
13 ^f	MeNO ₂	86
14 ^g	MeNO ₂	71

^{*a*} *Conditions*: **1a** (0.3 mmol), **2a** (0.3 mmol), solvent (2 mL), at 70 °C, **1** h, unless otherwise noted. Isolated yields are given. DMF: *N*,*N*-dimethylformamide. DMSO: dimethyl sulfoxide. DCE: **1**,2-dichloroethane. THF: tetrahydrofuran. ^b at roomtemperature. ^c at 50 °C. ^d at 90 °C. ^e 0.45 mmol of **1a** was used. ^f 0.6 mmol of **1a** was used. ^g 0.6 mmol of **2a** was used.

2.2 Optimization for the reaction with 4-hydroxycoumarins as 1,3-bis-nucleophiles.

Table S2. Optimization for the iodine-mediated propargylation/iodocyclization with 4-hydroxycoumarins as 1,3-bis-nucleophiles. a

OH Ph 1a	h 2f OH solve	l_2 nt, T, 2 h	O Ph I O O Ph 5a
Entry	Solvent	T(°C)	Yield (%)
1	1,4-dioxane	70	trace
2	Toluene	70	trace
3	DMSO	70	trace
4	DCE	70	42
5	CH₃CN	70	57
6	MeNO ₂	70	67
7	EtNO ₂	70	61
8	MeNO ₂	25	trace
9	MeNO ₂	40	37
10	MeNO ₂	60	51
11	MeNO ₂	80	62
12	MeNO ₂	100	53
13 ^b	MeNO ₂	70	8
14 ^c	MeNO ₂	70	52
15 ^d	MeNO ₂	70	43
16 ^e	MeNO ₂	70	76
17 ^f	MeNO ₂	70	82
18 ^g	MeNO ₂	70	86
19 ^h	MeNO ₂	70	69

^a *Conditions*: **1a** (0.3 mmol), **2f** (0.3 mmol), I₂ (0.3 mmol), solvent (3 mL), 2 h, unless otherwise noted. Isolated yields are given. DMSO: dimethyl sulfoxide. DCE: **1**,2-dichloroethane. ^b I₂ (0.03 mmol) was used. ^c I₂ (0.45 mmol) was used. ^d I₂ (0.6 mmol) was used. ^e **1a** (0.45 mmol) was used. ^f **1a** (0.45 mmol) and I₂ (0.36 mmol) were used. ^g **1a** (0.45 mmol) was used. One portion of I₂ (0.03 mmol) was added at the beginning. After the mixture was stirred at RT for 1 h, another portion of I₂ (0.33 mmol) was added, and the mixture was stirred at 70 °C for 1 h. ^h 0.6 mmol of **2f** was used.

2.3 Optimization for the catalytic synthesis of 2-acyl-dihydrobenzofuranones

		<u> </u>	
OH Ph 1a F	+ $(1) \operatorname{acid} (20 \text{ m})$ $(2) \operatorname{I}_2 (20 \text{ mol})$	nol%), solvent ₩), 30 W CFL	O Ph O Ph O Ph Fh O Ph
Entry	Solvent	Acid	Yield (%)
1	DCE	TsOH [.] H ₂ O	40
2	DCE	TFA	16
3	DCE	FeCl₃	ND
4	DCE	$BF_3 \cdot Et_2O$	51
5	DCE	$BF_3 \cdot Et_2O$	47
6	DCE	BF ₃ ·Et ₂ O	57
7	MeNO ₂	$BF_3 \cdot Et_2O$	trace
8	PhOCH₃	$BF_3 \cdot Et_2O$	trace
9	PhCl	$BF_3 \cdot Et_2O$	53
10	CCl ₄	$BF_3 \cdot Et_2O$	56
11	EtOAc	BF ₃ Et ₂ O	ND
12	toluene	BF ₃ ·Et ₂ O	73

Table S3. Optimization of the one-pot catalytic synthesis of 2-acyl-6,7dihydrobenzofuran-4(5*H*)-ones ^{*a*}

^a *Conditions*: **1a** (0.3 mmol for entries 1–5, 0.36 mmol for entries 6–12), **2** (0.3 mmol), acid (0.06 mmol), solvent (10 mL), 70 °C for 1 h (entries 1–4) or 0.5 h (entries 5–12). Then I₂ (0.06 mmol) at RT, 30 W CFL, RT for 12 h (entries 1–8) or 5 h (entries 9–12). Isolated yields are given. The reaction vessel was general heavy-wall glass flask. CFL: household compact fluorescent lamp, a white household light bulb. DCE: 1,2-dichloroethane. TsOH: 4-toluenesulfonic acid. TFA: trifluoroacetic acid. ND: no detection.

3 Scope for the cascade annulation of cyclo-pentane-1,3-dione

	R^2 C M	I₂ (1 equiv) IeNO₂, 70 ºC, 1 h		
•	Ze		4	
Entry	R1	R ²	4	Yield
1	Ph	Ph	4a	88%
2	p-MeC ₆ H ₄	Ph	4b	84%
3	p-EtC ₆ H ₄	Ph	4c	79%
4	<i>p</i> - ^{<i>i</i>} PrC ₆ H ₄	Ph	4d	81%
5	$p^{-t}BuC_6H_4$	Ph	4e	73%
6	<i>p</i> -MeOC ₆ H ₄	Ph	4f	81%
7	p-FC ₆ H ₄	Ph	4g	89%
8	p-CIC ₆ H ₄	Ph	4h	80%
9	p-BrC ₆ H ₄	Ph	4i	68%
10	<i>m</i> -MeOC ₆ H ₄	Ph	4j	73%
11	<i>m</i> -MeC ₆ H ₄	Ph	4k	82%
12	o-MeC ₆ H ₄	Ph	41	70%
13	o-MeOC ₆ H ₄	Ph	4m	53%
14	o-CIC ₆ H ₄	Ph	4n	67%
15	2,4-Cl ₂ C ₆ H ₃	Ph	4o	67%
16	$3,5-F_2C_6H_3$	Ph	4р	57%
17	BDO	Ph	4q	80%
18	3-Тр	Ph	4r	78%
19	Ph	p-MeC ₆ H ₄	4s	63%
20	Ph	p-BrC ₆ H ₄	4t	74%
21	Ph	2-Тр	4u	45%
22	Ph	<i>t</i> -Bu	4v	80%

Table S4. Scope for the propargylation/iodocyclization of cyclopentane-1,3-dione with propargyl alcohols ^{*a*}

^{*a*} *Conditions*: **1** (0.6 mmol), **2e** (0.3 mmol), nitromethane (2 mL), at 70 °C, 1 h, unless otherwise noted. Isolated yields are given. TFA: trifluoroacetic acid. BDO: benzo[*d*][1,3]dioxol-5-yl. PMP: *p*-methoxyphenyl. 3-Tp: thiophen-3-yl. 2-Tp: thiophen-2-yl.

4 Investigations on the mechanism of cascade electrophilic cyclization

4.1 Regioselectivity of the cascade annulations of 4-hydroxycoumarin series

Scheme S1. Regioselectivity of the cascade annulations of 4-hydroxycoumarins.

Comments:

(1) Paths a vs b: The cyclization that gave the fused furan derivative (path b) would lead to angle strain due to the fact that the bond angles of the carbon bearing geminal dioxy in the fused furan derivative deviate somewhat from the ideal bond angle of an sp^2 carbon, whereas the corresponding pyran derivative does not require the deviation of the bond angle (path a).

(2) Paths a vs c: The activation energy of iodocyclization in path a is lower than that in path c because the positive charge of the iodocyclization intermediate in path a is stablized through electron delocalization.

4.2 Regioselectivity of the cascade annulations of cyclohexane-1,3-dione series

Scheme S2. Regioselectivity of the cascade annulations of cyclohexane-1,3-diones Comments: The flexible cyclohexane-1,3-dione intermediate enables the iodocyclization undergoes planar transition state **TS EV** (path a) that has low energy than bowl transition state **TS BW** (path b) due to the conjugation stablization.

4.3 Regioselectivity of the cascade annulations of cyclopentane-1,3-dione series

Scheme S3. Regioselectivity of the iodocyclization of propargylated cyclopentane-1,3-diones

Comments: To relief the repulsion between R¹ and R², and angle strain, the rigid enolized cyclopentane-1,3-dione intermediate requires the iodocyclization undergoes transition state **TS TW** (path b) that has low energy than transition state **TS BE** (path a).

4.4 Proposed mechanism for the formations of 5x, 3y and 3z

Comments: The steric hindrance of the distal silyl of alkyne moiety is unfavorable to the collision of iodine with the carbon-carbon triple bond, which prevents the intermolecular coordination of iodine with the carbon-carbon triple bond of diones. Thus, we propose that the nucleophilic annulation of hydroxyl undergoes a mechanism of intramolecular iodine-activation.

Scheme S4. Proposed mechanism for the formation of 5x.

Scheme S5. Proposed mechanism for the formation of 3y.

Scheme S6. Proposed mechanism for the formation of 3z.

Comments: Absence of substituent at the distal position of alkynyl decreases the steric hindrance of the hydroxyl oxygen atom and the stability of propargyl cation, so that the hydroxyl oxygen of propargylic alcohol acts as a donor.

5 Crystallographic data of 3a, 4a and 5a

5.1 Crystallographic data of 3a

Table S5 Crystal data and stru	ucture refinement for 3a .
Formula weight	C ₄₂ H ₃₄ I ₂ O ₄
Temperature/K	856.49
Crystal system	294(1)
Space group	triclinic
a/Å	PĪ
b/Å	8.33351(14)
c/Å	12.8458(2)
α/°	16.7190(3)
<i>в</i> /°	80.1645(13)
γ/°	83.2021(14)
Volume/ų	87.9997(14)
Ζ	1750.88(5)
$ ho_{calcd}$ (g·cm ⁻³)	2
µ/mm⁻¹	1.625
F(000)	14.440
Crystal size/mm ³	848.0
Radiation	0.48 × 0.43 × 0.39
2∂range for data collection/°	CuKα (λ = 1.54184)
Index ranges	6.984 to 143.806
Reflections collected	$-10 \le h \le 8, -15 \le k \le 15, -20 \le l \le 20$
Independent reflections	31932
Data/restraints/parameters	6774 [R _{int} = 0.0526, R _{sigma} = 0.0321]
Goodness-of-fit on F ²	6774/0/433
Final R indexes [/>2 σ (/)]	1.057
Final R indexes [all data]	R ₁ = 0.0468, wR ₂ = 0.1178
Largest diff. peak/hole / e Å ⁻³	R ₁ = 0.0480, wR ₂ = 0.1195
Empirical formula	0.82/-2.35

Table S6. Selected bond lengths [Å] and angles [°] for 3a .			
I1-C15	2.111(3)	C26-C27	1.335(5)
I2-C36	2.111(3)	C26-C25	1.476(5)
C15-C16	1.484(4)	C7-C14	1.526(4)
C15-C14	1.329(5)	C7-C6	1.501(4)
O2-C5	1.374(4)	C27-C22	1.453(5)

O2-C14	1.409(4)	C9-C10	1.387(6)
O4-C35	1.406(4)	C6-C1	1.450(5)
O4-C26	1.375(4)	C22-C23	1.517(6)
O3-C22	1.226(5)	C33-C32	1.368(7)
01-C1	1.222(5)	C42-C41	1.395(5)
C36-C35	1.337(5)	C17-C18	1.398(5)
C36-C37	1.477(4)	C21-C20	1.385(5)
C34-C29	1.381(5)	C10-C11	1.371(7)
C34-C33	1.395(6)	C25-C24	1.517(6)
C35-C28	1.525(4)	C11-C12	1.394(6)
C28-C29	1.528(5)	C38-C39	1.378(6)
C28-C27	1.508(5)	C30-C31	1.387(6)
C29-C30	1.388(5)	C18-C19	1.378(6)
C16-C17	1.389(5)	C1-C2	1.509(6)
C16-C12	1.392(5)	C32-C31	1.388(7)
C8-C7	1.523(5)	C13-C12	1.375(6)
C8-C9	1.391(4)	C3-C4	1.479(7)
C8-C13	1.393(5)	C3-C2	1.445(8)
C37-C42	1.396(5)	C41-C40	1.382(6)
C37-C38	1.399(5)	C40-C39	1.373(7)
C5-C6	1.338(5)	C20-C19	1.380(6)
C5-C4	1.481(5)	C24-C23	1.515(7)
C16-C15-I1	117.1(2)	O2-C14-C7	109.3(3)
C14-C15-I1	116.3(2)	C26-C27-C28	110.0(3)
C14-C15-C16	126.6(3)	C26-C27-C22	120.8(3)
C5-O2-C14	106.2(2)	C22-C27-C28	129.1(3)
C26-O2-C35	106.6(2)	C10-C9-C8	120.2(4)
C35-C36-I2	115.3(2)	C5-C6-C7	109.4(3)
C35C36-C37	127.2(3)	C5-C6-C1	122.2(3)
C37-C36-I2	117.5(2)	C1-C6-C7	128.4(3)
C29-C34-C33	120.2(4)	O3-C22-C27	122.9(4)
O4-C35-C28	109.5(3)	O3-C22-C23	122.5(4)
C36-C35-O4	119.2(3)	C27-C22-C23	114.6(3)
C36-C35-C28	131.2(3)	C32-C33-C34	120.4(4)
C35-C28-C29	115.1(3)	C41-C42-C37	120.8(4)
C27-C28-C35	99.0(2)	C16-C17-C18	120.1(4)
C27-C28-C29	111.7(3)	C20-C21-C16	121.0(4)
C34-C29-C28	119.9(3)	C11-C10-C9	120.8(3)
C34-C29-C30	119.1(3)	C26-C25-C24	107.5(3)
C30-C29-C28	120.9(3)	C10-C11-C12	119.4(4)
C17-C16-C15	121.4(3)	C39-C38-C37	121.2(4)
C17-C16-C21	118.5(3)	C31-C30-C29	120.7(4)
C21-C16-C15	120.2(3)	C19-C18-C17	120.7(4)
C9-C8-C7	121.5(3)	O1-C1-C6	122.1(4)

C9-C8-C13	118.5(3)	01-C1-C2	123.8(4)
C13-C8-C7	120.0(3)	C6-C1-C2	114.1(3)
C42-C37-C36	121.0(3)	C33-C32-C31	120.0(4)
C42-C37-C38	117.6(3)	C12-C13-C8	121.0(3)
C38-C37-C36	121.4(3)	C2-C3-C4	120.9(5)
O2-C5-C4	119.1(3)	C3-C4-C5	109.7(4)
C6-C5-O2	113.6(3)	C40-C41-C42	120.1(4)
C6-C5-C4	127.2(3)	C30-C31-C32	119.6(4)
O4-C26-C25	118.5(3)	C39-C40-C41	119.7(4)
C27-C26-O4	113.0(3)	C19-C20-C21	120.4(4)
C27-C26-C25	128.4(3)	C23-C24-C25	112.7(4)
C8-C7-C14	111.7(3)	C13-C12-C11	120.0(4)
C6-C7-C8	111.8(3)	C18-C19-C20	119.3(3)
C6-C7-C14	99.4(2)	C24-C23-C22	114.1(4)
C15-C14-O2	119.4(3)	C3-C2-C1	117.5(4)
C15-C14-C7	131.3(3)	C40-C39-C38	120.6(4)

Figure S1. ORTEP drawing of 3a with thermal ellipsoids at 50 % probability.

5.2 Crystallographic data of 4a

Table S7 Crystal data and structure refinement for 4a		
Empirical formula	C ₂₀ H ₁₅ IO ₂	
Formula weight	414.22	
Temperature/K	294.6(3)	
Crystal system	monoclinic	
Space group	PĪ	
a/Å	10.95418(6)	
b/Å	20.51469(11)	
c/Å	7.29169(5)	
α/°	90	
в/°	98.0140(6)	
γ/°	90	

Volume/ų	1622.598(17)
Ζ	4
ρ _{calcd} (g⋅cm ⁻³)	1.696
µ/mm⁻¹	15.559
<i>F</i> (000)	816.0
Crystal size/mm ³	$0.48 \times 0.23 \times 0.21$
Radiation	CuKα (λ = 1.54184)
2ϑrange for data collection/°	8.15 to 146.098
Index ranges	$-13 \le h \le 13, -25 \le k \le 25, -9 \le l \le 6$
Reflections collected	29764
Independent reflections	3220 [R_{int} = 0.0616, R_{sigma} = 0.0250]
Data/restraints/parameters	3220/0/208
Goodness-of-fit on F ²	1.024
Final R indexes [<i>I</i> >2 σ (<i>I</i>)]	$R_1 = 0.0445$, $wR_2 = 0.1251$
Final R indexes [all data]	$R_1 = 0.0451$, $wR_2 = 0.1262$
Largest diff. peak/hole / e Å ⁻³	1.37/-2.17

 Table S8.
 Selected bond lengths [Å] and angles [°] for 4a.

I1-C13	2.099(3)	C5-C1	1.460(4)
C13-C14	1.342(4)	C15-C16	1.400(4)
C13-C6	1.517(4)	C15-C20	1.387(4)
O2-C14	1.410(3)	C11-C10	1.358(6)
O2-C4	1.353(3)	C4-C3	1.484(6)
01-C1	1.212(4)	C9-C10	1.363(8)
C14-C15	1.481(4)	C9-C8	1.395(6)
C7-C6	1.532(4)	C1-C2	1.527(5)
C7-C12	1.382(5)	C2-C3	1.538(5)
C7-C8	1.380(4)	C18-C19	1.369(5)
C6-C5	1.503(4)	C18-C17	1.387(5)
C12-C11	1.394(5)	C16-C17	1.383(4)
C5-C4	1.334(4)	C20-C19	1.392(5)
C14-C13-I1	123.2(2)	C20-C15-C16	118.9(3)
C14-C13-C6	123.9(3)	C10-C11-C12	120.3(4)
C6-C13-I1	112.90(19)	O2-C4-C3	119.6(3)
C4-O2-C14	116.8(2)	C5-C4-O2	124.3(3)
C13-C14-O2	120.2(3)	C5-C4-C3	116.0(3)
C13-C14-C15	131.5(3)	C10-C9-C8	121.5(4)
O2-C14-C15	108.3(2)	O1-C1-C5	127.2(3)
C12-C7-C6	122.9(3)	01-C1-C2	125.4(3)
C8-C7-C6	119.7(3)	C5-C1-C2	107.5(3)
C8-C7-C12	117.3(3)	C1-C2-C3	105.9(3)

C13-C6-C7	113.0(2)	C19-C18-C17	120.1(3)
C5-C6-C13	106.5(2)	C17-C16-C15	120.5(3)
C5-C6-C7	110.5(2)	C15-C20-C19	120.1(3)
C7-C12-C11	121.6(3)	C18-C19-C20	120.6(3)
C4-C5-C6	122.2(3)	C4-C3-C2	102.1(3)
C4-C5-C1	108.4(3)	C11-C10-C9	118.8(4)
C1-C5-C6	129.3(3)	C16-C17-C18	119.8(3)
C16-C15-C14	119.3(3)	C7-C8-C9	120.4(4)
C20-C15-C14	121.6(3)		

Figure S2. ORTEP drawing of 4a with thermal ellipsoids at 50 % probability.

5.3 Crystallographic data of 5a

Table S9 Crystal	data and structure refinement for 5a
Empirical formula	C ₂₄ H ₁₅ IO ₃
Formula weight	478.26
Temperature/K	295.20(10)
Crystal system	monoclinic
Space group	РĪ
a/Å	11.08772(6)
b/Å	9.53388(7)
<i>c</i> /Å	18.28445(12)
α/°	90
в/°	99.8957(6)
γ/°	90
Volume/Å ³	1904.07(2)
Ζ	4
ρ _{calcd} (g⋅cm ⁻³)	1.668
µ/mm⁻¹	13.399
F(000)	944.0
Crystal size/mm ³	0.39 × 0.38 × 0.37

Radiation	Cu Kα (λ = 1.54184)
2∂range for data collection/°	8.716 to 143.64
Index ranges	$-13 \leq h \leq 13, -10 \leq k \leq 11, -22 \leq l \leq 22$
Reflections collected	34182
Independent reflections	3722 [R _{int} = 0.0779, R _{sigma} = 0.0293]
Data/restraints/parameters	3722/0/253
Goodness-of-fit on F ²	1.060
Final R indexes [<i>I</i> >2 σ (<i>I</i>)]	R ₁ = 0.0415, wR ₂ = 0.1085
Final R indexes [all data]	$R_1 = 0.0422$, $wR_2 = 0.1098$
Largest diff. peak/hole / e Å 3	1.10/-2.15

Table S10. Selected bond lengths [Å] and angles [°] for 5a	۱.
--	----

I1-C11	2.098(3)	C12-C12	1.333(4)
O1-C9	1.232(4)	C12-C13	1.480(4)
O2-C6	1.376(3)	C11-C10	1.512(3)
O2-C7	1.347(3)	C10-C19	1.530(4)
O3-C7	1.339(3)	C19-C20	1.392(5)
O3-C12	1.410(4)	C19-C24	1.380(6)
C1-C2	1.374(5)	C20-C21	1.378(6)
C1-C6	1.384(4)	C21-C22	1.356(9)
C2-C3	1.397(6)	C22-C23	1.398(8)
C3-C4	1.371(5)	C23-C24	1.397(5)
C4-C5	1.394(4)	C14-C15	1.396(5)
C5-C6	1.387(4)	C14-C13	1.396(4)
C5-C9	1.479(4)	C15-C16	1.377(6)
C7-C8	1.347(4)	C16-C17	1.376(6)
C8-C9	1.449(4)	C17-C18	1.388(4)
C8-C10	1.509(4)	C18-C13	1.389(5)
C7-O2-C6	117.2(2)	C11-C12-C13	132.3(3)
C7-O3-C12	117.8(2)	C12-C11-I1	122.3(2)
C2-C1-C6	118.9(3)	C12-C11-C10	124.2(2)
C1-C2-C3	120.1(3)	C10-C11-I1	113.51(18)
C4-C3-C2	120.2(3)	C8-C10-C11	109.0(2)
C3-C4-C5	120.7(3)	C8-C10-C19	111.5(2)
C4-C5-C9	121.7(3)	C11-C10-C19	112.8(2)
C6-C5-C4	118.0(3)	C20-C19-C10	118.5(3)
C6-C5-C9	120.3(3)	C24-C19-C10	122.1(3)
O2-C6-C1	116.2(3)	C24-C19-C20	119.4(3)
O2-C6-C5	121.8(3)	C21-C20-C19	120.0(5)

C1-C6-C5	122.1(3)	C22-C21-C20	121.0(5)	
O3-C7-O2	107.4(2)	C21-C22-C23	120.2(4)	
O3-C7-C8	125.8(2)	C24-C23-C22	119.1(5)	
C8-C7-O2	126.8(2)	C19-C24-C23	120.3(4)	
C7-C8-C9	118.7(3)	C15-C14-C13	120.1(3)	
C7-C8-C10	119.3(2)	C16-C15-14	120.2(3)	
C9-C8-C10	121.9(2)	C17-16-C15	120.0(3)	
01-C9-C5	121.8(3)	C16-C17-C18	120.4(3)	
01-C9-C8	123.6(3)	C17-C18-C13	120.5(3)	
C8-C9-C5	114.6(2)	C14-C13-C12	118.9(3)	
O3-C12-C13	108.2(2)	C18-C13-C12	122.1(3)	
C11-C12-O3	119.5(2)	C18-C13-C14	118.9(3)	

Figure S3. ORTEP drawing of 5a with thermal ellipsoids at 50 % probability.

6 Syntheses of compounds 3–6

6.1 General procedure for the synthesis of 3 and 4

To the solution of **1** (0.6 mmol) and **2** (0.3 mmol) in CH₃NO₂ (2mL) was added iodine (76 mg, 0.3 mmol) under stirring. The reaction mixture was continually stirred at 70 °C in an oil bath until **1** was consumed as indicated by TLC (ca. 1 h). The mixture was cooled to RT, diluted with a saturated aqueous solution of sodium thiosulfate (5 mL), and extracted with ethyl acetate (3 × 5 mL). The combined organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate as the eluent) to give the desired product.

(E)-2-(iodo(phenyl)methylene)-3-phenyl-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (3a).

Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3a** (110mg, 86%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.53 (d, *J* = 7.3 Hz, 2H), 7.41 (d, *J* = 7.3 Hz, 2H), 7.33 (q, *J* = 8.0 Hz, 4H), 7.25 (q, *J* = 7.0 Hz, 2H), 5.06 (s, 1H), 2.61 – 2.47 (m, 2H), 2.30 (t, *J* = 6.5 Hz, 2H), 2.04 (dd, *J* = 12.8, 6.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.0, 173.1, 157.3, 139.0, 138.8, 129.7, 128.5, 128.4, 128.2, 128.1, 127.0, 119.3, 77.8, 53.2, 36.8, 23.4, 21.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇IO₂ 429.0346; found 429.0346.

(E)-2-(iodo(phenyl)methylene)-3-(p-tolyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (3b).

Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3b** (109 mg, 82%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.57 – 7.48 (m, 2H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.25 (t, *J* = 3.7 Hz, 1H), 7.13 (d, *J* = 7.9 Hz, 2H), 5.03 (s, 1H), 2.61 – 2.47 (m, 2H), 2.32 (s, 3H), 2.31 – 2.27 (m, 2H), 2.04 (dd, *J* = 12.7, 6.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.1, 173.0, 157.4, 138.8, 136.6 135.9, 129.7, 129.2, 128.2, 128.1, 119.4, 77.6, 52.9, 36.9, 23.4, 21.4, 21.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉IO₂ 443.0502; found 443.0507

(E)-2-(iodo(phenyl)methylene)-3-(4-isopropylphenyl)-3,5,6,7tetrahydrobenzofuran-4(2H)-one

(**3c**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3c** (117 mg, 83%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.36 – 7.29 (m, 4H), 7.25 (d, *J* = 7.5 Hz, 1H), 7.17 (d, *J* = 8.1 Hz, 2H), 5.04 (s, 1H), 2.88 (m, 1H), 2.59 – 2.47 (m, 2H), 2.30 (t, *J* = 6.5 Hz, 2H), 2.07 – 2.00 (m, 2H), 1.24 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 193.2, 173.1, 157.5, 147.4, 138.8, 136.2, 129.7, 128.2, 128.0, 126.5, 119.5, 77.7, 52.8, 36.9, 33.7, 23.9, 23.4, 21.4.HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₃IO₂ 471.0815; found 471.0813

(E)-2-(iodo(phenyl)methylene)-3-(4-methoxyphenyl)-3,5,6,7tetrahydrobenzofuran-4(2H)-one

(**3d**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3d** (100 mg, 73%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 7.3 Hz, 2H), 7.33 (dd, *J* = 16.8, 8.2 Hz, 4H), 7.25 (d, *J* = 5.4 Hz, 1H), 6.86 (d, *J* = 8.6 Hz, 2H), 5.02 (s, 1H), 3.79 (s, 3H), 2.61 – 2.47 (m, 2H), 2.30 (t, *J* = 6.5 Hz, 2H), 2.04 (dd, *J* = 12.2, 6.1 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.2, 172.9, 158.5, 157.4, 138.8, 131.1, 129.7, 129.4, 128.1, 119.4, 113.9, 77.7, 55.2, 52.5, 36.9, 23.4, 21.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉IO₃ 459.0452; found 459.0451.

(E)-3-(4-fluorophenyl)-2-(iodo(phenyl)methylene)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one

(**3e**).Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3e** (118 mg, 88%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 2H), 7.41 – 7.31 (m, 4H), 7.27 – 7.24 (m, 1H), 7.00 (t, *J* = 8.6 Hz, 2H), 5.04 (s, 1H), 2.60 – 2.47 (m, 2H), 2.29 (t, *J* = 6.5 Hz, 2H), 2.04 (dd, *J* = 13.6, 6.6 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.1, 173.2, 162.6, 161.0, 157.0, 138.6, 134.81 (d, *J* = 3.2 Hz), 129.94 (d, *J* = 8.1 Hz), 129.6, 128.22 (d, *J* = 18.2 Hz), 119.1, 115.4, 115.3, 78.2, 52.5, 36.8, 23.4, 21.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₆FIO₂ 447.0252; found 447.0246

(*E*)-3-(4-chlorophenyl)-2-(iodo(phenyl)methylene)-3,5,6,7-tetrahydrobenzofuran-4(2*H*)-one (3f). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave 3f (121 mg, 87%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, *J* = 7.4 Hz, 2H), 7.37 – 7.33 (m, 4H), 7.29 (d, *J* = 8.5 Hz, 2H), 7.25 (s, 1H), 5.04 (s, 1H), 2.60 – 2.49 (m, 2H), 2.30 (t, *J* = 6.6 Hz, 2H), 2.09 – 1.99 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.0, 173.3, 156.7, 138.5, 137.5, 132.8, 129.7,129.6, 128.7, 128.3 128.1, 118.9, 78.3, 52.6, 36.8, 23.4, 21.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₆CIIO₂ 462.9956; found 462.9956

(E)-3-(4-bromophenyl)-2-(iodo(phenyl)methylene)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one

(**3g**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3g** (126 mg, 83%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.51 (dd, *J* = 13.1, 5.9 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.30 – 7.26 (m, 3H), 5.03 (s, 1H), 2.63 – 2.48 (m, 2H), 2.30 (t, *J* = 6.6 Hz, 2H), 2.05 (dd, *J* = 11.2, 5.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.0, 173.3, 156.7, 138.5, 138.0, 131.6, 130.0, 129.6, 128.3, 128.1, 121.0, 118.8, 78.3, 52.7, 36.8, 23.4, 21.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₆BrIO₂ 506.9451; found 506.9453

(*E*)-2-(iodo(phenyl)methylene)-3-(4-iodophenyl)-3,5,6,7-tetrahydrobenzofuran-4(2*H*)-one (3h). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave 3h (106 mg, 64%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 7.3 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 2H), 7.26 (s, 3H), 7.16 (d, *J* = 7.9 Hz, 2H), 5.01 (s, 1H), 2.59 – 2.51 (m, 2H), 2.30 (d, *J* = 6.0 Hz, 2H), 2.08 – 2.02 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.1, 173.4, 156.6, 138.7, 138.5, 137.6, 130.3, 129.6, 128.3, 128.1, 118.8, 92.6, 78.3, 52.8, 36.8, 23.4, 21.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₆I₂O₂ 554.9312; found 554.9313.

Methyl (E)-4-(2-(iodo(phenyl)methylene)-4-oxo-2,3,4,5,6,7-hexahydrobenzofuran-3-

yl)benzoate (**3i**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3i** (70 mg, 48%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 7.6 Hz, 2H), 7.49 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 7.4 Hz, 1H), 5.12 (s, 1H), 3.90 (s, 3H), 2.61 – 2.52 (m, 2H), 2.30 (t, *J* = 5.8 Hz, 2H), 2.09 – 2.03 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.0, 173.5, 166.9, 156.6, 144.1 138.5, 129.9, 129.6, 128.9, 128.4, 128.3, 128.1, 118.7, 78.4, 53.2, 52.0, 36.8, 23.4, 21.3.HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₁₉IO₄ 487.0401; found 487.0401.

(E)-2-(iodo(phenyl)methylene)-3-(3-methoxyphenyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one

(**3**j). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3**j (90mg, 65%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.51 (dd, *J* = 8.2, 0.9 Hz, 2H), 7.33 (dd, *J* = 10.6, 4.8 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.15 (dd, *J* = 6.3, 3.6 Hz, 3H), 7.07 (s, 1H), 5.15 (s, 1H), 2.68 (s, 3H), 2.55 (m, *J* = 13.2, 9.9, 4.2 Hz, 2H), 2.30 – 2.25 (m, 2H), 2.04 (dd, *J* = 12.1, 6.1 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.0, 173.2, 159.7, 157.1, 140.4, 138.7, 129.7, 129.3, 128.1, 120.8, 119.2, 114.5, 112.2, 78.0, 55.2, 53.1, 36.8, 23.4, 21.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉IO₃ 459.0452; found 459.0451.

(E)-2-(iodo(phenyl)methylene)-3-(m-tolyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (3k).

Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3j** (87 mg, 65%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.28 – 7.24 (m, 2H), 7.03 – 6.96 (m, 2H), 6.80 (dd, *J* = 8.0, 2.2 Hz, 1H), 5.04 (s, 1H), 3.82 (s, 3H), 2.60 – 2.47 (m, 2H), 2.31 (t, *J* = 6.5 Hz, 2H), 2.08 – 2.02 (m, 2H).¹³C NMR (151 MHz, CDCl₃) δ 192.92 (s), 173.09 (s), 138.83 (s), 137.33 (s), 130.11 (s), 129.70 (s), 128.10 (d, *J* = 2.3 Hz), 127.12 (s), 126.49 (s), 36.92 (s), 23.47 (s), 21.48 (s), 20.19 (s). HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉IO₂ 443.0502; found 443.0507

(E)-3-(3-chlorophenyl)-2-(iodo(phenyl)methylene)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one

(31). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave 31 (113 mg, 85%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.54 – 7.51 (m, 2H), 7.34 (dt, *J* = 5.8, 4.5 Hz, 4H), 7.28 (d, *J* = 7.0 Hz, 1H), 7.26 – 7.22 (m, 2H), 5.04 (s, 1H), 2.62 – 2.50

(m, 2H), 2.33 – 2.30 (m, 2H), 2.09 – 2.04 (m, 2H).¹³C NMR (151 MHz, CDCl₃) δ 193.0, 173.5, 156.6, 140.9, 138.5, 134.3, 129.6, 128.3, 128.1, 127.3, 127.0, 118.8, 78.5, 52.8, 36.8, 23.4, 21.3. HRMS
(ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₆ClO₂ 462.9956; found 462.9954

(E)-2-(iodo(phenyl)methylene)-3-(o-tolyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (3m).

Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3m** (105 mg, 76%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.20 (d, *J* = 6.6 Hz, 3H), 7.07 – 7.04 (m, 1H), 5.02 (d, *J* = 0.9 Hz, 1H), 2.62 – 2.48 (m, 2H), 2.35 (s, 3H), 2.33 – 2.28 (m, 2H), 2.07 – 2.01 (m, 2H).¹³C NMR (151 MHz, CDCl₃) δ 193.1, 173.1, 157.4, 138.8, 137.9, 129.7, 129.1, 128.3, 128.1, 127.8, 125.4, 119.4, 77.7, 53.1, 36.9, 23.4, 21.5, 21.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉IO₂ 443.0502; found 443.0501

(E)-3-(2-chlorophenyl)-2-(iodo(phenyl)methylene)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one

(3n). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate
(8/1, v/v) gave 3n (75 mg, 54%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.47 (s, 1H), 7.42 –
7.31 (m, 6H), 7.28 – 7.24 (m, 2H), 5.05 (d, *J* = 16.7 Hz, 1H), 2.61 – 2.49 (m, 2H), 2.31 (t, *J* = 6.5 Hz,
2H), 2.06 (dd, *J* = 11.8, 5.8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.1, 172.9, 157.9, 157.3, 138.7,
131.3, 130.1, 129.7, 128.4, 128.1, 127.1, 122.1, 119.4, 77.8, 53.2, 36.8, 23.4, 21.4. HRMS (ESI)
m/z: [M + H]⁺ calcd for C₂₁H₁₆IO₂ 462.9956; found 462.9959

(*E*)-3-(2,4-dichlorophenyl)-2-(iodo(phenyl)methylene)-3,5,6,7-tetrahydrobenzofura-4(2*H*)-one (3o). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3o** (92 mg, 62%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, *J* = 7.6 Hz, 2H), 7.34 (dd, *J* = 17.3, 9.8 Hz, 3H), 7.28 – 7.22 (m, 3H), 5.33 (s, 1H), 2.61 – 2.49 (m, 2H), 2.32 (dd, *J* = 13.8, 7.5 Hz, 2H), 2.06 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 174.2, 138.7, 133.6, 131.8, 129.7, 129.5, 128.2, 127.4, 77.9, 53.2, 36.8, 23.4, 21.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₅CllO₂ 496.9567; found 496.9567

(*E*)-3-(benzo[d][1,3]dioxol-5-yl)-2-(iodo(phenyl)methylene)-3,5,6,7-tetrahydro benzofuran-4(2*H*)-one (3p). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3p** (101 mg, 71%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 8.2 Hz, 2H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.28 – 7.25 (m, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 1.6 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 5.94 (d, *J* = 1.8 Hz, 2H), 4.97 (s, 1H), 2.60 – 2.48 (m, 2H), 2.31 (t, *J* = 6.5 Hz, 2H), 2.07 – 2.03 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.2, 173.1, 157.2, 147.7, 146.6, 138.7, 132.8, 129.7, 128.2, 128.1, 122.0, 119.3, 108.6, 108.2, 101.0, 78.0, 52.8, 36.9, 23.4, 21.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₇IO₄ 473.0244; found 473.0242

(*E*)-2-(iodo(phenyl)methylene)-3-(thiophen-3-yl)-3,5,6,7-tetrahydrobenzofuran-4(2*H*)-one (3q). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave 3q (105 mg, 76%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.30 – 7.25 (m, 3H), 7.14 (dd, *J* = 5.0, 1.1 Hz, 1H), 5.20 (s, 1H), 2.57 – 2.48 (m, 2H), 2.34 – 2.31 (m, 2H), 2.07 – 2.02 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.2, 173.4, 156.7, 138.7, 138.4, 129.7. 129.6, 128.2, 127.5, 125.4, 122.8, 118.5, 77.7, 48.4, 36.8, 23.4, 21.3.HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₅IO₂S 434.9910; found 434.9912

(*E*)-2-(iodo(p-tolyl)methylene)-3-phenyl-3,5,6,7-tetrahydrobenzofuran-4(2*H*)-one (3r). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave 3r (100 mg, 75%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.41 (dd, *J* = 12.3, 7.9 Hz, 3H), 7.36 (d, *J* = 4.0 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.25 (d, *J* = 6.0 Hz, 1H), 7.15 (d, *J* = 7.9 Hz, 2H), 5.05 (s, 1H), 2.62 – 2.47 (m, 2H), 2.36 (s, 3H), 2.29 (t, *J* = 6.5 Hz, 2H), 2.04 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.2, 173.3, 156.9, 139.1, 138.2, 135.9, 133.6, 130.1, 129.5, 128.8, 128.67 – 128.3, 127.6, 127.0, 119.3, 78.2, 65.3, 53.1, 36.8, 23.4, 21.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉lO₂ 443.0502; found 443.0504

(*E*)-2-((4-bromophenyl)iodomethylene)-3-phenyl-3,5,6,7-tetrahydrobenzofuran-4(2*H*)-one (3s). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave 3s (105 mg, 87%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, *J* = 8.5 Hz, 2H), 7.39 (dd, *J* = 13.3, 7.9 Hz, 4H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.26 (d, *J* = 7.9 Hz, 1H), 5.04 (s, 1H), 2.62 – 2.48 (m, 2H), 2.30 (t, *J* = 6.5 Hz, 2H), 2.05 (dd, *J* = 12.7, 6.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.0, 157.9, 138.7, 137.7, 131.3, 129.7, 128.5, 128.4, 128.3, 128.1, 127.1, 122.1, 119.4, 53.3, 36.8, 23.4, 21.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₆BrO₂ 506.9451; found 506.9450.

(E)-2-(1-iodopentylidene)-3-phenyl-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (3t). Purification by

flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3t** (92 mg,75%) as a yellow oil. ¹HNMR(600 MHz, CDCl₃) δ 7.30 (m, 3H), 7.26 (d, *J* = 3.1 Hz, 1H), 7.21 (m,1H), 4.84 (s, 1H), 2.71 – 2.60 (m, 2H), 2.59 – 2.53 (m, 2H), 2.29 (t, *J* = 6.6 Hz, 2H), 2.09 – 2.05 (m, 2H), 1.47 (dd, *J* = 15.0, 7.4 Hz, 2H), 1.34 (dd, *J* = 15.0, 7.4 Hz, 2H), 0.94 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 193.2, 173.0, 156.4, 139.5, 128.3, 126.8, 119.0, 84.4, 51.8, 36.8, 36.1, 31.3, 23.4, 21.4, 13.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₁IO₂ 409.0659; found 409.0663.

(*E*)-2-(iodo(phenyl)methylene)-6-methyl-3-phenyl-3,5,6,7-tetrahydrobenzofuran-4(2*H*)-one (3u). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3u** (114 mg,86%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.53 (d, *J* = 7.7 Hz, 2H), 7.40 (d, *J* = 7.4 Hz, 1H), 7.38 (d, *J* = 7.5 Hz, 1H), 7.37 – 7.35 (m, 2H), 7.34 (s, 1H), 7.32 (d, *J* = 4.3 Hz, 2H), 7.25 (s, 1H), 5.05 (s, 1H), 2.64 – 2.56 (m, 1H), 2.35 (dd, *J* = 17.8, 14.8 Hz, 2H), 2.28 – 2.18 (m, 1H), 2.08 – 2.02 (m, 1H), 1.08 (t, *J* = 6.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.8, 173.0, 157.5, 140.96, 139.09, 138.9, 138.7, 129.7, 128.6, 128.2, 128.1, 127.6, 127.0, 119.0, 118.7, 78.0, 77.7, 65.3, 53.3, 53.1, 45.5, 45.2, 31.4, 31.3, 29.9, 29.4, 20.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉IO₂ 443.0502; found 443.0502.

(*E*)-2-(iodo(phenyl)methylene)-6,6-dimethyl-3-phenyl-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (3v). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave 3v (111 mg, 81%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.54 – 7.52 (m, 2H), 7.40 – 7.38 (m, 2H), 7.35 – 7.31 (m, 4H), 7.26 (dd, *J* = 6.1, 3.8 Hz, 2H), 5.06 (s, 1H), 2.43 (dd, *J* = 19.5, 9.9 Hz, 2H), 2.17 (q, *J* = 16.2 Hz, 2H), 1.10 (s, 3H), 1.04 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 192.5, 172.1, 157.6, 139.0, 138.7, 129.7, 128.5, 128.3, 128.1, 127.0 117.9, 77.8, 53.2, 51.2, 37.2, 34.2, 28.8, 28.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇IO₂ 457.0659; found 457.0662.

(*E*)-2-(iodo(phenyl)methylene)-3,6-diphenyl-3,5,6,7-tetrahydrobenzofuran-4(2*H*)-one (3w). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3w** (70 mg, 46%) as a yellow soild. mp 105–107° C. ¹H NMR (600 MHz, CDCl₃) δ 7.55 – 7.52 (m, 2H), 7.46 (d, *J* = 7.3 Hz, 2H), 7.37 – 7.31 (m, 6H), 7.29 (d, *J* = 7.4 Hz, 1H), 7.27 – 7.24 (m, 2H), 7.20 (d, *J* = 7.3 Hz, 2H), 5.12 (d, *J* = 2.3 Hz, 1H), 3.45 – 3.38 (m, 1H), 2.87 – 2.82 (m, 1H), 2.77 – 2.72 (m, 1H), 2.57 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 191.6, 172.5, 157.4, 142.0, 139.0, 138.6, 129.7, 128.9, 128.6, 128.3, 128.2, 128.1, 127.2, 127.1, 126.6, 119.3, 78.3, 53.1, 44.1, 39.8, 31.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₁IO₂ 505.0659; found 505.0658.

S23

(E)-2-(iodo(phenyl)methylene)-3-(4-methoxyphenyl)-6-phenyl-3,5,6,7-tetrahydrobenzofuran-

4(2*H***)-one (3x).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3x** (83 mg, 52%) as a white solid. mp 85–87° C. ¹H NMR (600 MHz, CDCl₃) δ 7.53 (dd, *J* = 7.0, 5.9 Hz, 2H), 7.33 (m, 8H), 7.19 (dd, *J* = 17.4, 7.4 Hz, 2H), 6.88 (dd, *J* = 20.7, 8.6 Hz, 2H), 5.07 (s, 1H), 3.80 (d, *J* = 4.5 Hz, 3H), 3.44 (dd, *J* = 22.1, 19.0 Hz, 1H), 2.86 – 2.73 (m, 2H), 2.62 – 2.55 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 191.9, 172.4, 171.9, 158.6, 157.5, 142.2, 142.0, 138.7, 131.1, 130.7, 129.7, 129.4, 128.8, 128.1, 127.2, 126.7, 119.4, 119.2, 113.9, 78.1, 77.9, 55.2, 52.5, 52.3, 44.2, 40.3, 39.8, 31.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₃IO₃535.0765 ; found 535.0772.

2-methyl-3-phenyl-6,7-dihydrobenzofuran-4(5H)-one (**3y**).³ Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3y** (44 mg, 65%) as a white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.35 (m, 4H), 7.31 – 7.28 (m, 1H), 2.88 (t, *J* = 6.3 Hz, 2H), 2.50 – 2.47 (m, 2H), 2.31 (s, 3H), 2.20 – 2.14 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.9, 165.6, 148.7, 131.7, 129.8, 127.8, 127.0, 119.7, 119.2, 38.6, 23.7, 22.5, 11.9.

3-((1-phenylprop-2-yn-1-yl)oxy)cyclohex-2-en-1-one (**3z**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (8/1, v/v) gave **3z** (39 mg, 57%) as a white solid. mp 160–162 ° C . ¹H NMR (600 MHz, CDCl₃) δ 7.73 (s, 1H), 7.39 (d, *J* = 6.6 Hz, 2H), 7.34 (d, *J* = 7.5 Hz, 2H), 5.53 (s, 1H), 5.30 (s, 1H), 2.60 – 2.48 (m, 2H), 2.35 (m, 2H), 2.01 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 199.3, 175.1, 135.7, 129.1, 128.8, 126.9, 121.3, 105.4, 94.2, 86.1, 36.6, 29.0, 21.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₄O₂ 227.1067; found 227.1064.

3-iodo-2,4-diphenyl-6,7-dihydrocyclopenta[*b*]**pyran-5(4***H***)-one** (**4a**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4a** (109 mg, 88%) as a yellow solid. mp. 128–130 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.58 (dd, *J* = 6.5, 2.8 Hz, 2H), 7.44 (dd, *J* = 4.9, 1.6 Hz, 3H), 7.37 (s, 2H), 7.36 (s, 1H), 7.29 (dd, *J* = 10.3, 4.1 Hz, 1H), 4.65 (s, 1H), 2.72 – 2.68 (m, 2H), 2.48 – 2.43 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.3, 176.9, 149.2, 141.9, 135.5, 129.8, 129.6, 128.5, 128.2, 127.5, 116.8, 81.1, 48.1, 33.8 , 25.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₅IO₂ 415.0189 ; found 415.0190.

3-iodo-2-phenyl-4-(p-tolyl)-6,7-dihydrocyclopenta[*b*]**pyran-5(4***H***)-one (4b).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4b** (108 mg, 84%) as a yellow solid. mp. 130 – 132 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (dd, *J* = 6.3, 2.9 Hz, 2H),

7.44 – 7.42 (m, 3H), 7.26 (s, 1H), 7.25 (s, 1H), 7.16 (d, J = 7.7 Hz, 2H), 4.60 (s, 1H), 2.68 (td, J = 6.6, 2.3 Hz, 2H), 2.44 (m, J = 10.0, 6.3, 3.2 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 201.4, 176.9, 149.0, 139.1, 137.2, 135.6, 129.8, 129.6, 129.3, 128.3, 128.2, 116.9, 81.6, 47.7, 33.8, 25.3, 21.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇IO₂ 429.0346 ; found 429.0346 .

4-(4-ethylphenyl)-3-iodo-2-phenyl-6,7-dihydrocyclopenta[*b*]**pyran-5(4***H***)-one** (**4c**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4c** (109 mg, 79 %) as a yellow solid. mp 105 – 107 ° C. ¹H NMR (600 MHz, CDCl₃) δ 7.50 (dd, *J* = 6.4, 2.9 Hz, 2H), 7.36 (dd, *J* = 4.8, 1.5 Hz, 3H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 4.54 (s, 1H), 2.64 – 2.58 (m, 2H), 2.58 – 2.55 (m, 2H), 2.41 – 2.34 (m, 2H), 1.16 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 201.5, 176.9, 149.0, 143.4, 139.2, 135.6, 129.8, 129.6, 128.3, 128.2, 128.0, 116.9, 81.5, 47.7, 33.8, 28.5, 25.3, 15.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉IO₂ 443.0502 ; found 429.0500 .

3-iodo-4-(4-isopropylphenyl)-2-phenyl-6,7-dihydrocyclopenta[*b*]**pyran-5(***4H***)-one** (4d). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4d** (110 mg, 81%) as a yellow solid. mp 98 –100 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (dd, *J* = 6.3, 2.9 Hz, 2H), 7.43 (dd, *J* = 4.8, 1.6 Hz, 3H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 4.61 (s, 1H), 2.92 – 2.87 (m, 1H), 2.69 (dd, *J* = 10.6, 4.1 Hz, 2H), 2.48 – 2.43 (m, 2H), 1.24 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 201.5, 176.9, 149.0, 147.9, 139.2, 135.6, 129.8, 129.7, 128.3, 128.2, 126.6, 117.0, 81.4, 47.7, 33.8, 33.7, 25.2, 23.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₁IO₂ 457.0659 ; found 457.0648.

4-(4-(tert-butyl)phenyl)-3-iodo-2-phenyl-6,7-dihydrocyclopenta[*b*]**pyran-5(4***H***)-one** (4e). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4e** (103 mg, 73%) as a yellow solid. mp 152–154 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.50 (dd, *J* = 6.4, 2.8 Hz, 2H), 7.36 (dd, *J* = 4.8, 1.5 Hz, 3H), 7.29 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 4.55 (s, 1H), 2.66 – 2.58 (m, 2H), 2.41 – 2.34 (m, 2H), 1.24 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 201.5, 176.9, 150.2, 149.0, 138.8, 135.6,129.8, 129.6, 128.2, 128.0, 125.5, 117.0, 81.3, 47.6, 34.5, 33.9, 31.3, 25.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₃IO₂471.0815; found 471.0807.

3-iodo-4-(4-methoxyphenyl)-2-phenyl-6,7-dihydrocyclopenta[*b*]**pyran-5(4***H***)-one** (4f). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4f** (109 mg, 88%) as a yellow solid. mp. 70–72 ° C. ¹H NMR (600 MHz, CDCl₃) δ 7.58 – 7.55 (m,

S25

2H), 7.48 – 7.43 (m, 3H), 7.26 (s, 1H), 6.91 (d, J = 5.9 Hz, 2H), 6.74 (m, 1H), 4.64 (s, 1H), 2.78 – 2.70 (m, 2H), 2.49 (m, 2H), 1.57 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 201.5, 176.7, 158.9, 148.9, 135.6, 134.3, 129.7,129.6, 129.5,128.2, 116.9, 113.9, 81.9, 55.2, 47.3, 33.8, 25.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇IO₃ 445.0295 ; found 445.0286.

4-(4-fluorophenyl)-3-iodo-2-phenyl-6,7-dihydrocyclopenta[*b*]**pyran-5(4***H***)-one (4g).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4g** (116 mg, 89%) as a yellow solid. mp 122–124 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.56 (dd, *J* = 6.5, 2.8 Hz, 2H), 7.47 – 7.42 (m, 3H), 7.34 (dd, *J* = 8.4, 5.4 Hz, 2H), 7.04 (t, *J* = 8.6 Hz, 2H), 4.63 (s, 1H), 2.74 – 2.67 (m, 2H), 2.51 – 2.42 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.4, 177.0, 163.0, 161.3, 149.3, 137.8, 135.4, 130.1 (d, *J* = 8.2 Hz), 129.9, 129.6, 116.5, 115.5, 115.4, 81.0, 47.4, 33.8, 25.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₄FIO₂ 433.0095 ; found 433.0090.

4-(4-chlorophenyl)-3-iodo-2-phenyl-6,7-dihydrocyclopenta[b]pyran-5(4H)-one (4h). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4h** (107 mg, 80 %) as a yellow solid. mp 118–120 ° C. ¹H NMR (600 MHz, CDCl₃) δ 7.58 – 7.55 (m, 2H), 7.46 – 7.43 (m, 3H), 7.34 – 7.32 (m, 2H), 7.32 – 7.30 (m, 2H), 4.63 (s, 1H), 2.73 – 2.67 (m, 2H), 2.46 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.3, 177.1, 149.5, 140.4, 135.3, 133.4, 129.9, 129.9, 129.6, 128.8, 128.3, 116.4, 80.4, 47.6, 33.8, 25.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₄CllO₂ 448.9800; found 448.9794

4-(4-bromophenyl)-3-iodo-2-phenyl-6,7-dihydrocyclopenta[*b*]**pyran-5(4***H***)-one (4i).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4i** (100 mg, 68%) as a yellow solid. mp 124–126 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 3.0 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 7.46 – 7.43 (m, 3H), 7.26 (s, 1H), 7.25 (s, 1H), 4.62 (s, 1H), 2.75 – 2.68 (m, 2H), 2.51 – 2.42 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.3, 177.1, 149.5, 140.9, 135.3, 131.7, 130.2, 129.9, 129.6, 128.3, 121.6, 116.3, 80.3, 47.6, 33.8, 25.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₄BrlO₂ 492.9295 ; found 492.9294.

3-iodo-4-(3-methoxyphenyl)-2-phenyl-6,7-dihydrocyclopenta[b]pyran-5(4H)-one (4j).

Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4j** (72 mg, 53%) as a yellow solid. mp 75–77 °C . ¹H NMR (600 MHz, CDCl₃) δ 7.57 (dd, *J* = 6.4, 2.8 Hz, 2H), 7.45 – 7.43 (m, 3H), 7.29 (d, *J* = 7.9 Hz, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.93 (s, 1H), 6.83 (dd, *J* = 8.1, 1.8 Hz, 1H), 4.62 (s, 1H), 3.83 (s, 3H), 2.74 – 2.67 (m, 2H), 2.48 (m, *J* = 14.9, 8.7,

5.2 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.4, 177.0, 159.7, 149.2, 143.5, 135.5, 131.7, 129.8, 129.6, 129.4, 128.2, 121.0, 114.7, 112.6, 80.8, 55.2, 48.0, 33.8, 25.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇IO₃ 445.0295 ; found 445.0297.

3-iodo-2-phenyl-4-(m-tolyl)-6,7-dihydrocyclopenta[b]pyran-5(4H)-one (4k). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4k** (105 mg, 82%) as a yellow solid. mp 133–135 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (dd, *J* = 6.3, 2.8 Hz, 2H), 7.43 (dd, *J* = 4.9, 1.7 Hz, 3H), 7.24 (d, *J* = 8.3 Hz, 1H), 7.15 (d, *J* = 6.7 Hz, 2H), 7.09 (d, *J* = 7.4 Hz, 1H), 4.60 (s, 1H), 2.74 – 2.66 (m, 2H), 2.44 (m, 2H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 201.4, 176.9, 149.0, 141.9, 138.1, 135.5, 129.8, 129.6, 129.3, 128.4(d, *J* = 4.9 Hz), 128.2, 125.5, 116.8, 99.9, 81.4, 48.0, 33.8, 25.3, 21.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇IO₂ 429.0346 ; found 429.0342.

3-iodo-2-phenyl-4-(o-tolyl)-6,7-dihydrocyclopenta[b]pyran-5(4*H***)-one (4l). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave 4a (90 mg, 70%) as a yellow solid. mp 138–140 °C . ¹H NMR (600 MHz, CDCl₃) δ 7.51 – 7.47 (m, 2H), 7.37 – 7.33 (m, 3H), 7.14 (s, 1H), 7.09 (dd,** *J* **= 10.5, 2.2 Hz, 2H), 4.82 (s, 1H), 2.50 (s, 2H), 2.38 – 2.29 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.3, 176.8, 148.6, 140.9, 136.7, 135.4, 130.4, 129.8, 129.6, 128.2, 127.3, 126.6, 117.6, 81.8, 43.7, 33.7, 25.4, 19.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇IO₂ 429.0346 ; found 429.0341 .**

3-iodo-4-(2-methoxyphenyl)-2-phenyl-6,7-dihydrocyclopenta[*b*]**pyran-5(4***H***)-one** (4m). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4m** (70 mg, 53%) as a yellow solid. mp 139–141 ° C. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (dd, *J* = 6.4, 2.8 Hz, 2H), 7.45 – 7.42 (m, 3H), 7.29 (d, *J* = 7.9 Hz, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.93 (s, 1H), 6.83 (dd, *J* = 8.1, 1.8 Hz, 1H), 4.62 (s, 1H), 3.83 (s, 3H), 2.74 – 2.67 (m, 2H), 2.47 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.4, 177.0, 159.7, 149.2, 143.5, 135.5, 129.8, 129.6, 129.4, 128.2, 121.0, 116.7, 114.7, 112.6, 80.8, 55.2, 48.0, 33.8, 25.3.HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇IO₃ 445.0295 ; found 445.0286.

4-(2-chlorophenyl)-3-iodo-2-phenyl-6,7-dihydrocyclopenta[*b*]**pyran-5(4***H***)-one (4n).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4n** (90 mg, 67%) as a yellow solid. mp 147–149 ° C. ¹H NMR (600 MHz, CDCl₃) δ 7.55 (dd, *J* = 6.3, 2.7 Hz, 2H), 7.45 – 7.42 (m, 3H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 7.2 Hz, 1H), 7.26 (s, 1H), 7.23 (d, *J*

= 7.4 Hz, 1H), 5.10 (s, 1H), 2.71 (dd, J = 11.4, 4.8 Hz, 2H), 2.48 – 2.43 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.0, 177.7,149.1, 135.5, 134.2, 130.2, 129.8, 129.5, 128.9, 128.2, 127.1, 114.5, 79.8, 45.6, 33.7, 25.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₄ClIO₂ 448.9800; found 448.9801.

4-(2,4-dichlorophenyl)-3-iodo-2-phenyl-6,7-dihydrocyclopenta[*b*]**pyran-5(4***H*)-one (4o). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4o** (90 mg, 67%) as a yellow solid. mp 138–140 ° C. ¹H NMR (600 MHz, CDCl₃) δ 7.54 (dd, *J* = 6.2, 2.9 Hz, 2H), 7.45 – 7.42 (m, 3H), 7.39 (s, 1H), 7.26 (d, *J* = 4.7 Hz, 2H), 5.07 (s, 1H), 2.74 – 2.69 (m, 2H), 2.46 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 200.9, 177.9, 149.4, 135.3, 134.8, 134.0,130.0, 129.9, 129.4, 128.2, 127.5,114.9, 79.09 , 44.9,33.6, 25.4. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₀H₁₃Cl₂IO₂ 482.9410 ; found 482.9394.

4-(3,5-difluorophenyl)-3-iodo-2-phenyl-6,7-dihydrocyclopenta[b]pyran-5(4H)-one (4p).

Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4p** (77 mg, 57%) as a yellow solid. mp 152–154 ° C. ¹H NMR (600 MHz, CDCl₃) δ 7.58 – 7.55 (m, 2H), 7.47 – 7.44 (m, 3H), 6.91 (d, *J* = 5.9 Hz, 2H), 6.74 (m, *J* = 8.8, 5.5, 2.1 Hz, 1H), 4.64 (s, 1H), 2.78 – 2.70 (m, 2H), 2.49 (td, *J* = 6.7, 3.3 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.1, 177.4, 163.9, 162.3, 149.8, 145.7, 135.1, 130.0, 129.5, 128.3, 115.8, 111.6 (dd, *J* = 20.2, 5.1 Hz), 103.11 (d, *J* = 25.4 Hz), 79.1, 47.8, 33.8, 25.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₃F₂IO₂ 451.0001 ; found 450.9999.

4-(benzo[*d***][1,3]dioxol-5-yl)-3-iodo-2-phenyl-6,7-dihydrocyclopenta[***b***]pyran-5(4***H***)-one (4q). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave 4q** (108 mg, 80%) as a yellow solid. mp 140–142 ° C. ¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, *J* = 3.6 Hz, 2H), 7.38 – 7.35 (m, 3H), 6.78 (d, *J* = 7.8 Hz, 1H), 6.75 (s, 1H), 6.72 (d, *J* = 7.9 Hz, 1H), 5.88 (d, *J* = 1.9 Hz, 2H), 4.47 (s, 1H), 2.68 – 2.59 (m, 2H), 2.39 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.5, 176.9, 149.0 147.9, 147.0, 136.1, 135.5, 129.8, 129.6, 128.2, 122.1, 116.7, 108.7, 108.2, 101.1, 81.7, 47.7, 33.8, 25.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₅IO₄ 459.0088 ; found 459.0083.

3-iodo-2-phenyl-4-(thiophen-3-yl)-6,7-dihydrocyclopenta[b]pyran-5(4H)-one (4r). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4r** (92 mg, 73%) as a yellow solid. mp 140–142 ° C. ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 3.7 Hz, 2H), 7.46 – 7.43 (m, 3H), 7.28 (s, 1H), 7.26 (d, *J* = 5.2 Hz, 2H), 7.09 (d, *J* = 4.6 Hz, 1H), 4.78 (s, 1H), 2.72 – 2.66 (m, 2H), 2.50 – 2.46 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.4, 177.1, 149.1, 142.5, 135.5,

129.8, 129.6, 128.2, 127.3, 125.7, 123.1, 116.5, 80.3, 43.2, 33.9, 25.2. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₈H₁₃IO₂S 420.9754; found 420.9753.

3-iodo-4-phenyl-2-(*p*-**tolyl)-6**,7-**dihydrocyclopenta**[*b*]**pyran-5**(*4H*)-**one** (**4s**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4s** (80 mg, 63%) as a white solid. mp 134–136 °C .¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 5.5 Hz, 5H), 7.18 (s, 2H), 4.57 (s, 1H), 2.66 – 2.59 (m, 2H), 2.41 – 2.35 (m, 2H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 200.4, 176.0, 148.2, 141.0, 139.0, 131.6, 128.5, 127.9, 127.5, 126.5, 115.7, 79.8, 47.1, 32.8, 24.3, 20.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₄BrIO₂ 492.9295 ; found 492.9297.

2-(4-bromophenyl)-3-iodo-4-phenyl-6,7-dihydrocyclopenta[*b*]**pyran-5(***4***H)-one (4t).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4t** (98 mg, 74%) as a white solid. mp 157–159 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, *J* = 8.4 Hz, 2H), 7.46 (dd, *J* = 8.2, 1.7 Hz, 2H), 7.36 (d, *J* = 5.2 Hz, 4H), 7.30 (dd, *J* = 5.9, 2.3 Hz, 1H), 4.63 (s, 1H), 2.71 (dd, *J* = 19.0, 4.7 Hz, 2H), 2.46 (dd, *J* = 10.1, 4.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.2, 176.7, 148.1, 141.7, 134.3, 131.5, 131.3, 128.6, 128.5, 127.6, 124.1, 116.8, 81.7, 48.1, 33.8, 25.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇IO₂ 429.0346; found 429.0349.

3-iodo-4-phenyl-2-(thiophen-2-yl)-6,7-dihydrocyclopenta[b]pyran-5(4H)-one (4u). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **4u** (58 mg, 45%) as a yellow solid. mp 165–167 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.75 – 7.72 (m, 1H), 7.45 (dd, *J* = 5.0, 0.9 Hz, 1H), 7.35 (d, *J* = 3.6 Hz, 1H), 7.34 – 7.33 (m, 3H), 7.27 (s, 1H), 7.10 (dd, *J* = 5.0, 3.8 Hz, 1H), 4.66 (s, 1H), 2.78 – 2.70 (m, 2H), 2.49 – 2.42 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 201.2, 176.4, 143.7, 141.9, 135.9, 130.5, 128.6, 128.5, 127.8, 127.6, 126.7, 116.7, 80.66, 49.0, 33.9, 25.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃IO₂S 420.9754 ; found 420.9753 .

2-(*tert*-**butyl**)-**3-iodo-4-phenyl-6,7-dihydrocyclopenta**[*b*]**pyran-5(***4H***)-one (4v).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (5/1, v/v) gave **4v** (94 mg, 80%) as a white solid. mp 149–151 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, *J* = 7.4 Hz, 2H), 7.26 (s, 1H), 7.25 (s, 2H), 4.57 (s, 1H), 2.63 – 2.57 (m, 2H), 2.38 (m, 2H), 1.49 (s, 9H). ¹³C NMR (151 MHz,

CDCl₃) δ 201.3 , 176.2, 154.6, 142.7, 128.4, 128.3, 127.2, 117.0, 75.9, 50.8, 37.8, 33.8, 29.3, 25.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₉IO₂ 395.0502 ; found 395.0501.

6.2 General procedure for the synthesis of 5

To the solution of **1** (0.45 mmol) and **2f-2j** (0.3 mmol) in CH_3NO_2 (2 mL) was added iodine (8 mg, 0.03 mmol) under stirring. The reaction mixture was continually stirred at RT until **1** was consumed as indicated by TLC (ca. 1 h). Another portion of iodine (83 mg, 0.33 mmol) was added. The solution was stirred at 70 °C in the oil bath until the intermediate was consumed as indicated by TLC (ca. 1 h). The mixture was cooled to RT, diluted with a saturated aqueous solution of sodium thiosulfate (5 mL), and extracted with ethyl acetate (3 × 5 mL). The combined organic layer was washed with water and brine, dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate as the eluent) to give the desired product **5**.

3-iodo-2,4-diphenyl-4*H*,5*H*-**pyrano**[**2,3-***b*]**chromen-5-one** (5a). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5a** (123 mg, 86%) as a white solid. mp 170-172 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, *J* = 7.9 Hz, 1H), 7.67 (d, *J* = 3.5 Hz, 2H), 7.61 (t, *J* = 7.7 Hz, 1H), 7.51 (d, *J* = 7.8 Hz, 2H), 7.46 (d, *J* = 3.1 Hz, 3H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.36 (t, *J* = 7.3 Hz, 3H), 7.27 (t, *J* = 7.3 Hz, 1H), 5.13 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 159.9, 152.99, 147.3, 142.2, 134.1, 133.5, 130.1, 129.7, 128.7, 128.6, 128.3, 127.6, 126.0, 125.3, 123.3, 117.3, 98.1, 80.1, 48.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₅IO₃ 479.0139 ; found 479.0138.

3-iodo-2-phenyl-4-(*p*-tolyl)-4*H*,5*H*-pyrano[2,3-*b*]chromen-5-one(5*b*). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5b** (121 mg, 82%) as a white solid. mp 162-164 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.10 – 8.08 (m, 1H), 7.68 – 7.65 (m, 2H), 7.62 – 7.59 (m, 1H), 7.47 – 7.44 (m, 3H), 7.39 (dd, *J* = 8.2, 2.6 Hz, 3H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.16 (d, *J* = 7.8 Hz, 2H), 5.09 (s, 1H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 159.8, 152.9, 147.1, 139.3, 137.2, 134.2, 133.4, 130.0, 129.7, 129.3, 128.5, 128.2, 126.0, 125.2, 123.3, 117.3, 98.2, 80.5, 48.5, 21.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₁₇IO₃ 493.0295; found493.0290.

4-(4-(*tert*-butyl**)***phenyl***)-3-iodo-2-phenyl-4***H*,5*H*-pyrano[2,3-*b*]chromen-5-one (5c). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave 5c (120 mg, 75%) as a white solid. mp 174-176 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.10 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.68 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.60 (d, *J* = 7.0 Hz, 1H), 7.47 – 7.45 (m, 3H), 7.42 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 3H), 5.12 (s, 1H), 1.29 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 176.3, 159.8, 152.9, 150.3, 147.2, 139.0, 134.1, 133.4, 130.0, 129.7, 128.28, 128.1, 126.0, 125.5, 125.3, 123.4, 117.3, 98.4, 80.2, 48.3, 34.5, 31.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₃IO₃ 535.0765 ; found 535.0781.

3-iodo-4-(4-methoxyphenyl)-2-phenyl-4H,5H-pyrano[2,3-*b***]chromen-5-one (5d).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5d** (115 mg, 76%) as a white solid. mp 194-196 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.67 (dd, *J* = 6.6, 2.9 Hz, 2H), 7.63 – 7.60 (m, 1H), 7.47 – 7.45 (m, 3H), 7.43 (s, 1H), 7.42 (s, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.36 (d, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 8.7 Hz, 2H), 5.07 (s, 1H), 3.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.3, 159.8, 159.0, 152.9, 147.0, 134.5, 134.1, 133.4, 130.0, 129.7, 128.2, 126.0, 125.3, 124.6, 123.3, 117.3 113.9, 98.2, 80.7, 55.2, 48.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₁₇IO₄ 509.0244 ; found 509.0252 .

4-(4-fluorophenyl)-3-iodo-2-phenyl-4H,5H-pyrano[2,3-b]chromen-5-one (5e). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5e** (132 mg, 89%) as a white solid. mp 174-176 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.68 – 7.65 (m, 2H), 7.64 – 7.61 (m, 1H), 7.50 – 7.45 (m, 5H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.36 (dd, *J* = 11.2, 4.0 Hz, 1H), 7.05 – 7.02 (m, 2H), 5.11 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.24 (s), 163.02 (s), 161.39 (s), 159.86 (s), 152.99 (s), 147.42 (s), 138.09 (d, *J* = 3.1 Hz), 134.01 (s), 133.63 (s), 130.34 – 130.10 (m), 129.71 (s), 128.34 (s), 125.98 (s), 125.44 (s), 123.28 (s), 117.43 (s), 115.53 (s), 115.39 (s), 97.96 (s), 80.01 (s), 48.26 (s). HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₄FlO₃ 497.0044 ; found 497.0037.

4-(4-chlorophenyl)-3-iodo-2-phenyl-4H,5H-pyrano[2,3-b]chromen-5-one (5f). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5f** (130 mg, 85%) as a white solid. mp 196-198 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (dd, J = 8.0, 1.5 Hz, 1H), 7.67 – 7.65 (m, 2H), 7.64 – 7.62 (m, 1H), 7.46 (dd, J = 6.6, 3.1 Hz, 4H), 7.44 (s, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.38 – 7.36 (m, 1H), 7.33 (s, 1H), 7.32 (s, 1H), 5.11 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ

176.2, 159.9, 152.9, 147.5, 140.8, 133.9, 133.6, 133.4, 130.2, 130.0, 129.6, 128.7, 128.3, 125.9, 125.4, 123.2, 117.4, 97.7, 79.4, 48.4. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₄H₁₄ClIO₃ 512.9749; found 512.9755.

4-(4-bromophenyl)-3-iodo-2-phenyl-4H,5H-pyrano[**2**,**3**-*b*]**chromen-5-one (5g).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5g** (138 mg, 83%) as a white solid. mp 200-202 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.65 (d, *J* = 3.5 Hz, 2H), 7.63 (dd, *J* = 4.8, 3.5 Hz, 1H), 7.48 (s, 1H), 7.48 – 7.46 (m, 4H), 7.40 (d, *J* = 9.4 Hz, 2H), 7.37 (d, *J* = 8.9 Hz, 2H), 5.10 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.1, 159.9, 152.9, 147.6, 141.3, 133.6, 131.7, 130.3, 130.2, 129.6, 128.3, 125.9, 125.4, 124.7, 123.2, 121.6, 117.4, 97.7, 79.3, 48.5. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₄H₁₄BrlO₃ 556.9244 ; found 556.9248 .

3-iodo-2-phenyl-4-(*m*-tolyl)-4*H*,5*H*-pyrano[2,3-*b*]chromen-5-one (5h). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave 5h (115 mg, 78%) as a white solid. mp 160-162 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, *J* = 7.9 Hz, 1H), 7.67 (dd, *J* = 6.3, 2.7 Hz, 2H), 7.60 (dd, *J* = 8.3, 7.3 Hz, 1H), 7.46–7.44 (m, 3H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.35 (d, *J* = 7.3 Hz, 1H), 7.30 (s, 2H), 7.24 (dd, *J* = 4.1, 3.6 Hz, 1H), 7.08 (d, *J* = 7.4 Hz, 1H), 5.08 (s, 1H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 159.9, 153.0 147.1 142.1, 138.0, 134.1, 133.4, 130.0, 129.7, 129.4, 128.5, 128.3, 128.2, 126.0, 125.7, 125.3, 123.3, 117.3, 98.2, 80.4, 48.8, 21.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₁₇IO₃ 493.0295; found 493.0294.

3-iodo-4-(3-methoxyphenyl)-2-phenyl-4H,5H-pyrano[2,3-*b***]chromen-5-one (5i).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5i** (125 mg, 82%) as a white solid. mp 164-166 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.10 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.68 – 7.65 (m, 2H), 7.63 – 7.60 (m, 1H), 7.47 – 7.44 (m, 3H), 7.40 (d, *J* = 8.2 Hz, 1H), 7.36 (dd, *J* = 11.2, 3.9 Hz, 1H), 7.27 – 7.25 (m, 1H), 7.11 (d, *J* = 7.7 Hz, 1H), 7.06 (d, *J* = 1.9 Hz, 1H), 6.83 – 6.80 (m, 1H), 5.11 (s, 1H), 3.81 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 159.9, 159.7, 152.9, 147.3, 143.7, 134.1, 133.5, 130.1, 129.7, 129.4, 128.3, 126.0, 125.3, 123.3, 121.1, 117.3, 114.7, 112.7, 98.0, 79.9, 55.2, 48.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₁₇IO₄ 509.0244 ; found 509.0251 .

3-iodo-2-phenyl-4-(*o*-tolyl)-4H,5H-pyrano[2,3-*b*]chromen-5-one (5j). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5j** (106 mg, 72%) as a white solid. mp 206-208 ° C. ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, *J* = 7.9 Hz, 1H), 7.65 – 7.63 (m, 2H), 7.62 – 7.59 (m, 1H), 7.46 – 7.43 (m, 3H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.34 (d, *J* = 7.4 Hz, 1H), 7.34

(d, J = 7.4 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.32 – 7.29 (m, 1H), 7.19 – 7.15 (m, 3H), 5.34 (s, 1H), 2.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.3, 160.1, 152.9, 146.4, 141.5, 137.0, 134.1, 133.4, 130.4, 130.0, 129.7, 128.2, 127.4, 126.5, 125.9, 125.3, 123.2, 117.3, 99.0, 81.0, 44.2, 20.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₁₇IO₃ 493.0295; found 493.0294.

3-iodo-4-(2-methoxyphenyl)-2-phenyl-4H,5H-pyrano[2,3-*b***]chromen-5-one (5k).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5k** (105 mg, 69%) as a white solid. mp 176-178 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.08 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.63 – 7.59 (m, 3H), 7.45 – 7.42 (m, 4H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 6.5 Hz, 1H), 6.97 (t, *J* = 7.4 Hz, 1H), 6.90 (d, *J* = 8.2 Hz, 1H), 5.30 (s, 1H), 3.87 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 160.7, 158.2, 152.9, 147.0, 134.6, 133.2, 131.4, 129.8, 129.6, 129.0, 128.2, 125.9, 125.1, 123.4, 120.6, 117.3, 111.6, 97.1, 79.3, 55.8, 45.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₁₇IO₄ 509.0244 ; found 509.0241 .

4-(2-chlorophenyl)-3-iodo-2-phenyl-4H,5H-pyrano[2,3-b]chromen-5-one (5l). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5l** (110 mg, 72%) as a white solid. mp 175-177 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, *J* = 7.8 Hz, 1H), 7.64 (d, *J* = 5.7 Hz, 3H), 7.49 (d, *J* = 7.1 Hz, 1H), 7.46 (d, *J* = 2.8 Hz, 3H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.37 (dd, *J* = 13.1, 7.6 Hz, 2H), 7.29 (d, *J* = 6.7 Hz, 1H), 7.23 (d, *J* = 7.5 Hz, 1H), 5.53 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.1, 160.4, 152.9, 147.3, 139.2, 134.4, 134.2, 131.9, 130.3, 130.2, 129.6, 128.9, 128.3, 127.0, 125.9, 125.4, 123.2, 117.4, 96.8,78.4, 46.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₄ClIO₃ 512.9749; found 512.9753.

4-(benzo[*d***][1,3]dioxol-5-yl)-3-iodo-2-phenyl-4***H***,5***H***-pyrano[2,3-***b***]chromen-5-one (5m). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave 5m** (117 mg, 75%) as a white solid. mp 198-200 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.10 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.68 – 7.64 (m, 2H), 7.64 – 7.61 (m, 1H), 7.47 – 7.44 (m, 3H), 7.40 (d, *J* = 8.3 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.00 (dd, *J* = 8.0, 1.7 Hz, 1H), 6.96 (d, *J* = 1.6 Hz, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 5.92 (dd, *J* = 7.8, 1.2 Hz, 2H), 5.03 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 159.8, 152.9, 147.8, 147.1, 147.0, 136.2, 134.1, 133.5, 130.1, 129.7, 128.3, 126.0, 125.3, 123.3, 122.3, 117.4, 108.9, 108.2, 101.0, 98.1, 80.5, 48.5. HRMS (ESI) m/z: [M + H]⁺ calcd forC₂₅H₁₅IO₅ 523.0037 ; found 523.0033.

4-(2,4-dichlorophenyl)-3-iodo-2-phenyl-4H,5H-pyrano[2,3-b]chromen-5-one (5n). Purification by

flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5n** (126 mg, 77%) as a white solid. mp 184-186 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.07 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.65 – 7.63 (m, 1H), 7.63 – 7.62 (m, 2H), 7.46 (d, *J* = 2.4 Hz, 2H), 7.45 (d, *J* = 0.7 Hz, 1H), 7.42 (s, 1H), 7.42 – 7.39 (m, 2H), 7.38 (d, *J* = 7.5 Hz, 1H), 7.27 (d, *J* = 2.0 Hz, 1H), 5.48 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.1, 160.4, 152.9, 147.5, 134.9, 134.0, 133.6, 132.5,130.2, 130.1, 129.5, 128.3, 127.4, 125.9, 125.5, 123.1, 117.4, 96.6, 78.2, 46.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₃Cl₂IO₃ 546.9359 ; found 546.9364.

3-iodo-2-phenyl-4-(thiophen-3-yl)-4H,5H-pyrano[2,3-b]chromen-5-one (5o). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5o** (106 mg, 73%) as a white solid. mp 176-178 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.13 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.68 – 7.65 (m, 2H), 7.63 (dd, *J* = 11.3, 4.3 Hz, 1H), 7.47 – 7.45 (m, 3H), 7.39 (t, *J* = 8.8 Hz, 3H), 7.27 – 7.25 (m, 1H), 7.19 (dd, *J* = 5.0, 1.1 Hz, 1H), 5.30 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 159.8, 152.9, 147.4, 142.4, 134.0, 133.5, 130.1, 129.7, 128.3, 127.3, 126.0, 125.7, 125.3, 124.7, 123.3, 117.4, 97.9, 78.9, 43.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₃IO₃S 484.9703 ; found 484.9703.

3-iodo-4-phenyl-2-(*p*-tolyl)-4*H*,5*H*-pyrano[2,3-*b*]chromen-5-one (5p). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5p** (107 mg, 73%) as a white solid. mp 182-184 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.63 – 7.59 (m, 1H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 7.3 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.35 (dd, *J* = 10.2, 4.8 Hz, 3H), 7.26 (d, *J* = 7.7 Hz, 3H), 5.12 (s, 1H), 2.42 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 159.9, 153.0, 147.4, 142.3, 140.3, 133.4, 131.2, 129.6, 128.9, 128.6, 128.5, 127.5, 126.0, 125.3, 123.3, 117.3, 98.2, 79.7, 48.9, 21.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₁₇IO₃ 493.0295; found 493.0304.

3-iodo-2-(4-methoxyphenyl)-4-phenyl-4H,5H-pyrano[2,3-b]chromen-5-one (5q). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5q** (103 mg, 68%) as a white solid. mp 168-170 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, *J* = 7.9 Hz, 1H), 7.62 (d, *J* = 8.6 Hz, 3H), 7.50 (d, *J* = 7.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 3H), 7.27 (d, *J* = 7.3 Hz, 1H), 6.96 (d, *J* = 8.7 Hz, 2H), 5.12 (s, 1H), 3.86 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 160.8, 159.9, 153.0, 147.2, 142.3, 133.4, 131.2, 128.6, 128.5, 127.5, 126.3, 126.01, 125.2, 123.3, 117.3, 113.6, 98.2, 79.3, 55.3, 49.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₁₇IO₄ 509.0244 ; found 509.0254 .

2-(4-bromophenyl)-3-iodo-4-phenyl-4H,5H-pyrano[2,3-b]chromen-5-one (5r). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5r** (133 mg, 80%) as a white solid. mp 168-170 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, *J* = 7.8 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.59 (s, 1H), 7.56 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 7.5 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.36 (d, *J* = 7.3 Hz, 3H), 7.28 (d, *J* = 7.2 Hz, 1H), 5.12 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.1 159.7, 152.9, 146.2, 142.0, 133.5, 132.9, 131.6 131.3, 128.6, 127.7, 126.0, 125.4, 124.4, 123.3, 117.3, 98.0, 80.6, 48.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₄BrIO₃ 556.9244 ; found 556.9250 . **3-iodo-4-phenyl-4H,5H-pyrano[2,3-b]chromen-5-one (5s).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5s** (86 mg, 72%) as a white solid. mp 126-128 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.14 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.65 – 7.62 (m, 1H), 7.48 – 7.45 (m, 3H), 7.41 (dd, *J* = 11.1, 4.0 Hz, 1H), 7.34 (dd, *J* = 10.4, 4.8 Hz, 2H), 7.26 (s, 1H), 6.34 (d, *J* = 2.4 Hz, 1H), 5.25 (d, *J* = 2.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 159.3, 157.5, 153.2, 136.3, 132.7, 130.0, 129.1, 128.6, 128.2, 124.2, 122.8, 116.9, 114.8, 101.7, 85.5. 47.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₁Ho₃ 402.9826; found 402.9820.

3-iodo-7-methyl-2,4-diphenyl-4*H*,5*H*-**pyrano**[**2,3-***b*]**chromen-5-one** (**5t**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5t** (125 mg, 85%) as a white solid. mp 182-184 ° C. ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 1.0 Hz, 1H), 7.68 – 7.66 (m, 2H), 7.51 (d, *J* = 7.2 Hz, 2H), 7.47 – 7.45 (m, 3H), 7.41 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.35 (d, *J* = 7.5 Hz, 2H), 7.29 (d, *J* = 8.6 Hz, 1H), 7.26 (d, *J* = 7.3 Hz, 1H), 5.14 (s, 1H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.3, 159.8, 151.1, 147.3, 142.2, 135.3, 134.6, 134.1, 130.0, 129.7, 128.6, 128.5, 128.2, 127.5, 125.5, 122.9, 117.1, 98.0, 80.0, 48.9, 20.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₁₇IO₃ 493.0295; found 493.0293.

7-chloro-3-iodo-2,4-diphenyl-4*H*,5*H*-**pyrano**[**2**,3-*b*]**chromen-5-one** (**5u**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5u** (124 mg, 81%) as a white solid. mp 196-198 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, *J* = 2.4 Hz, 1H), 7.66 (dd, *J* = 6.3, 2.9 Hz, 2H), 7.56 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.49 (d, *J* = 7.4 Hz, 2H), 7.48 – 7.45 (m, 3H), 7.37 (d, *J* = 6.8 Hz, 2H), 7.35 (s, 1H), 7.29 (d, *J* = 7.3 Hz, 1H), 5.12 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 159.9, 153.0, 147.4, 142.3, 140.3, 133.4, 131.2, 129.6, 128.9, 128.6, 128.5, 127.5, 126.0, 125.3, 117.3, 98.2, 79.7, 48.9, 21.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₄CliO₃512.9749; found 512.9737.

7-bromo-3-iodo-2,4-diphenyl-4*H*,5*H*-**pyrano**[**2,3-***b*]**chromen-5-one** (5v). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5v** (137 mg, 82%) as a white solid. mp 192-194 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.21 (d, *J* = 2.1 Hz, 1H), 7.70 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.68 – 7.65 (m, 2H), 7.49 (d, *J* = 7.5 Hz, 2H), 7.48 – 7.45 (m, 3H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.30 – 7.27 (m, 2H), 5.12 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 174.8, 160.0, 151.7, 147.3, 141.9, 136.4, 133.9, 130.1, 129.7, 128.7, 128.6, 128.3, 127.7, 124.7, 119.2, 118.8, 98.4, 79.9, 48.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₄BrIO₃ 556.9244 ; found 556.9233 .

3-iodo-7-nitro-2,4-diphenyl-4*H*,5*H*-**pyrano**[**2,3-***b*]**chromen-5-one** (**5w**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave **5w** (81 mg, 52%) as a white solid. mp 184-186 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.96 (d, *J* = 2.7 Hz, 1H), 8.46 (dd, *J* = 9.1, 2.8 Hz, 1H), 7.67 (dd, *J* = 5.5, 1.9 Hz, 2H), 7.55 (d, *J* = 9.1 Hz, 1H), 7.51 (d, *J* = 1.1 Hz, 1H), 7.50 (s, 1H), 7.48 (dd, *J* = 5.0, 1.6 Hz, 3H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 5.14 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 174.4, 160.2, 155.7, 147.3 145.0, 141.5, 133.6, 130.3, 129.7, 128.7, 128.6, 128.4, 127.9, 123.7, 122.6, 119.0, 98.8, 79.9, 48.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₄NIO₅ 523.9989 ; found 523.9988 .

2-methyl-3-phenyl-4H-furo[3,2-c]chromen-4-one (5x).⁴ Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (15/1, v/v) gave 5x (43 mg, 52%) as a white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.88 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.53 – 7.49 (m, 3H), 7.49 – 7.47 (m, 1H), 7.46 (s, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.35 – 7.33 (m, 1H), 2.53 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.6, 156.3, 152.4, 151.6, 130.2, 130.0, 129.9, 128.2, 127.7, 124.2, 120.6, 120.5, 117.1, 112.8, 109.7, 12.5.

6.3 General procedure for the synthesis of 6

To the solution of **1** (0.36 mmol) and **2** (0.3 mmol) in toluene (10 mL) was added BF_3Et_2O (7 μ L, 0.06 mmol) under stirring. The reaction mixture was continually stirred at 70 °C until **1** was consumed as indicated by TLC. The mixture was cooled to RT. Iodine (15 mg, 0.06 mmol) was added. The mixture was stirred at RT under the irradiation of 30w CFL lamp until the intermediate was consumed as indicated by TLC. It was then quenched with a saturated aqueous solution of sodium thiosulfate (5 mL), and extracted with ethyl acetate (3 × 5 mL). The combined
organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate as the eluent) to give the desired product **6**.

2-benzoyl-3-phenyl-6,7-dihydrobenzofuran-4(5*H***)-one (6a).⁵ Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave 6a (68 mg, 72%) as a white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.62 (d,** *J* **= 7.9 Hz, 2H), 7.37 (t,** *J* **= 7.4 Hz, 1H), 7.26 (dd,** *J* **= 6.3, 4.8 Hz, 2H), 7.19 (dt,** *J* **= 20.0, 7.2 Hz, 5H), 3.05 (t,** *J* **= 6.3 Hz, 2H), 2.58 – 2.54 (m, 2H), 2.26 (dd,** *J* **= 12.8, 6.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.3, 184.5, 169.2, 147.0, 136.8, 132.4, 130.4, 129.6, 129.4, 128.3, 127.9, 127.4, 120.6, 38.8, 24.1, 22.0.**

2-benzoyl-3-(*p*-tolyl)-6,7-dihydrobenzofuran-4(5*H*)-one (6b).⁵ Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave 6b (63 mg, 64%) as a white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.24 (t, *J* = 7.7 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 7.8 Hz, 2H), 3.04 (t, *J* = 6.3 Hz, 2H), 2.58 – 2.55 (m, 2H), 2.28 (s, 3H), 2.25 (dd, *J* = 12.8, 6.3 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.3, 184.4, 169.2, 146.9, 138.3, 136.9, 132.7, 132.2, 130.2, 129.4, 128.2, 127.9, 126.5, 120.7, 38.8, 24.1, 22.0, 21.3.

2-benzoyl-3-(4-isopropylphenyl)-6,7-dihydrobenzofuran-4(5*H***)-one (6c). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave 6c (69 mg, 64%) as a white solid. mp 105-107 ° C. ¹HNMR (600 MHz, CDCl₃) δ 7.56 (d,** *J* **= 7.5 Hz, 2H), 7.33 (t,** *J* **= 6.8 Hz, 1H), 7.22 – 7.13 (m, 4H), 7.00 (d,** *J* **= 7.1 Hz, 2H), 3.06 (t,** *J* **= 5.5 Hz, 2H), 2.81 (m, 1H), 2.60 – 2.55 (m, 2H), 2.30 – 2.21 (m, 2H), 1.18 (d,** *J* **= 6.4 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 193.5, 184.7, 169.4, 149.1, 147.0, 136.9, 132.8, 132.1, 130.4, 129.3, 127.8, 126.8, 125.5, 120.6, 38.8, 33.9, 24.1, 23.7, 22.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₃O₃ 359.1642 ; found 359.1638.**

2-benzoyl-3-(4-methoxyphenyl)-6,7-dihydrobenzofuran-4(5*H***)-one (6d).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **6d** (65 mg, 63%) as a white solid. mp 90-92 ° C. ¹HNMR (600 MHz, CDCl₃) δ 7.57 (d, *J* = 7.5 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.18 (d, *J* = 5.4 Hz, 2H), 7.17 – 7.16 (m, 2H), 6.65 (d, *J* = 8.6 Hz, 2H), 3.69 (d, *J* = 13.8 Hz, 3H), 2.97 (t, *J* = 6.2 Hz, 2H), 2.52 – 2.47 (m, 2H), 2.18 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.5, 184.5, 169.3, 159.8, 146.8, 137.0, 132.4, 132.3, 131.9, 129.4, 128.0, 121.7, 120.6, 113.0, 55.2, 38.8, 24.1, 22.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₈O₄ 347.1278 ; found 347.1272.

2-benzoyl-3-(4-fluorophenyl)-6,7-dihydrobenzofuran-4(5*H***)-one (6e). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave 6e (61 mg, 60%) as a white solid. mp 105-107 ° C. ¹H NMR (600 MHz, CDCl₃) \delta 7.65 (d,** *J* **= 7.7 Hz, 2H), 7.43 (t,** *J* **= 7.3 Hz, 1H), 7.31 – 7.26 (m, 4H), 6.89 (t,** *J* **= 8.6 Hz, 2H), 3.06 (t,** *J* **= 6.2 Hz, 2H), 2.59 – 2.55 (m, 2H), 2.29 – 2.25 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) \delta 193., 184.3, 169.3, 163.6, 161.9, 147.0, 136.8, 132., 132.32 (d,** *J* **= 8.4 Hz), 129.4, 128.0, 125.5, 120.5, 114.55 (d,** *J* **= 21.7 Hz), 38.7, 24.1, 22.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₅FO₃ 335.1078 ; found 335.1072.**

2-benzoyl-3-(4-chlorophenyl)-6,7-dihydrobenzofuran-4(5H)-one (6f). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **6f** (73 mg, 69%) as a white solid. mp 115-117 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, *J* = 7.4 Hz, 2H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.30 – 7.24 (m, 4H), 7.18 (d, *J* = 8.4 Hz, 2H), 3.06 (t, *J* = 6.3 Hz, 2H), 2.60 – 2.54 (m, 2H), 2.26 (dd, *J* = 12.7, 6.4 Hz, 2H).¹³C NMR (151 MHz, CDCl₃) δ 193.4, 184.1, 169.2, 147.0, 136.7, 134.5, 132.6, 131.7, 131.3, 129.4, 128.1, 127.7, 120.5, 38.7, 24.1, 22.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₅ClO₃ 351.0782 ; found 351.0783.

2-benzoyl-3-(4-bromophenyl)-6,7-dihydrobenzofuran-4(5*H***)-one (6g).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **6g** (73 mg, 69%) as a white solid. mp 115-117 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, *J* = 7.4 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 3.05 (t, *J* = 6.3 Hz, 2H), 2.60 – 2.55 (m, 2H), 2.29 – 2.23 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.4, 184.1, 169.3, 147.0, 136.7, 132.6, 131.9, 131.3, 130.6, 129.4, 128.6, 128.1, 122.8, 120.4, 38.7, 24.1, 22.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₅BrO₃ 395.0277; found 395.0281

2-benzoyl-3-(3-chlorophenyl)-6,7-dihydrobenzofuran-4(5*H***)-one (6h).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave 6h (71 mg, 67%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 7.5 Hz, 2H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.28 (d, *J* = 7.7 Hz, 3H), 7.22 – 7.18 (m, 2H), 7.16 – 7.13 (m, 1H), 3.06 (t, *J* = 6.3 Hz, 2H), 2.60 – 2.55 (m, 2H), 2.31 – 2.24 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.3, 184.2, 169.2, 147.2, 136.7, 133.4, 132.6, 131.5, 130.9, 130.4, 129.3, 128.7, 128.5, 128.4, 128.0, 120.5, 38.7, 24.1, 22.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₅ClO₃ 351.0782 ; found 351.0788.

2-benzoyl-6,7-dihydrobenzofuran-4(5*H***)-one (6i).**⁶ Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (5/1, v/v) gave **6i** (44 mg, 62%) as a white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.4 Hz, 2H), 7.61 (d, *J* = 7.4 Hz, 1H), 7.51 (dd, *J* = 10.5, 4.7 Hz, 2H), 7.38 (d, *J* = 2.2 Hz, 1H), 3.05 (dd, *J* = 8.0, 4.2 Hz, 2H), 2.58 (dd, *J* = 8.5, 4.3 Hz, 2H), 2.26 (dd, *J* = 8.4, 4.1 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.7, 182.5, 170.7, 151.3, 136.8, 133.0, 129.1, 128.6, 122.6, 116.7, 37.7, 23.7, 22.1.

2-(4-methylbenzoyl)-3-phenyl-6,7-dihydrobenzofuran-4(5*H***)-one (6j).⁵ Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave 6j (54 mg, 55%) as a white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d,** *J* **= 8.0 Hz, 2H), 7.30 (d,** *J* **= 6.5 Hz, 2H), 7.23 – 7.18 (m, 3H), 7.03 (d,** *J* **= 7.9 Hz, 2H), 3.05 (t,** *J* **= 6.3 Hz, 2H), 2.59 – 2.55 (m, 2H), 2.31 (s, 3H), 2.26 (dd,** *J* **= 12.8, 6.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.4, 184.1, 169.0, 147.2, 143.3, 134.1, 132.0, 130.3, 129.7, 129.6, 128.6, 128.2, 127.4, 120.6, 38.8, 24.1, 22.0, 21.5.**

2-(4-bromobenzoyl)-3-phenyl-6,7-dihydrobenzofuran-4(5*H***)-one (6k).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **6k** (70 mg, 59%) as a white solid. mp 130-132 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 5.1 Hz, 3H), 7.24 – 7.19 (m, 2H), 3.06 (t, *J* = 6.3 Hz, 2H), 2.59 – 2.55 (m, 2H), 2.30 – 2.24 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.2, 183.2, 169.4, 146.7, 135.6, 132.9, 131.2, 130.8, 130.3, 129.4, 128.6, 127.6, 127.4, 120.7, 38.8, 24.1, 22.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₅BrO₃ 395.0277; found 395.0273.

2-pentanoyl-3-phenyl-6,7-dihydrobenzofuran-4(5*H***)-one (6l). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave 6l (70 mg, 65%) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d,** *J* **= 2.7 Hz, 5H), 3.01 (t,** *J* **= 6.2 Hz, 2H), 2.53 (d,** *J* **= 7.2 Hz, 2H), 2.52 – 2.49 (m, 2H), 2.26 – 2.21 (m, 2H), 1.56 – 1.51 (m, 2H), 1.21 (dd,** *J* **= 14.9, 7.4 Hz, 2H), 0.81 (t,** *J* **= 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 193.2, 190.4, 168.5, 147.4, 130.8, 130.2, 129.7, 128.6, 127.8, 121.3, 39.5, 38.6, 26.0, 24.0, 22.2, 22.0, 13.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₀O₃ 297.1485; found 297.1485.**

3-phenyl-2-(3-phenylpropanoyl)-6,7-dihydrobenzofuran-4(5*H***)-one (6m). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (5/1, v/v) gave 6m (72 mg, 65%) as a white solid. mp 117-119 °C. ¹HNMR (600 MHz, CDCl₃) \delta 7.40 (s, 3H), 7.39 (s, 2H), 7.23 (d,** *J* **= 7.7 Hz, 2H), 7.16 (t,** *J* **= 7.0 Hz, 1H), 7.05 (d,** *J* **= 7.5 Hz, 2H), 2.97 (t,** *J* **= 6.1 Hz, 2H), 2.89 (s, 4H),**

2.49 (d, J = 6.2 Hz, 2H), 2.22 – 2.18 (m, 2H).¹³C NMR (151 MHz, CDCl₃) δ 193.0, 184.5, 169.0, 147.2, 136.8, 132.4, 130.4, 129.6, 129.4, 128.4, 127.9, 127.4, 120.2, 47.2, 32.0, 30.2, 21.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₀O₃ 345.1485; found 345.1484.

3-(4-methoxyphenyl)-4-oxo-4,5,6,7-tetrahydrobenzofuran-2-carbaldehyde (6n). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (5/1, v/v) gave **6n** (47 mg, 57%) as a white solid. mp 130-132 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.51 (s, 1H), 7.50 (d, *J* = 8.6 Hz, 2H), 6.98 (d, *J* = 8.6 Hz, 2H), 3.87 (s, 3H), 3.04 (t, *J* = 6.3 Hz, 2H), 2.58 (t, *J* = 6.5 Hz, 2H), 2.28 – 2.23 (m, 2H).¹³C NMR (151 MHz, CDCl₃) δ 193.3, 177.9, 171.2, 160.8, 147.6, 137.3, 131.9, 120.3, 120.0, 113.7, 55.3, 38.7, 24.1, 21.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₄O₄ 271.0965; found 271.0962.

4-oxo-4,5,6,7-tetrahydrobenzofuran-2-carbaldehyde (**6o**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave **6o** (32 mg, 57%) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 9.64 (d, *J* = 2.1 Hz, 1H), 7.46 (s, 1H), 3.01 (d, *J* = 5.7 Hz, 2H), 2.59 – 2.56 (m, 2H), 2.27 – 2.24 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.3, 177.5, 171.3, 152.2, 122.8, 117.7, 37.6, 23.6, 22.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₉H₈O₃ 165.0546; found 165.0543.

3-(4-methoxyphenyl)-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydrobenzofuran-2-carbaldehyde (6p). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (5/1, v/v) gave **6p** (54 mg, 60%) as a white solid. mp 108-110 ° C. ¹H NMR (600 MHz, CDCl₃) δ 9.52 (s, 1H), 7.51 (d, *J* = 8.7 Hz, 2H), 6.98 (d, *J* = 8.7 Hz, 2H), 3.86 (s, 3H), 2.89 (s, 2H), 2.46 (s, 2H), 1.19 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 192.8, 177.8, 170.5, 160.8, 148.0, 137.1, 132.0, 120.0, 119.2, 113.8, 55.3, 53.1, 37.9, 34.6, 28.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₈O₄ 299.1278; found 299.1275.

6,6-dimethyl-4-oxo-4,5,6,7-tetrahydrobenzofuran-2-carbaldehyde (6q). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **6q** (31 mg, 53%) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 9.63 (s, 1H), 7.46 (s, 1H), 2.87 (s, 2H), 2.45 (s, 2H), 1.17 (s, 6H).¹³C NMR (151 MHz, CDCl₃) δ 192.8, 177.4, 170.5, 152.6, 121.7, 117.6, 52.0, 37.5, 35.1, 28.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₂O₃ 193.0859 ; found 193.0856.

2-benzoyl-6,6-dimethyl-3-phenyl-6,7-dihydrobenzofuran-4(5*H***)-one (6r).⁵ Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (10/1, v/v) gave 6r (73 mg,**

71%) as a white solid. ¹HNMR (600 MHz, CDCl₃) δ 7.63 (d, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.28 (d, *J* = 6.9 Hz, 2H), 7.19 (dt, *J* = 14.0, 7.3 Hz, 5H), 2.93 (s, 2H), 2.46 (s, 2H), 1.21 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 192.9, 184.5, 168.5, 147.4, 136.8, 132.4, 130.4, 129.5, 129.4, 128.4, 127.9, 127.4, 119.5, 53.1, 38.0, 34.8, 28.5.

2-benzoyl-6-methyl-3-phenyl-6,7-dihydrobenzofuran-4(5*H***)-one (6s).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/3, v/v) gave **6s** (68 mg, 69%) as a white solid. mp 107-109 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.62 (d, *J* = 7.9 Hz, 2H), 7.38 (d, *J* = 7.3 Hz, 1H), 7.28 (s, 1H), 7.27 (s, 1H), 7.21 (d, *J* = 7.8 Hz, 2H), 7.19 (d, *J* = 4.9 Hz, 2H), 7.17 (s, 1H), 3.14 (dd, *J* = 17.5, 4.7 Hz, 1H), 2.70 (dd, *J* = 17.5, 10.0 Hz, 1H), 2.60 (dd, *J* = 16.2, 3.2 Hz, 1H), 2.56 – 2.51 (m, 1H), 2.34 (d, *J* = 11.5 Hz, 1H), 1.22 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 201.2, 176.4, 143.7, 141.9, 135.9, 130.5, 128.6, 128.5, 127.8, 127.6, 127.0, 126.7, 116.7, 80.6, 65.3, 49.0, 33.9, 25.3. HRMS (ESI) m/z: [M + H]⁺ calcd forC₂₂H₁₈O₃ 331.1329 ; found 331.1328.

7 Scale-up synthesis and synthetic transformations of 3a

7.1 Scale-up synthesis of 3a

To a solution of **1a** (1.25 g, 6 mmol) in CH₃NO₂ (40 mL) was added **2a** (337 mg, 3 mmol) and iodine (0.95 g, 3 mmol). The reaction mixture was heated at 70 °C for 70 min in an oil bath. It was then quenched with a saturated aqueous solution of sodium thiosulfate (30 mL), and extracted with ethyl acetate (3×20 mL). The combined organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel (hexanes/ethyl acetate = 20:1) to give the desired product **3a** (0.95 g, 74 %).

7.2 Base-catalyzed hydrolysis of 3a

To a solution of **3a** (86 mg, 0.2 mmol) in CH₃NO₂ (5mL) was added DBU (60 μ L, 0.4 mmol). The reaction mixture was heated at 70 °C in an oil bath until **3a** was consumed as indicated by TLC (10 h). It was then diluted with a saturated aqueous solution of NH₄Cl (5 mL). The organic layer was concentrated in vacuo. The crude was purified by column chromatography on silica gel (hexanes/ethyl acetate = 5:1) to give **2-(hydroxy(phenyl)methyl)-3-phenyl-6,7-dihydrobenzofuran-4(5***H***)-one (7) as a colorless oil (47 mg, 75 %). ¹H NMR (600 MHz, CDCl₃) \delta 7.44**

- 7.40 (m, 4H), 7.40 - 7.35 (m, 4H), 7.34 - 7.25 (m, 2H), 5.79 (s, 1H), 2.89 (m, 2H), 2.48 (m, 2H), 2.17 (dd, *J* = 12.8, 6.3 Hz, 2H), 1.26 (d, *J* = 5.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 193.8, 167.1, 150.7, 140.7, 130.6, 129.9, 128.5, 128.0, 127.9, 127.8, 126.4, 122.2, 119.7, 67.6, 38.5, 23.8, 22.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₈O₃ 319.1329 ; found 319.1331.

7.3 Pd-catalyzed cross couplings of 3a

2-(Diphenylmethylene)-3-phenyl-3,5,6,7-tetrahydrobenzofuran-4(2*H***)-one (8**). A mixture of **3a** (86 mg, 0.2 mmol), K₂CO₃ (83 mg, 0.6 mmol), Pd(PPh₃)₄ (2.3 mg, 0.002 mmol) and phenylboronic acid (30.0 mg, 0.24 mmol) in H₂O/1,4-Dioxane (1:1, 4 mL) were degassed with Ar for 20 min. It was heated at 70 °C in an oil bath until **3a** was consumed as indicated by TLC (10 h). The micture was deluted with EtOAc (5 mL). The organic layer was concentrated in vacuo. The crude was purified by column chromatography on silica gel (hexanes/ethyl acetate = 8:1) to give **8** (69 mg, 91%) as a white solid. mp 170-172 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.37 (m, 2H), 7.28 (t, *J* = 7.7 Hz, 2H), 7.18 (m, 2H), 7.13 (dd, *J* = 7.9, 6.7 Hz, 2H), 7.06 – 7.03 (m, 3H), 6.87 (d, *J* = 7.6 Hz, 2H), 6.81 (dd, *J* = 6.2, 2.9 Hz, 2H), 4.95 (s, 1H), 2.78 – 2.61 (m, 2H), 2.32 (t, *J* = 6.5 Hz, 2H), 2.15 – 2.09 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.2, 173.5, 156.4, 140.5, 138.3, 138.0, 130.0, 129.1, 128.3, 127.9, 127.3, 127.1, 126.9, 126.4, 119.9, 119.3, 48.4, 36.9, 23.4, 21.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₂O₂ 376.1693 ; found 376.1699.

(*E*)-2-(1,3-Diphenylprop-2-yn-1-ylidene)-3-phenyl-3,5,6,7-tetrahydrobenzofuran-4(2*H*)-one (9). To a solution of **3a** (86 mg, 0.2 mmol) in triethylamine (3 mL) was added Pd(PPh3)₂Cl₂ (4.2 mg, 0.006 mmol) and copper(I)iodide (1.9 mg, 0.006 mmol) in a flame-dried flask. The mixture was degassed with Ar for 20 min. Phenylacetylene (25 mg, 0.24 mmol) was added. The mixture was stirred at 70 °C in an oil bath until **3a** was consumed as indicated by TLC (12 h). It was then concentrated in a vacuum. The residue was diluted and extracted with EtOAc (5 mL × 2). The combined organic layer was dried with anhydrous Na₂SO₄, and concentrated in vacuo. The crude was purified by column chromatography on silica gel (hexanes/ethyl acetate = 10:1) to give **9** (66 mg, 82%) as a yellow solid. mp 96-98 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 7.9 Hz, 2H), 7.39 (t, *J* = 6.7 Hz, 4H), 7.32 – 7.24 (m, 7H), 7.22 – 7.18 (m, 2H), 5.32 (s, 1H), 2.77 – 2.65 (m, 2H), 2.38 – 2.33 (m, 2H), 2.16 – 2.09 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.1, 172.7, 163.5, 139.0, 134.4, 131.2, 128.3, 128.2, 128.1, 127.4, 126.9, 123.2, 119.8, 102.9, 95.5, 86.2, 50.8, 37.0, 23.3, 21.5.

S42

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₉H₂₂O₂ 403.1693 ; found 403.1694.

7.4 Synthesis of 11 from 3a

2-Benzoyl-3-phenyl-6,7-dihydrobenzofuran-4(5H)-one (**6a**). The solution of **3a** (86 mg, 0.2 mmol,) in EtOAc (2 mL) was stirred at RT under the irradiation of 30 W CFL lamp until **3a** was consumed as indicated by TLC (2 h). It was then quenched with a saturated aqueous solution of sodium thiosulfate (5 mL), and extracted with ethyl acetate (3×5 mL). The combined organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. the crude was purified by column chromatography on silica gel (hexanes/ethyl acetate = 5:1) to give **6a** (58 mg, 92%) as a white solid.

2-Benzoyl-5-bromo-3-phenyl-6,7-dihydrobenzofuran-4(5H)-one(10). To a solution of 6a (64 mg, 0.2 mmol) in methanol (3 mL) was added CuBr₂ (90mg, 0.4mmol, 2.0 equiv). It was refluxed in an oil bath until 6a was consumed as indicated by TLC (2 h). The mixture was dissolved in EtOAc (5 mL), and concentrated in vacuo. The crude was purified by column chromatography on silica gel (hexanes/ethyl acetate = 80:1) to give 10 (72 mg, 91%) as a white solid. mp 155-157 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.4 Hz, 1H), 7.26 (d, J = 7.6 Hz, 2H), 7.21 (m, 5H), 4.56 (t, J = 3.2 Hz, 1H), 3.31 (m,1H), 3.06 (m, 1H), 2.65 – 2.54 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 186.1, 184.3, 167.5, 147.4, 136.5, 132.8, 132.6, 130.3, 129.4, 129.0, 128.6, 128.0, 127.5, 118.0, 49.4, 30.6, 21.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₅BrO₃ 395.0277; found 395.0266. (4-Hydroxy-3-phenylbenzofuran-2-yl)(phenyl)methanone (11).⁷ To a solution of 10 (109 mg, 0.2758 mmol) in triethylamine (3 mL) was added a mixture of PPh₃ (4.3 mg, 0.016 mmol), Pd(OAc)₂ (1.8 mg, 0.008 mmol) in a flame-dried flask. The mixture was degassed with Ar for 20 min, and heated at 80 °C in an oil bath until 10 was consumed as indicated by TLC (8 h). It was then diluted with EtOAc (5 mL), and quenched with a saturated aqueous solution of NH₄Cl (5 mL) The organic layer was concentrated in vacuo. The crude was purified by column chromatography on silica gel (hexanes/ethyl acetate = 10:1) to give 11 (76 mg, 88%) as a white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.88 (d, J = 7.5 Hz, 2H), 7.52 (s, 1H), 7.50 (d, J = 12.2 Hz, 2H), 7.43 (s, 1H), 7.41 (s, 2H), 7.38 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 7.6 Hz, 2H), 7.21 (d, J = 8.3 Hz, 1H), 6.74 (d, J = 7.9 Hz, 1H), 5.31 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 184.9, 155.5, 152.1, 146.5, 137.1, 132.6, 131.4, 129.7, 129.5, 129.0, 128.1, 127.8, 116.1, 109.4, 104.7.

S43

8 Reference

(1) Zhu, H.-T.; Ji, K.-G.; Yang, F.; Wang, L.-J.; Zhao, S.-C.; Ali, S.; Liu, X.-Y.; Liang, Y.-M. Electrophilic Carbocyclization of Aryl Propargylic Alcohols: A Facile Synthesis of Diiodinated Carbocycles and Heterocycles. *Org. Lett.* **2011**, *13*, 684–687.

(2) Kumari, P.; Gupta, S.; Narayana, C.; Ahmad, S.; Vishnoi, N.; Singh, S.; Sagar, R. Stereoselective synthesis of carbohydrate fused pyrano[3,2- c]pyranones as anticancer agents. *New J. Chem.* **2018**, *42*, 13985-13997.

(3) Cadierno, V.; Díez, J.; Gimeno, J.; Nebra, N. Ruthenium/TFA-Catalyzed Coupling of Activated Secondary Propargylic Alcohols with Cyclic 1,3-Diones: Furan versus Pyran Ring Formation. *J. Org. Chem.* **2008**, *73*, 5852–5858.

(4) Ren, Q.; Kang, J.; Li, M.; Yuan, L.; Chen, R.; Wang, L. Regioselective Access to Structurally Diverse Coumarin Analogues through Iron-Catalysed Annulation Reactions. *Eur. J. Org. Chem.*2017, 5566–5571.

(5) Maiti, S.; Perumal, P. T.; Menéndez, J. C. CAN-promoted, diastereoselective synthesis of fused 2,3-dihydrofurans and their transformation into tetrahydroindoles. *Tetrahedron*, **2010**, *66*, 9512-9518.

(6) Cao, H.; Zhan, H.-Y.; Cen, J.-H.; Lin, J.-X.; Lin, Y.-G.; Zhu, Q.-X.; Fu, M.-L.; Jiang, H.-F. Copper-Catalyzed C-O Bond Formation: An Efficient One-Pot Highly Regioselective Synthesis of Furans From (2-Furyl)Carbene Complexes. *Org. Lett.* **2013**, *15*, 1080–1083.

(7) Yeh, J.-Y.; Coumar, M. S.; Horng, J.-T.; Shiao, H.-Y.; Kuo, F.-M.; Lee, H.-L.; Chen, I.-C.; Chang, C.-W.; Tang, W.-F.; Tseng, S.-N.; Chen, C.-J.; Shih, S.-R.; Hsu, J. T.-A.; Liao, C.-C.; Chao, Y.-S.; Hsieh, H.-P.
Anti-Influenza Drug Discovery: Structure–Activity Relationship and Mechanistic Insight into Novel Angelicin Derivatives. *J. Med. Chem.* 2010, *53*, 1519–1533.

9 NMR spectra of compounds 3-11

¹³C NMR spectrum of **3a** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3b**(151 MHz, CDCl₃)

S47

¹³C NMR spectrum of **3c** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3e**(151 MHz, CDCl₃)

¹³C NMR spectrum of **3f** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3g** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3h** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3i** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3j** (151 MHz, CDCl₃)

¹H NMR spectrum of **3k** (600 MHz, CDCl₃)

¹³C NMR spectrum of **3k** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3l** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3m** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3n** (151 MHz, CDCl₃)

¹³C NMR spectrum of **30** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3p** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3q** (151 MHz, CDCl₃)

¹H NMR spectrum of **3r** (600MHz, CDCl₃)

¹³C NMR spectrum of **3r** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3s** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3t** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3u** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3v** (151 MHz, CDCl₃)

¹H NMR spectrum of **3w** (600MHz, CDCl₃)

¹³C NMR spectrum of **3w** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3x** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3y** (151 MHz, CDCl₃)

¹³C NMR spectrum of **3z**(151 MHz, CDCl₃)

¹³C NMR spectrum of 4a (151 MHz, CDCl₃)

¹³C NMR spectrum of **4b** (151 MHz, CDCl₃)

 ^{13}C NMR spectrum of 4c (151 MHz, CDCl₃)

¹³C NMR spectrum of 4d (151 MHz, CDCl₃)

¹³C NMR spectrum of **4e** (151 MHz, CDCl₃)

¹³C NMR spectrum of **4f** (151 MHz, CDCl₃)

¹³C NMR spectrum of 4g (151 MHz, CDCl₃)

¹³C NMR spectrum of **4h** (151 MHz, CDCl₃)

¹³C NMR spectrum of **4i** (151 MHz, CDCl₃)

¹³C NMR spectrum of **4j** (151 MHz, CDCl₃)

¹³C NMR spectrum of 4k (151 MHz, CDCl₃)

¹³C NMR spectrum of **4l** (151 MHz, CDCl₃)

¹³C NMR spectrum of **4m** (151 MHz, CDCl₃)

¹³C NMR spectrum of **4n** (151 MHz, CDCl₃)

¹³C NMR spectrum of **4o** (151 MHz, CDCl₃)

¹³C NMR spectrum of **4p** (151 MHz, CDCl₃)

¹³C NMR spectrum of 4q (151 MHz, CDCl₃)

¹³C NMR spectrum of 4r (151 MHz, CDCl₃)

¹³C NMR spectrum of **4s** (151 MHz, CDCl₃)

¹³C NMR spectrum of 4t (151 MHz, CDCl₃)

S91

¹³C NMR spectrum of 4v (151 MHz, CDCl₃)

¹³C NMR spectrum of **5a** (151 MHz, CDCl₃)

¹H NMR spectrum of **5c** (600MHz, CDCl₃)

¹³C NMR spectrum of **5c** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5d** (151 MHz, CDCl₃)

¹H NMR spectrum of **5e** (600MHz, CDCl₃)

¹³C NMR spectrum of **5e** (151 MHz, CDCl₃)

¹H NMR spectrum of **5f** (600MHz, CDCl₃)

¹³C NMR spectrum of **5f** (151 MHz, CDCl₃)

 ^{13}C NMR spectrum of 5g (151 MHz, CDCl₃)

¹H NMR spectrum of **5h** (600MHz, CDCl₃)

¹³C NMR spectrum of **5h** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5i** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5j** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5k** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5l** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5m** (151 MHz, CDCl₃)

60 50

40 30

20 10

160 150 140 130 120 110 100 90 80 70 f1 (ppm)

10 200 190 180 170

S106

-500

0

¹³C NMR spectrum of **50** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5p** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5q** (151 MHz, CDCl₃)

10 200 190 180 170

160 150 140 130 120

110 100 90 80 70 60 50 40 30 f1 (ppm) -100 -0 --100 -200

0

20 10

¹³C NMR spectrum of **5r** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5s** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5t** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5u** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5v** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5w** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5**x (151 MHz, CDCl₃)

¹³C NMR spectrum of **6a** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6b** (151 MHz, CDCl₃)

¹³C NMR spectrum of 6c (151 MHz, CDCl₃)

¹³C NMR spectrum of 6d (151 MHz, CDCl₃)

¹³C NMR spectrum of **6e** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6f** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6g** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6h** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6i** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6j** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6k** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6l** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6m** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6n** (151 MHz, CDCl₃)

¹³C NMR spectrum of **60** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6p** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6q** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6r** (151 MHz, CDCl₃)

¹³C NMR spectrum of **6s** (151 MHz, CDCl₃)

¹³C NMR spectrum of **7** (151 MHz, CDCl₃)

¹³C NMR spectrum of **9** (151 MHz, CDCl₃)

¹³C NMR spectrum of **10** (151 MHz, CDCl₃)

¹³C NMR spectrum of **11** (151 MHz, CDCl₃)