Supporting Information

α-C-H Difluoroalkylation of Alkyl Sulfoxides via Intermolecular

Pummerer Reaction

Xin Huang,¹ Weizhao Zhao,¹ Yuchen Liang,² Minghui Wang,¹ Yaling Zhan,¹ Yage Zhang,¹ Lichun Kong,¹ Zhi-Xiang Wang^{2,*} and Bo Peng^{1,*}

¹Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China

² School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China

<u>pengbo@zjnu.cn</u>

<u>zxwang@ucas.ac.cn</u>

Table of Contents

Contents

1 General information	2
2 General procedure for the synthesis of starting sulfoxides 1	2
3 Studies on the influence of reaction parameters	10
4 General procedure for reaction of alkyl sulfoxide 1 with enol silyl ethers 2	11
5 NMR analysis	36
6 Density functional theory (DFT) calculations	41
7 KIE studies and control experiments	72
8 NMR spectra	76

1 General information

Unless otherwise indicated, all glassware was oven dried before use and all reactions were performed under an atmosphere of Nitrogen. All solvents were distilled from appropriate drying agents prior to use. All reagents were used as received from commercial suppliers. Reaction progress was monitored by thin layer chromatography (TLC) performed on plastic plates coated with silica gel GF254 with 0.2 mm thickness. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm or by staining using potassium permanganate. Compound isolation was performed on chromatography column using silica gel 60 (160-200 mesh) or Biotage Isolera Prime flash column system. Neat infrared spectra were recorded using a NEXUS670 FT-IR spectrometer. Wavelengths (v) are reported in cm⁻¹. MS (EI) analysis was performed on Agilent GC-MS instrument. High-resolution mass spectrometry (HRMS) analysis was carried out using a TOF MS instrument with ESI or APCI source. All ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker AV-400 or AV-600. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26, methanol δ 3.31), carbon (chloroform δ 77.16, methanol δ 49.00). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet). Coupling constants were reported in Hertz (Hz).

2 General procedure for the synthesis of starting sulfoxides 1

Sulfoxides **1a**, **1d**, **1w**, **1a'**, **1c'**, and enol silyl ether **2b** are commercially available. Sulfoxides **1b**, ¹ **1i**, ² **1j**, ³ **1k**, ⁴ **1m**, ⁵ **1r**, ⁶ **1t**, ⁷ **1z**, ⁸ **1b'**, ⁹ **1d'**, ¹⁰ **1h'**, ¹¹ **1i'**, ¹² **1j'**, ¹³ **1k'**, ¹⁴ **1l'**, ¹⁵, **1e'-1g'**, ¹⁶ and enol silyl ether **2a**, ¹⁷ **2c**, ¹⁸ **2d**, ¹⁹ **2e**²⁰ are known compounds.

References:

1. Firouzabadi, H.; Iranpoor, N.; Jafari, A. A.; Riazymontazer, E. Adv. Synth. Catal. 2006, 348, 434.

2. Laudadio, G.; Straathof, N. J. W.; Lanting, M. D. Knoops, B. Hessel, V.; No d, T. *Green Chem.* **2017**, *19*, 4061.

3. Yu, H.; Li, Z.; Bolm, C. Org. Lett. 2018, 20, 2076

4. Jia, T.-Z.; Bellomo, A.; Baina, K. E.; Dreher, S. D.; Walsh, P. J. J. Am. Chem. Soc. 2013, 135, 3740.

5. Rioz-Martinez, A.; Kopacz, M.; de Gonzalo, G.; Pazmiňo, D. E.; Gotor, V.; Fraaije, M. W. *Org. Biomol. Chem.* **2011**, *9*, 1337.

6. Boral, S.; Wang, S.-M.; Wurster, J. A. U.S. Pat. Appl. 20120196902, 2012.

7. Choudary, B. M.; Bharathi, B. Reddy, C. V. J. Chem. Soc. Perkin Trans. 2002, 1, 2069.

8. Imada, Y.; Tonomura, I.; Komiya, N.; Naota, T. Synlett 2013, 24, 1679.

9. Rani Gogoi, S.; Jyoti Boruah, J.; Sengupta, G.; Saikia, G.; Ahmed, K.; Bania, K. K.; Islam. N. S. *Catal. Sci. Technol.* **2015**, *5*, 595.

10. Cui, H.; Wei, W.; Yang, D.; Zhang, Y.; Zhao, H.; Wang, L.; Wang, H. *Green Chem.* **2017**, *19*, 3520.

11. Ghorbani-Choghamarani, A.; Tahmasbi, B.; Arghand, F.; Faryadi, S. RSC Adv. 2015, 5, 92174.

12. Javorskis, T.; Bagdziunas, G.; Orentas, E. Chem. Commun. 2016, 52, 4325.

13. Colas, K.; Mart'n-Montero, R.; Mendoza, A. Angew. Chem. Int. Ed. 2017, 56, 16042.

14. Hashmat Ali, M.; Bohnert, G. J. Synthesis 1998, 9, 1238.

15. Johnson, J. A.; Zhang, X.; Reeson, T. C.; Chen, Y.-S.; Zhang, J. J. Am. Chem. Soc. 2014, 45, 15881.

16. Singh, S. P.; O'Donnell, J. S.; Schwan, A. L. Org. Biomol. Chem. 2010, 8, 1712.

17. Wu, Y.-B.; Lu, G.-P.; Zhou, B.-J.; Bu, M.-J.; Wan, L.; Cai, C. Chem. Commun. 2016, 52, 5965.

18. Surya Prakash, G. K.; Hu, J.; Olah, G. A. J. Fluorine Chem. 2001, 112, 357.

19. Yu, J.-S.; Liu, Y.-L.; Tang, J.; Wang, X.; Zhou, J. Angew. Chem. Int. Ed. 2014, 53, 9512.

20. Liao, F.-M.; Cao, Z.-Y.; Yu, J.-S.; Zhou, J. Angew. Chem. Int. Ed. 2017, 56, 2459.

To a solution of sulfide (3.0-5.0 mmol) in DCM (0.08 M) was added a solution of *m*-CPBA (1.1 equiv.) in DCM (0.5 M) at -5 °C. After the starting sulfide completely consumed, the reaction was quenched with sat. aq. NaHCO₃. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried over Na₂SO₄, filtrated and concentrated in vacuo. The obtained residue was purified by column chromatography on silica gel to afford the corresponding sulfoxides **1**.

1-((butylsulfinyl)methyl)-4-methylbenzene (1c):

Following the general procedure, the title compound was prepared from r corresponding sulfide (970 mg, 5.0 mmol) and it was obtained as white solid, m.p. 60 - 61 °C, 703 mg, 67% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 7.17 (s, 4H), 4.00 (d, *J* = 12.9 Hz, 1H), 3.95 (d, *J* = 12.9 Hz, 1H), 2.56 (t, *J* = 7.7 Hz, 2H), 2.32 (s, 3H), 1.77 – 1.68 (m, 2H), 1.49 – 1.37 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 138.2, 129.9, 129.6, 126.7, 57.9, 50.5, 24.4, 22.0, 21.2, 13.7.

IR (neat): 2958, 2869, 2357, 2038, 1513, 1022, 823, 730.

HRMS (ESI-TOF): calculated for $C_{12}H_{18}OSNa([M+Na]^+)$: 233.0971; found: 233.1000.

1-((butylsulfinyl)methyl)-3-methylbenzene (1e):

Following the general procedure, the title compound was prepared from corresponding sulfide (970 mg, 5.0 mmol) and it was obtained as colorless oil, 715 mg, 68% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 7.29 – 7.26 (m, 1H), 7.16 (d, J = 7.6 Hz, 1H), 7.14 – 7.07 (m,

2H), 4.01 (d, J = 12.9 Hz, 1H), 3.96 (d, J = 12.8 Hz, 1H), 2.60 (t, J = 7.8 Hz, 2H), 2.37 (s, 3H),

1.85 - 1.66 (m, 2H), 1.55 - 1.34 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 138.7, 130.7, 129.8, 129.1, 128.8, 127.0, 58.3, 50.6, 24.4, 22.0, 21.4, 13.7.

IR (neat): 2956, 2927, 1607, 1463, 1028, 790, 702, 437.

HRMS (ESI-TOF): calculated for $C_{12}H_{18}OSNa([M+Na]^+)$: 233.0971; found: 233.0983.

3-((butylsulfinyl)methyl)benzonitrile (1f):

Following the general procedure, the title compound was prepared from corresponding sulfide (1.02 g, 5.0 mmol) and it was obtained as yellow oil, 940 mg, 85% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 7.66 (d, J = 7.7 Hz, 1H), 7.61 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.53 - 7.50 (m, 1H), 4.00 (d, J = 13.1 Hz, 1H), 3.94 (d, J = 13.1 Hz, 1H), 2.67 - 2.60 (m, 2H),

1.79 - 1.70 (m, 2H), 1.57 - 1.37 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 134.6, 133.4, 132.0, 131.9, 129.7, 118.3, 113.1, 56.8, 51.3, 24.6, 22.0, 13.7.

IR (neat): 2958, 2230, 1481, 1096, 1023, 780

HRMS (ESI-TOF): calculated for $C_{12}H_{15}NOSNa([M+Na]^+)$: 244.0767; found: 244.0771.

1-((butylsulfinyl)methyl)-2-methylbenzene (1g):

Following the general procedure, the title compound was prepared from ^{. Me} 1g S4 corresponding sulfide (970 mg, 5.0 mmol) and it was obtained as white solid, m.p. 37 - 38 °C, 547 mg, 52% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 7.30 – 7.10 (m, 4H), 4.03 (d, *J* = 12.8 Hz, 2H), 3.94 (d, *J* = 12.9 Hz, 1H), 2.67 – 2.59 (m, 2H), 2.39 (s, 3H), 1.80 – 1.66 (m, 2H), 1.48 – 1.34 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 137.3, 131.0, 130.8, 128.8, 128.5, 126.5, 57.0, 51.1, 24.5, 22.0, 19.8, 13.7.

IR (neat): 2957, 2871, 1457, 1077, 768, 743, 726, 447.

HRMS (ESI-TOF): calculated for $C_{12}H_{18}OSNa([M+Na]^+)$: 233.0971; found: 233.0987.

2-((butylsulfinyl)methyl)benzonitrile (1h):

Follo ON h Pr correction CN h Pr r = 0

Following the general procedure, the title compound was prepared from corresponding sulfide (615 mg, 3.0 mmol) and it was obtained as white solid, m.p. 63 - 64 °C, 530 mg, 80% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 7.67 (dd, J = 7.8, 1.0 Hz, 1H), 7.59 – 7.56 (m, 1H), 7.49 (d, J =

7.6 Hz, 1H), 7.43 – 7.40 (m, 1H), 4.20 (d, *J* = 13.2 Hz, 1H), 4.00 (d, *J* = 13.2 Hz, 1H), 2.76 – 2.60

(m, 2H), 1.77 – 1.68 (m, 2H), 1.54 – 1.34 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 134.2, 133.1, 133.1, 131.7, 128.8, 117.5, 113.3, 55.9, 51.7, 24.5, 21.9, 13.6.

IR (neat): 2958, 2857, 2225, 1595, 1464, 1023, 917, 771.

HRMS (ESI-TOF): calculated for C₁₂H₁₅NOSNa([M+Na]⁺): 244.0767; found: 244.0775.

methyl(naphthalen-2-ylmethyl)sulfane (11):

11

Following the general procedure, the title compound was prepared from corresponding sulfide (940 mg, 5.0 mmol) and it was obtained as white solid, m.p. 130 - 131 °C, 705 mg, 69% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 7.93 – 7.83 (m, 3H), 7.80 (s, 1H), 7.59 – 7.48 (m, 2H), 7.41 (dd, *J* = 8.4, 1.7 Hz, 1H), 4.23 (d, *J* = 12.9 Hz, 1H), 4.08 (d, *J* = 12.9 Hz, 1H), 2.52 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 133.3, 133.0, 129.4, 128.9, 127.9, 127.8, 127.4, 127.1, 126.6, 126.5, 60.5, 37.3.

IR (neat): 3055, 2904, 2268, 1980, 1597, 1025, 817, 749.

HRMS (ESI-TOF): calculated for $C_{12}H_{12}OSNa([M+Na]^+)$: 227.0501; found: 227.0496.

allyl(hexyl)sulfane (1n):

Following the general procedure, the title compound was prepared from n-Pent corresponding sulfide (790 mg, 5.0 mmol) and it was obtained as colorless oil, 1n 253 mg, 29% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 5.93 – 5.85 (m, 1H), 5.49 – 5.33 (m, 2H), 3.52 – 3.40 (m, 2H), 2.74 - 2.63 (m, 2H), 1.85 - 1.67 (m, 2H), 1.53 - 1.36 (m, 2H), 1.36 - 1.25 (m, 4H), 0.95 - 0.81 (m, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 125.8, 123.5, 100.0, 55.7, 50.9, 31.4, 28.5, 22.5, 14.0.

IR (neat): 2952, 2922, 1638, 1466, 1074, 988, 921, 579.

HRMS (ESI-TOF): calculated for $C_9H_{18}OSNa([M+Na]^+)$: 197.0971; found: 197.0965.

hexyl(3-methylbut-2-en-1-yl)sulfane (10):

Following the general procedure, the title compound was prepared from corresponding sulfide (744 mg, 4.0 mmol) and it was obtained as colorless oil, 428 mg, 53% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 5.26 – 5.16 (m, 1H), 3.50 – 3.38 (m, 2H), 2.65 – 2.61 (m, 2H), 1.79 (s, 3H), 1.77 – 1.72 (m, 2H), 1.71 (s, 3H), 1.49 – 1.35 (m, 2H), 1.30 – 1.27 (m, 4H), 0.90 – 0.85 (m, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 141.6, 111.3, 51.4, 50.9, 31.4, 28.6, 26.0, 22.5, 22.4, 18.6, 14.0. IR (neat): 2925, 2857, 1451, 1376, 1083, 842, 724

HRMS (ESI-TOF): calculated for $C_{11}H_{22}OSNa([M+Na]^+)$: 225.1284; found: 225.1279.

hexyl(prop-2-yn-1-yl)sulfane (1p):

Following the general procedure, the title compound was prepared from corresponding sulfide (460 mg, 3.0 mmol) and it was obtained as colorless oil, 248 mg, 48% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 3.61 – 3.52 (m, 2H), 2.95 – 2.82 (m, 2H), 2.43 (t, J = 2.7 Hz, 1H), S6

1.87 – 1.70 (m, 2H), 1.54 – 1.40 (m, 2H), 1.38 – 1.28 (m, 4H), 0.90 – 0.87 (m, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 76.3, 72.6, 51.5, 41.8, 31.3, 28.5, 22.4, 22.1, 14.0.

IR (neat): 3212, 2927, 2857, 1458, 1403, 1086, 722, 635,

HRMS (ESI-TOF): calculated for $C_9H_{16}OSNa^+([M+Na]^+)$: 195.0814; found: 195.0811.

butyl(3-phenylprop-2-yn-1-yl)sulfane (1q):

Following the general procedure, the title compound was prepared from corresponding sulfide (1.02 g, 5.0 mmol) and it was obtained as colorless oil, 364 mg, 33% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 7.47 – 7.42 (m, 2H), 7.37 – 7.31 (m, 3H), 3.82 (d, *J* = 15.9 Hz, 1H), 3.76 (d, *J* = 15.9 Hz, 1H), 3.04 – 2.99 (m, 1H), 2.96 – 2.84 (m, 1H), 1.86 – 1.80 (m, 2H), 1.63 – 1.48 (m, 2H), 1.00 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 131.8, 128.9, 128.4, 122.0, 87.8, 77.7, 51.4, 43.1, 24.2, 22.1, 13.7.

IR (neat): 3063, 2925, 2217, 1673, 1490, 1025, 757, 750.

HRMS (ESI-TOF): calculated for $C_{13}H_{16}OSNa([M+Na]^+)$: 243.0814; found: 243.0810.

ethyl 2-(butylsulfinyl)acetate (1s):

¹**H NMR (600 MHz, CDCl₃):** δ 4.20 (q, J = 7.1 Hz, 2H), 3.68 – 3.59 (m, 2H), 2.82 (dd, J = 8.4,

7.1 Hz, 2H), 1.82 – 1.66 (m, 2H), 1.56 – 1.36 (m, 2H), 1.33 – 1.20 (t, *J* = 7.1 Hz, 3H), 0.94 –

0.91(t, *J* = 7.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 165.2, 62.1, 55.9, 52.6, 24.3, 21.9, 14.1, 13.6.

IR (neat): 3346, 1723, 1637, 1467, 1371, 1302, 1188, 1018.

HRMS (ESI-TOF): calculated for $C_8H_{16}O_3SNa([M+Na]^+)$: 215.0712; found: 215.0710.

2-(butylsulfinyl)-1-(pyrrolidin-1-yl)ethan-1-one (1u):

Following the general procedure, the title compound was prepared from corresponding sulfide (603 mg, 3.0 mmol) and it was obtained as colorless oil, 371 mg, 57% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 3.81 – 3.62 (m, 2H), 3.61 – 3.34 (m, 4H), 2.99 – 2.93 (m, 1H), 2.91 – 2.76 (m, 1H), 1.96 – 1.91 (m, 2H), 1.87 – 1.83 (m, 2H), 1.77 – 1.71(m, 2H), 1.57 – 1.31 (m, 2H), 1.02 – 0.82 (m, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 162.7, 56.4, 52.8, 47.5, 46.1, 26.0, 24.5, 24.4, 21.9, 13.7.

IR (neat): 3456, 2956, 2871, 1626, 1436, 1025, 914, 518.

HRMS (ESI-TOF): calculated for $C_{10}H_{19}NO_2SNa([M+Na]^+)$: 240.1029; found: 240.1028.

2-(benzylsulfinyl)-1-(pyrrolidin-1-yl)ethan-1-one (1v):

Following the general procedure, the title compound was prepared from corresponding sulfide (1.17 g, 5.0 mmol) and it was obtained as white solid, m.p. 100 - 101 °C, 1.13 g, 90% yield.

¹**H NMR (600 MHz, CDCl₃):** δ 7.44 – 7.28 (m, 5H), 4.41 – 4.32 (m, 1H), 4.16 – 4.06 (m, 1H),

3.56 – 3.54 (m, 2H), 3.51 – 3.47 (m, 2H), 3.46 – 3.31 (m, 2H), 2.00 – 1.91 (m, 2H), 1.89 – 1.83 (m, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 162.8, 130.6, 129.6, 128.8, 128.4, 57.5, 53.7, 47.4, 46.1, 26.0, 24.4.

IR (neat): 3471, 2965, 1743, 1683, 1433, 1029, 769, 700

HRMS (ESI-TOF): calculated for $C_{13}H_{17}NO_2SNa([M+Na]^+)$: 274.0872; found: 274.0869.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-(butylsulfinyl)acetate (1x):

Following the general procedure, the title compound was prepared from corresponding sulfide (1.14 g, 4.0 mmol) and it was obtained as colorless oil, 1.02 g, 85% yield.

¹**H NMR (600 MHz, CDCl₃):**δ 4.82 – 4.67 (m, 1H), 3.76 – 3.57 (m, 2H), 2.92 – 2.75 (m, 2H), 2.06 – 1.93 (m, 1H), 1.93 – 1.72 (m, 3H), 1.67 (d, *J* = 11.5 Hz, 2H), 1.59 – 1.33 (m, 4H), 1.11 – 0.80 (m, 12H), 0.74 (dd, *J* = 6.9, 2.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 164.6, 76.3, 56.34, 56.2, 52.7, 52.5, 46.6, 40.6, 40.5, 33.9, 31.3,

26.0, 24.2, 24.1, 23.0, 21.8, 20.6, 16.0, 15.9, 13.5.

IR (neat): 2954, 2869, 1722, 1456, 1261, 1036, 982, 465.

HRMS (ESI-TOF): calculated for $C_{16}H_{30}O_3SNa([M+Na]^+)$: 325.1808; found: 325.1812.

(4S)-3-(2-(butylsulfinyl)acetyl)-4-isopropyloxazolidin-2-one (1y):

Following the general procedure, the title compound was prepared from

¹**H NMR (600 MHz, CDCl₃):** δ 4.54 (d, J = 13.6 Hz, 1H), 4.51 – 4.45 (m, 1H), 4.35 – 4.30 (m,

1H), 4.27 – 4.22 (m, 1H), 4.16 (d, J = 13.6 Hz, 1H), 2.92 – 2.81 (m, 2H), 2.44 – 2.35 (m, 1H),

1.82 – 1.72 (m, 2H), 1.56 – 1.41 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H), 0.87 (d, J = 6.9 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 164.5, 154.0, 63.8, 58.7, 56.4, 52.9 28.3, 24.4, 21.9, 17.8, 14.6, 13.6.

IR (neat): 2961, 2864, 2160, 1742, 1455, 1026, 950, 825.

HRMS (ESI-TOF): calculated for C₁₂H₂₁NO₄SNa([M+Na]): 298.1083; found: 298.1076.

3 Studies on the influence of reaction parameters.

entry	Variation from the "standard" conditions	yield of 3aa
1	none	94%
1	Tf ₂ O instead of TFAA	3%
2	TCAA instead of TFAA	89%
3	Ts ₂ O instead of TFAA	43%
4	Ac ₂ O instead of TFAA	0%
5	DCM instead of MeCN	41%
6	0 $^{\circ}$ C instead of "-40 to 0 $^{\circ}$ C"	83%

To a solution of dibenzyl sulfoxide **1a** (115 mg, 0.5 mmol) and enol silyl ether **2a** (0.75 mmol) in MeCN or DCM (2.5 mL, 0.2 M) was added anhydride (0.75 mmol) under the indicated temperature. After stirring for 5 min, the mixture was warmed to 0 $^{\circ}$ C and kept stirring for 12 h. After that, the mixture was passed through a short silica gel column, concentrated under vacuum and purified by flash chromatography on silica gel.

4 General procedure for reaction of alkyl sulfoxide 1 with enol silyl ethers 2

General procedure A: To a solution of alkyl sulfoxide **1** (0.5 mmol) and difluoroenol silyl ether **2** (0.75 mmol, 1.5 equiv) in MeCN (2.5 mL) was added trifluoroacetic anhydride (TFAA, 105 μ L, 0.75 mmol) at -40 °C. After stirring for 5 min, the reaction mixture was gradually warmed to 0 °C and kept stirring for 12 h (**3aa-3aq**, **3ba-3fa**) or 24 h (**3aa'-3aj'**). After that, the mixture was passed through a short silica gel column and concentrated under vacuum. The obtained residue was further purified by flash chromatography on silica gel affording product **3**.

General procedure B: To a solution of alkyl sulfoxides **1** (0.5 mmol) and difluoroenol silyl ether **2** (0.75 mmol, 1.5 equiv) in DCM (2.5 mL) was added trifluoromethanesulfonic anhydride (Tf₂O, 125 μ L, 0.75 mmol) at -78 °C (**3ar**, **3at**, **3av**) or -60 °C (**3as**, **3au**, **3aw**-**3az**). After stirring for 5 min, the reaction mixture was gradually warmed to 0 °C and kept stirring for 6 h. After that, the mixture was passed through a short silica gel column and concentrated under vacuum. The obtained residue was further purified by flash chromatography on silica gel affording product **3**.

3-(benzylthio)-2,2-difluoro-1,3-diphenylpropan-1-one (3aa):

Following the general procedure A, the title compound was obtained as light yellow oil, 173 mg, 94% yield. (Rf = 0.30, eluent: PE/EtOAc = 40/1). **¹H NMR (600 MHz, CDCl₃):** δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.65 – 7.60 (m, 1H), 7.48 – 7.44 (m, 2H), 7.37 – 5.32 (m, 5H), 7.30 – 7.25 (m, 3H), 7.23 – 7.20 (m,

2H), 4.44 (dd, *J* = 18.7, 13.1 Hz, 1H), 3.73 (dd, *J* = 110.6, 13.2 Hz, 2H).

¹³**C NMR (151 MHz, CDCl₃):** δ 189.5 (t, *J* = 31.7 Hz), 136.6, 134.2, 134.1, 132.9, 130.0, 129.9 (t, *J* = 3.0 Hz), 129.3, 128.7, 128.63, 128.60, 128.5, 127.5, 118.2 (t, *J* = 256.7 Hz), 51.4 (t, *J* = 22.7 Hz), 36.7.

¹⁹F NMR (565 MHz, CDCl₃): δ -96.9 (d, J = 265.6 Hz, 1F), -103.5 (d, J = 271.2 Hz, 1F).
IR (neat): 1692, 1448, 1266, 1167, 1058, 918, 695, 683.

HRMS (ESI-TOF): calculated for $[C_{22}H_{18}F_2OSNa (M + Na^+)]$: 391.0939, found: 391.0938.

3-(butylthio)-2,2-difluoro-1,3-diphenylpropan-1-one (3ab):

129.9, 128.7, 128.6, 128.5, 119.9 (t, *J* = 259.7 Hz), 52.5 (t, *J* = 22.7 Hz), 32.7, 31.1, 21.8, 13.6.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -95.7 (d, J = 271.2 Hz, 1F), -105.1 (d, J = 271.2 Hz, 1F).

IR (neat): 3062, 2958, 2872, 1701, 1495, 1379, 1077, 859.

HRMS (ESI-TOF): calculated for $[C_{19}H_{20}F_2OSNa (M + Na^+)]$: 357.1095, found: 357.1110.

3-(butylthio)-2,2-difluoro-1-phenyl-3-(p-tolyl)propan-1-one (3ac):

Following the general procedure A, the title compound was obtained as light yellow oil, 149.6 mg, 86% yield. (Rf = 0.33, eluent: PE/EtOAc = 40/1).

¹**H** NMR (600 MHz, CDCl₃): δ 8.01 (d, J = 7.9 Hz, 2H), 7.63 – 7.59 (m, 1H), 7.49 – 7.45 (m, 2H), 7.34 (d, J = 7.9 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 4.55 (dd, J = 20.1, 11.8 Hz, 1H), 2.54 – 2.44 (m, 2H), 2.34 (s, 3H), 1.48 – 1.42 (m, 2H), 1.32 – 1.26 (m, 2H), 0.82 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 190.3 (t, *J* = 31.7 Hz), 138.3, 134.1, 133.3, 131.7, 130.0 (t, *J* = 3.0 Hz), 129.9, 128.3, 128.7, 118.2 (t, *J* = 259.7 Hz), 52.5 (t, *J* = 22.7 Hz), 32.6, 31.1, 21.8, 21.3, 13.7.

¹⁹F NMR (565 MHz, CDCl₃): δ -95.8 (d, *J* = 271.2 Hz, 1F), -105.2 (d, *J* = 271.2 Hz, 1F). IR (neat): 2957, 2872, 2356, 1909, 1701, 1579, 1379, 866.

HRMS (ESI-TOF): calculated for $[C_{20}H_{22}F_2OSNa (M + Na^+)]$: 371.1252, found: 371.1256.

3-(4-bromophenyl)-3-(butylthio)-2,2-difluoro-1-phenylpropan-1-one (3ad):

Following the general procedure A, the title compound was obtained as light yellow oil, 186 mg, 90% yield. (Rf = 0.27, eluent: PE/EtOAc = 50/1). ¹H NMR (600 MHz, CDCl₃): δ 8.02 (d, *J* = 8.0 Hz, 2H), 7.65 - 7.61 (m, 1H), 7.51 - 7.45 (m, 4H), 7.35 (d, *J* = 8.3 Hz, 2H), 4.55 (dd, *J* = 20.4, 11.0

Hz, 1H), 2.55 - 2.45 (m, 2H), 1.48 - 1.39 (m, 2H), 1.31 - 1.25 (m, 2H), 0.82 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 189.8 (t, J = 30.2 Hz), 134.3, 134.1, 133.0, 131.7, 131.6, 130.0 (t,

J = 3.0 Hz), 128.8, 122.6, 117.9 (t, *J* = 259.7 Hz), 51.8 (t, *J* = 22.7 Hz), 32.7, 31.0, 21.8, 13.6.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -94.9 (d, *J* = 271.2 Hz, 1F), -105.6 (d, *J* = 271.2 Hz, 1F).

IR (neat): 3062, 2872, 2138, 1579, 1307, 1211, 1001, 867.

HRMS (ESI-TOF): calculated for $[C_{19}H_{19}BrF_2OSNa (M + Na^+)]$: 435.0200, found: 435.0216.

3-(butylthio)-2,2-difluoro-1-phenyl-3-(m-tolyl)propan-1-one (3ae):

Following the general procedure A, the title compound was obtained as light yellow oil, 149.5 mg, 86% yield. (Rf = 0.31, eluent: PE/EtOAc = 40/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.99 (d, *J* = 7.8 Hz, 2H), 7.63 – 7.57 (m, 2H), 7.49 – 7.44 (m, 2H), 7.22 – 7.12 (m, 3H), 4.89 (dd, *J* = 21.0, 11.0 Hz, 1H), 2.61 – 2.46 (m, 2H), 2.37 (s, 3H), 1.49 – 1.39 (m, 2H), 1.32 – 1.25 (m, 2H), 0.82 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 190.6 (t, *J* = 30.2 Hz), 136.9, 134.1, 133.4, 130.5, 130.01 (t, *J* = 3.0 Hz), 130.00, 129.8, 128.7, 128.3, 126.5, 118.8 (t, *J* = 259.7 Hz), 51.8 (t, *J* = 22.7 Hz), 32.7, 31.3, 21.8, 20.0, 13.7.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -95.6 (d, J = 271.2 Hz, 1F), -103.9 (d, J = 271.2 Hz, 1F).

IR (neat): 2957, 2872, 2360, 1580, 1379, 1241, 1001, 831.

HRMS (ESI-TOF): calculated for $[C_{20}H_{22}F_2OSNa (M + Na^+)]$: 371.1252, found: 371.1260.

3-(1-(butylthio)-2,2-difluoro-3-oxo-3-phenylpropyl)benzonitrile (3af):

Following the general procedure A, the title compound was obtained as light yellow oil, 136 mg, 76% yield. (Rf = 0.25, eluent: PE/EtOAc = 20/1). ¹H NMR (600 MHz, CDCl₃): δ 8.03 (d, *J* = 7.9 Hz, 2H), 7.80 (s, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.66 - 7.57 (m, 2H), 7.52 - 7.44 (m, 3H), 4.60 (dd, *J* = 21.1, 10.0 Hz, 1H), 2.53 – 2.44 (m, 2H), 1.48 – 1.38 (m, 2H), 1.33 – 1.21 (m, 2H), 0.81 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 189.3 (t, J = 28.7 Hz), 136.9, 134.5, 134.4, 133.5, 132.7, 132.0, 130.0, 129.4, 128.8, 118.5, 117.7 (t, J = 259.7 Hz), 112.7, 51.6 (t, J = 24.2 Hz), 32.9, 30.9, 21.7, 13.6.

¹⁹**F NMR (565 MHz, CDCl**₃): δ -93.6 (d, *J* = 276.9 Hz, 1F), -106.2 (d, *J* = 276.9 Hz, 1F).

IR (neat): 2958, 2871, 2224, 1977, 1579, 1378, 1213, 1000.

HRMS (ESI-TOF): calculated for $[C_{20}H1_9F_2NOSNa (M + Na^+)]$: 382.1048, found: 383.1062.

3-(butylthio)-2,2-difluoro-1-phenyl-3-(o-tolyl)propan-1-one (3ag):

Following the general procedure A, the title compound was obtained as light yellow oil, 130.3 mg, 75% yield. (Rf = 0.30, eluent: PE/EtOAc = 50/1). ¹H NMR (600 MHz, CDCl₃): δ 8.02 (d, *J* = 7.8 Hz, 2H), 7.64 – 7.59 (m, 1H), 7.48 (dd, *J* = 8.1, 7.7 Hz, 2H), 7.30 – 7.21 (m, 3H), 7.14 (d, *J* = 7.2 Hz, 1H),

4.57 (dd, *J* = 20.4, 11.5 Hz, 1H), 2.58 – 2.48 (m, 2H), 2.36 (s, 3H), 1.52 – 1.43 (m, 2H), 1.34 – 1.27 (m, 2H), 0.84 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 190.2 (t, *J* = 30.2 Hz), 138.2, 134.7, 134.1, 133.3, 130.5, 130.1 (t, *J* = 3.0 Hz), 129.3, 128.7, 128.4, 127.0, 118.2 (t, *J* = 259.7 Hz), 52.4 (t, *J* = 24.2 Hz), 32.7, 31.0, 21.8, 21.5, 13.6.

¹⁹F NMR (565 MHz, CDCl₃): δ -95.5 (d, *J* = 271.2 Hz, 1F), -105.2 (d, *J* = 271.2 Hz, 1F). IR (neat): 3062, 3026, 2872, 2337, 2022, 1580, 1001, 858.

HRMS (ESI-TOF): calculated for $[C_{20}H_{22}F_2OSNa (M + Na^+)]$: 372.1252, found: 372.1265.

2-(1-(butylthio)-2,2-difluoro-3-oxo-3-phenylpropyl)benzonitrile (3ah):

Following the general procedure A, the title compound was obtained as light yellow oil, 172.1 mg, 96% yield. (Rf = 0.31, eluent: PE/EtOAc = 20/1).

¹**H NMR (600 MHz, CDCl₃):** δ 8.03 (d, J = 7.8 Hz, 2H), 7.80 (s, 1H), 7.73 (d,

J = 7.9 Hz, 1H), 7.67 – 7.58 (m, 2H), 7.51 – 7.44 (m, 3H), 4.61 (dd, J = 21.1,

10.0 Hz, 1H), 2.60 – 2.42 (m, 2H), 1.49 – 1.39 (m, 2H), 1.32 – 1.24 (m, 2H), 0.81 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 189.3 (t, J = 30.2 Hz), 136.9, 134.5, 134.4, 133.5, 132.7, 132.0,
130.1 (t, J = 3.0 Hz), 129.4, 128.8, 118.5 (t, J = 259.7 Hz), 116.0, 112.7, 51.6 (t, J = 24.2 Hz),
32.8, 31.0, 21.7, 13.5.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -93.5 (d, J = 271.2 Hz, 1F), -106.2 (d, J = 271.2 Hz, 1F).

IR (neat): 3063, 2872, 2231, 1700, 1580, 1379, 1001, 830.

HRMS (ESI-TOF): calculated for $[C_{20}H_{19}F_2NOSNa (M + Na^+)]$: 382.1048, found: 382.1066.

2,2-difluoro-3-(methylthio)-1,3-diphenylpropan-1-one (3ai):

Following the general procedure A, the title compound was obtained as light yellow oil, 121.2 mg, 83% yield. (Rf = 0.41, eluent: PE/EtOAc = 50/1). ¹H NMR (600 MHz, CDCl₃): δ 8.00 (d, J = 7.9 Hz, 2H), 7.63 – 7.59 (m, 1H), 7.49 – 7.43 (m, 4H), 7.37 – 7.31 (m, 3H), 4.56 (dd, J = 19.3, 12.3 Hz, 1H), 2.09 (s,

3H).

¹³C NMR (151 MHz, CDCl₃): δ 190.0 (t, *J* = 30.2 Hz), 134.2, 134.1, 133.1, 130.0 (t, *J* = 3.0 Hz), 129.9, 128.7, 128.6, 128.5, 118.4 (t, *J* = 259.7 Hz), 53.9 (t, *J* = 24.2 Hz), 16.0.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -96.6 (d, *J* = 271.2 Hz, 1F), -104.0 (d, *J* = 271.2 Hz, 1F).

IR (neat): 3062, 2921, 1700, 1579, 1303, 1214, 1077, 1001.

HRMS (ESI-TOF): calculated for $[C_{16}H_{14}F_2OSNa (M + Na^+)]$: 315.0626, found: 315.0626.

2,2-difluoro-3-(isopropylthio)-1,3-diphenylpropan-1-one (3aj):

Following the general procedure A, the title compound was obtained as light yellow oil, 92.6 mg, 58% yield. (Rf = 0.44, eluent: PE/EtOAc = 50/1). ¹H NMR (600 MHz, CDCl₃): δ 7.99 (d, J = 7.8 Hz, 2H), 7.62 – 7.58 (m, 1H), 7.50 – 7.44 (m, 4H), 7.37 – 7.29 (m, 3H), 4.62 (dd, J = 20.6, 11.3 Hz, 1H), 2.92

- 2.84 (m, 1H), 1.17 (dd, *J* = 10.7, 6.7 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃): δ 190.5 (t, *J* = 30.2 Hz), 135.4, 134.1, 133.4, 130.1, 130.0 (t, *J* = 3.0 Hz), 128.7, 128.6, 128.5, 118.1 (t, *J* = 259.7 Hz), 51.5 (t, *J* = 24.2 Hz), 36.7, 23.4, 23.0.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -95.1 (d, J = 271.2 Hz, 1F), -105.6 (d, J = 271.2 Hz, 1F).

IR (neat): 3063, 2866, 1696, 1579, 1287, 1076, 1001, 859.

HRMS (ESI-TOF): calculated for $[C_{18}H_{18}F_2OSNa (M + Na^+)]$: 343.0939, found: 343.0939.

3-(cyclohexylthio)-2,2-difluoro-1,3-diphenylpropan-1-one (3ak):

Following the general procedure A, the title compound was obtained as light yellow oil, 97 mg, 54% yield. (Rf = 0.41, eluent: PE/EtOAc = 50/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.99 (d, *J* = 7.7 Hz, 2H), 7.65 – 7.57 (m, 1H), 7.48 – 7.43 (m, 4H), 7.37 – 7.28 (m, 3H), 4.63 (dd, *J* = 21.2, 11.0 Hz, 1H), 2.71

- 2.56 (m, 1H), 1.88 - 1.76 (m, 2H), 1.70 - 1.62 (m, 2H), 1.56 - 1.50 (m, 1H), 1.30 - 1.17 (m, 5H).

¹³C NMR (151 MHz, CDCl₃): δ 190.6 (t, *J* = 30.2 Hz), 135.7, 134.0, 133.5, 130.0 (t, *J* = 3.0 Hz), 128.8, 128.7, 128.5, 128.4, 118.1 (t, *J* = 259.7 Hz), 50.8 (t, *J* = 24.2 Hz), 45.1, 33.6, 33.0, 25.9, 25.8, 25.7.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -94.6 (d, J = 271.2 Hz, 1F), -106.1 (d, J = 271.2 Hz, 1F).

IR (neat): 3062, 2852, 1598, 1494, 1288, 1077, 857, 770.

HRMS (ESI-TOF): calculated for $[C_{21}H_{22}F_2OSNa (M + Na^+)]$: 383.1252, found: 383.1265.

2,2-difluoro-3-(methylthio)-3-(naphthalen-2-yl)-1-phenylpropan-1-one (3al):

Following the general procedure A, the title compound was obtained as light yellow oil, 138.7 mg, 81% yield. (Rf = 0.37, eluent: PE/EtOAc = 50/1). ¹H NMR (600 MHz, CDCl₃): δ 8.06 (d, *J* = 7.8 Hz, 2H), 7.91 – 7.83 (m, 4H), 7.68 – 7.60 (m, 2H), 7.53 – 7.46 (m, 4H), 4.78 (dd, *J* = 19.6, 12.1 Hz, 1H),

2.11 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 189.8 (t, J = 30.2 Hz), 134.2, 133.2, 133.0, 132.9, 131.4, 130.0 (t, J = 3.0 Hz), 129.3, 128.7, 128.6, 128.1, 127.7, 127.1, 126.6, 126.5, 118.5 (t, J = 259.7 Hz), 54.0 (t, J = 24.2 Hz), 15.8.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -95.8 (d, J = 271.2 Hz, 1F), -103.8 (d, J = 271.2 Hz, 1F).

IR (neat): 3060, 2921, 1918, 1578, 1368, 1314, 1001, 869.

HRMS (ESI-TOF): calculated for $[C_{20}H_{16}F_2OSNa (M + Na^+)]$: 365.0782, found: 365.0790.

2,2-difluoro-3-(methylthio)-1-phenyl-3-(thiophen-2-yl)propan-1-one (3am):

Following the general procedure A, the title compound was obtained as light yellow oil, 92.4 mg, 62% yield. (Rf = 0.40, eluent: PE/EtOAc = 20/1). Note: ¹⁹F-NMR

spectra of **3am** show some unknown impurities although many eluent system are tried during flash column separation (PE/EtOAc, PE/Et2O, PE/Acetone, PE/MeOH).

¹**H NMR (600 MHz, CDCl₃):** δ 8.03 (d, *J* = 7.7 Hz, 2H), 7.63 (dd, *J* = 10.6, 4.2 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.32 (dd, *J* = 5.1, 1.0 Hz, 1H), 7.13 (d, *J* = 3.4 Hz, 1H), 6.98 (dd, *J* = 5.1, 3.6 Hz, 1H), 4.90 (dd, *J* = 18.6, 11.9 Hz, 1H), 2.13 (s, 3H).

¹³**C NMR (151 MHz, CDCl₃):** δ 189.6 (t, *J* = 30.2 Hz), 136.3, 134.4, 132.9, 130.0 (t, *J* = 3.0 Hz), 128.8, 128.7, 126.9, 126.7, 117.8 (t, *J* = 259.7 Hz), 48.8 (t, *J* = 24.2 Hz), 15.7.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -96.0 (d, J = 271.2 Hz, 1F), -104.8 (d, J = 271.2 Hz, 1F).

IR (neat): 3072, 2922, 1698, 1579, 1274, 1001, 970, 856.

HRMS (ESI-TOF): calculated for $[C_{14}H_{12}F_2OS_2Na (M + Na^+)]$: 321.0190, found: 321.0193.

2,2-difluoro-3-(hexylthio)-1-phenylpent-4-en-1-one (3an):

Following the general procedure A, the title compound was obtained as light yellow oil, 68 mg, 44% yield. (Rf = 0.35, eluent: PE/EtOAc = 50/1).

¹H NMR (600 MHz, CDCl₃): δ 8.05 (d, J = 7.8 Hz, 2H), 7.65 - 7.61 (m, 1H),
7.53 - 7.47 (m, 2H), 5.96 - 5.86 (m, 1H), 5.36 - 5.28 (m, 2H), 4.02 - 3.85 (m, 1H), 2.61 - 2.46 (m,
2H), 1.55 - 1.45 (m, 2H), 1.34 - 1.17 (m, 6H), 0.86 (t, J = 7.1 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 189.6 (t, *J* = 30.2 Hz), 134.3, 133.1, 130.6 (t, *J* = 3.0 Hz), 130.0 (t, *J* = 3.0 Hz), 128.8, 120.5, 118.2 (t, *J* = 259.7 Hz), 51.3 (t, *J* = 24.2 Hz), 31.8, 31.4, 29.1, 28.5, 22.6, 14.1.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -96.6 (d, *J* = 271.2 Hz, 1F), -106.4 (d, *J* = 271.2 Hz, 1F).

IR (neat): 2955, 2856, 2341, 1636, 1419, 1378, 1101, 987.

HRMS (ESI-TOF): calculated for $[C_{17}H_{22}F_2OSNa (M + Na^+)]$: 335.1252, found: 335.1252.

2,2-difluoro-3-(hexylthio)-5-methyl-1-phenylhex-4-en-1-one (3ao):

Following the general procedure, A the title compound was obtained as light yellow oil, 75 mg, 44% yield. (Rf = 0.33, eluent: PE/EtOAc = 50/1). ¹H NMR (600 MHz, CDCl₃): δ 8.03 (d, *J* = 7.8 Hz, 2H), 7.64 – 7.60 (m,

1H), 7.52 – 7.47 (m, 2H), 5.26 – 5.17 (m, 1H), 4.28 – 4.18 (m, 1H), 2.64 – 2.48 (m, 2H), 1.76 (d, J = 0.9 Hz, 3H), 1.62 (d, J = 0.9 Hz, 3H), 1.54 – 1.46 (m, 2H), 1.33 – 1.22 (m, 6H), 0.87 (t, J = 6.9

Hz, 3H).

n-Pent²

¹³C NMR (151 MHz, CDCl₃): δ 189.9 (t, J = 30.2 Hz), 138.9, 134.1, 133.3, 130.0 (t, J = 3.0 Hz), 128.8, 118.6 (t, J = 259.7 Hz), 117.0, 46.1 (t, J = 24.2 Hz), 31.5, 31.4, 26.0, 22.6, 18.4, 14.1. ¹⁹F NMR (565 MHz, CDCl₃): δ -99.9 (d, J = 271.2 Hz, 1F), -104.7 (d, J = 271.2 Hz, 1F).

IR (neat): 2956, 2356, 2167, 1580, 1377, 1114, 1001, 778.

HRMS (ESI-TOF): calculated for $[C_{19}H_{26}F_2OSNa (M + Na^+)]$: 363.1565, found: 363.1568.

2,2-difluoro-3-(hexylthio)-1-phenylpent-4-yn-1-one (3ap):

Following the general procedure A, the title compound was obtained as light yellow oil, 88.4 mg, 57% yield. (Rf = 0.36, eluent: PE/EtOAc = 50/1).

 $_{3ap}$ ¹H NMR (600 MHz, CDCl₃): δ 8.08 (d, J = 7.7 Hz, 2H), 7.69 - 7.63 (m, 1H), 7.53 - 7.49 (m, 2H), 4.42 - 4.35 (m, 1H), 2.88 - 2.75 (m, 2H), 2.55 (d, J = 2.6 Hz, 1H), 1.62 - 1.55 (m, 2H), 1.41 - 1.32 (m, 2H), 1.30 - 1.24 (m, 4H), 0.87 (t, J = 7.0 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 188.6 (t, J = 30.2 Hz), 134.6, 132.6, 130.0 (t, J = 3.0 Hz), 128.8,

117.0 (t, *J* = 259.7 Hz), 76.0, 75.6, 38.6 (t, *J* = 24.2 Hz), 31.8, 31.5, 29.1, 28.6, 22.6, 14.1.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -96.4 (d, J = 271.2 Hz, 1F), -105.2 (d, J = 271.2 Hz, 1F).

IR (neat): 3304, 2966, 2856, 2125, 1580, 1308, 1001, 876.

HRMS (ESI-TOF): calculated for $[C_{17}H_{20}F_2OSNa (M + Na^+)]$: 333.1095, found: 333.1104.

2,2-difluoro-3-(hexylthio)-1,5-diphenylpent-4-yn-1-one (3aq):

Following the general procedure A, the title compound was obtained as light yellow oil, 95 mg, 53% yield. (Rf = 0.30, eluent: PE/EtOAc = 40/1). ¹H NMR (600 MHz, CDCl₃): δ 8.11 (d, J = 7.7 Hz, 2H), 7.66 – 7.63 (m, 1H), 7.53 – 7.49 (m, 2H), 7.44 – 7.39 (m, 2H), 7.36 – 7.28 (m, 3H), 4.60 (dd, J = 15.6, 12.2 Hz, 1H), 2.92 – 2.82 (m, 2H), 1.66 – 1.60 (m, 2H), 1.45 – 1.38 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 189.1 (t, J = 30.2 Hz), 134.5, 132.8, 132.0, 130.0 (t, J = 3.0 Hz), 128.9, 128.8, 128.4, 122.2, 117.2 (t, J = 259.7 Hz), 117.0, 87.9, 80.7, 39.7 (t, J = 24.2 Hz), 31.44, 31.40, 22.1, 13.8.

¹⁹F NMR (565 MHz, CDCl₃): δ -97.2 (d, J = 271.2 Hz, 1F), -104.6 (d, J = 271.2 Hz, 1F).
IR (neat): 3061, 2929, 2872, 2228, 1579, 1379, 1001, 883.

HRMS (ESI-TOF): calculated for $[C_{21}H_{20}F_2OS (M + Na^+)]$: 381.1095, found: 381.1102.

Methyl 2-((2-ethoxy-2-oxoethyl)thio)-3,3-difluoro-4-oxo-4-phenylbutanoate (3ar):

Following the general procedure B, the title compound was obtained as light yellow oil, 71.4 mg, 43% yield. (Rf = 0.30, eluent: PE/EtOAc = 5/1). **1H NMR (600 MHz, CDCl₃):** δ 8.09 (d, J = 7.5 Hz, 2H), 7.69 - 7.63 (m,

1H), 7.53 – 7.49 (m, 2H), 4.45 (dd, *J* = 17.0, 11.5 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.55 (q, *J* = 15.5 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 189.1 (t, *J* = 30.2 Hz), 169.8, 167.5, 134.5, 132.8, 130.0 (t, *J* = 3.0 Hz), 128.9, 117.2 (t, *J* = 259.7 Hz), 61.2 (t, *J* = 24.2 Hz), 53.2, 52.8, 34.0.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -100.0 (d, J = 271.2 Hz, 1F), -102.2 (d, J = 271.2 Hz, 1F).

IR (neat): 3012, 2924, 2008, 1735, 1560, 1449, 1054, 842.

The title compound was detected by LC/TOF-MS with ESI and APCI sources, unfortunately the expected MS was not found.

ethyl 2-(butylthio)-3,3-difluoro-4-oxo-4-phenylbutanoate (3as):

Following the general procedure B, the title compound was obtained as light yellow oil, 152 mg, 92% yield. (Rf = 0.25, eluent: PE/EtOAc = 40/1). ¹H NMR (600 MHz, CDCl₃): δ 8.09 (d, J = 7.9 Hz, 2H), 7.67 – 7.61 (m, 1H), 7.53 – 7.47 (m, 2H), 4.28 – 4.20 (m, 2H), 4.16 (dd, J = 17.4, 11.9 Hz, 1H), 2.85 – 2.79 (m, 1H), 2.77 – 2.71 (m, 1H), 1.64 – 1.57 (m, 2H), 1.45 – 1.38 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 189.1 (t, *J* = 30.2 Hz), 167.7, 134.6, 132.0, 130.3 (t, *J* = 3.0 Hz), 128.8, 116.8 (t, *J* = 259.7 Hz), 62.0, 49.9 (t, *J* = 24.2 Hz), 32.9, 31.3, 21.8, 14.1, 13.7.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -100.4 (d, J = 271.2 Hz, 1F), -102.3 (d, J = 271.2 Hz, 1F).

IR (neat): 2932, 2873, 1698, 1596, 1465, 1097, 1001, 866.

HRMS (ESI-TOF): calculated for $[C_{16}H_{20}F_2O_3SNa (M + Na^+)]$: 353.0993, found: 353.1004.

ethyl 2-(benzylthio)-3,3-difluoro-4-oxo-4-phenylbutanoate (3at):

Following the general procedure B, the title compound was obtained as light F_F G_{CO_2Et} G_{3at} yellow oil, 83.8 mg, 46% yield. (Rf = 0.30, eluent: PE/EtOAc = 10/1).

¹**H NMR (600 MHz, CDCl₃):** δ 8.09 (d, *J* = 7.9 Hz, 2H), 7.66 (d, *J* = 7.3 Hz, 1H), 7.53 – 7.49 (m, 2H), 7.41 – 7.33 (m, 4H), 7.32 – 7.28 (m, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 4.11 (dd, *J* = 17.6, 11.5 Hz, 1H), 4.01 (dd, *J* = 32.3, 13.0 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 188.8 (t, J = 30.2 Hz), 167.4, 136.3, 134.6, 131.9, 130.3 (t, J = 3.0 Hz), 129.4, 128.82, 128.77, 127.8, 116.9 (t, J = 259.7 Hz), 62.0, 49.1 (t, J = 24.2 Hz), 37.1, 14.1.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -99.8 (d, J = 271.2 Hz, 1F), -102.1 (d, J = 271.2 Hz, 1F).

IR (neat): 3063, 2924, 2581, 1735, 1580, 1392, 1324, 1117.

HRMS (ESI-TOF): calculated for $[C_{19}H_{18}F_2O_3SNa (M + Na^+)]$: 387.0837, found: 387.0852.

3-(butylthio)-2,2-difluoro-1-phenyl-4-(pyrrolidin-1-yl)butane-1,4-dione (3au):

Following the general procedure B, the title compound was obtained as light yellow oil, 149 mg, 84% yield. (Rf = 0.23, eluent: PE/EtOAc = 5/1).

¹**H NMR (600 MHz, CDCl₃):** δ 8.08 (d, J = 8.0 Hz, 2H), 7.62 – 7.58 (m, 1H),

7.50 – 7.44 (m, 2H), 4.29 (dd, *J* = 18.8, 9.9 Hz, 1H), 3.94 – 3.88 (m, 1H), 3.55 – 3.37 (m, 3H), 2.93 – 2.85 (m, 1H), 2.72 – 2.66 (m, 1H), 2.05 – 1.94 (m, 2H), 1.91 – 1.78 (m, 2H), 1.58 – 1.46 (m, 2H), 1.45 – 1.34 (m, 2H), 0.89 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 191.2 (t, J = 30.2 Hz), 164.6, 134.1, 132.8, 130.3 (t, J = 3.0 Hz), 128.6, 117.6 (t, J = 259.7 Hz), 49.4 (t, J = 24.2 Hz), 46.8, 46.2, 31.5, 31.12, 31.10, 26.3, 24.4, 21.9, 13.7.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -97.8 (d, J = 271.2 Hz, 1F), -105.8 (d, J = 271.2 Hz, 1F).

IR (neat): 2930, 2873, 1598, 1447, 1338, 1227, 1118, 970.

HRMS (ESI-TOF): calculated for $[C_{18}H_{23}F_2NO_2SNa (M + Na^+)]$: 378.1310, found: 378.1324.

3-(benzylthio)-2,2-difluoro-1-phenyl-4-(pyrrolidin-1-yl)butane-1,4-dione (3av):

Following the general procedure B, the title compound was obtained as light yellow oil, 140 mg, 72% yield. (Rf = 0.25, eluent: PE/EtOAc = 3/1).

¹**H NMR (600 MHz, CDCl₃):** δ 8.11 (d, J = 8.1 Hz, 2H), 7.64 – 7.57 (m, 1H),

7.51 – 7.46 (m, 2H), 7.36 – 7.29 (m, 4H), 7.27 – 7.23 (m, 1H), 4.26 (dd, *J* = 17.9, 10.0 Hz, 1H),

3.97 (dd, *J* = 83.9, 13.4 Hz, 2H), 3.38 – 3.26 (m, 2H), 3.24 – 3.08 (m, 2H), 1.84 – 1.64 (m, 4H). ¹³C NMR (151 MHz, CDCl₃): δ 190.1 (t, *J* = 30.2 Hz), 164.2, 137.4, 134.2, 132.7, 130.3 (t, *J* = 3.0 Hz), 129.4, 128.62, 128.61, 127.5, 117.8 (t, *J* = 259.7 Hz), 48.5 (t, *J* = 24.2 Hz), 46.2, 46.0, 35.9, 26.0, 24.2.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -97.8 (d, J = 271.2 Hz, 1F), -105.8 (d, J = 271.2 Hz, 1F).

IR (neat): 3059, 2974, 2363, 1697, 1571, 1088, 879, 836.

HRMS (ESI-TOF): calculated for $[C_{21}H_{21}F_2NO_2SNa (M + Na^+)]$: 412.1153, found: 412.1168.

2-(benzhydrylthio)-3,3-difluoro-4-oxo-4-phenylbutanenitrile (3aw):

Hz, 1H).

¹³**C NMR (151 MHz, CDCl₃):** δ 190.0 (t, *J* = 30.2 Hz), 136.4, 134.1, 132.9, 130.2, 129.9 (t, *J* = 3.0 Hz), 129.8, 128.7, 127.6, 119.1 (t, *J* = 259.7 Hz), 55.0 (t, *J* = 24.2 Hz).

¹⁹**F** NMR (565 MHz, CDCl₃): δ -97.8 (d, J = 271.2 Hz, 1F), -105.8 (d, J = 271.2 Hz, 1F).

IR (neat): 3055, 2972, 2231, 2130, 1700, 1581, 1379, 1001, 830.

HRMS (ESI-TOF): calculated for $[C_{23}H_{18}F_2NOS (M + H^+)]$: 394.1072, found: 394.1077

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl2-(butylthio)-3,3-difluoro-4-oxo-4-phenylbutanoa te (XX):

Following the general procedure B, the title compound was obtained as the mixture of two diastereoisomers (dr 1:1), light yellow oil, 167 mg, 76% yield. (Rf = 0.32, eluent: PE/EtOAc = 10/1).

¹**H NMR (600 MHz, CDCl₃):** δ 8.15 – 8.05 (m, 2H), 7.65 – 7.61 (m, 1H),

7.52 – 7.47 (m, 2H), 4.77 – 4.70 (m, 1H), 4.18 – 4.10 (m, 1H), 2.91 – 2.66 (m, 2H), 2.11 – 1.86 (m, 2H), 1.70 – 1.56 (m, 4H), 1.51 – 1.35 (m, 4H), 1.07 – 0.83 (m, 12H), 0.79 – 0.73 (m, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 189.11 (t, J = 30.2 Hz), 189.08 (t, J = 30.2 Hz), 167.3, 167.2, 134.6, 134.5, 132.1, 132.0, 130.31, 130.25, 128.81, 128.80, 116.9 (t, J = 259.7 Hz), 116.8 (t, J = 259.7 Hz), 76.12, 76.08, 50.21 (t, J = 24.2 Hz), 50.15 (t, J = 24.2 Hz), 47.1, 47.0, 40.5, 40.4, 34.3, statistical statistica

32.9, 31.5, 31.3, 26.1, 25.8, 23.4, 23.1, 22.1, 21.9, 21.8, 20.9, 20.8, 16.2, 15.9, 13.73, 13.70.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -100.2 (d, *J* = 271.2 Hz, 1F), -100.7 (d, *J* = 271.2 Hz, 1F), -102.3 (d, *J* = 271.2 Hz, 1F), -102.8 (d, *J* = 271.2 Hz, 1F).

IR (neat): 2928, 2204, 1980, 1731, 1581, 1369, 1078, 847.

HRMS (ESI-TOF): calculated for $[C_{24}H_{34}F_2O_3SNa (M + Na^+)]$: 463.2089, found: 463.2102.

3-(butylthio)-2,2-difluoro-4-((S)-4-isopropyl-2-oxooxazolidin-3-yl)-1-phenylbutane-1,4-dione (3ay):

Following the general procedure B, two single diastereoisomers were obtained, total amount 97.1 mg, 47% yield.

^o \checkmark **Diastereoisomer 1:** light yellow oil, 47.5 mg, 23% (Rf = 0.31, eluent: ^{3ay (dr 1:1)} PE/EtOAc = 3/1). ¹H NMR (600 MHz, CDCl₃): δ 8.12 (d, J = 7.6 Hz, 2H),

7.66 – 7.62 (m, 1H), 7.52 – 7.48 (m, 2H), 5.77 (dd, J = 20.7, 9.1 Hz, 1H), 4.47 – 4.41 (m, 1H), 4.36 – 4.32 (m, 1H), 4.30 – 4.27 (m, 1H), 2.99 – 2.77 (m, 2H), 2.48 – 2.31 (m, 1H), 1.63 – 1.50 (m, 2H), 1.44 – 1.37 (dd, J = 14.9, 7.5 Hz, 2H), 1.03 (d, J = 6.9 Hz, 3H), 0.95 – 0.87 (m, 6H). ¹³C **NMR (151 MHz, CDCl₃):** δ 188.7, 166.4, 153.7, 134.8, 130.4, 130.2, 128.6, 117.5 (t, J = 259.7Hz), 63.4, 59.1, 47.3 (t, J = 24.2 Hz), 32.9, 31.5, 28.4, 21.9, 18.1, 14.6, 13.7. ¹⁹F NMR (565 MHz, CDCl₃): δ -96.9 (d, J = 271.2 Hz, 1F), -101.0 (d, J = 271.2 Hz, 1F). **IR (neat):** 2962, 2874, 1773, 1580, 1465, 1026, 975, 853. **HRMS (ESI-TOF):** calculated for [C₂₀H₂₅F₂NO₄SNa (M + Na⁺)]: 436.1365, found: 436.1375

Diastereoisomer 2: light yellow oil, 49.6 mg, 24% (Rf = 0.25, eluent: PE/EtOAc = 3/1). ¹H NMR (600 MHz, CDCl₃): δ 8.11 (d, J = 6.3 Hz, 2H), 7.66 – 7.62 (m, 1H), 7.52 – 7.49 (m, 2H), 5.78 (dd, J = 20.7, 9.1 Hz, 1H), 4.54 – 4.52 (m, 1H), 4.40 (t, J = 8.6 Hz, 1H), 4.28 (dd, J = 9.1, 2.6 Hz, 1H), 2.99 – 2.80 (m, 2H), 2.38 – 2.33 (m, 1H), 1.65 – 1.55 (m, 2H), 1.45 – 1.38 (m, 2H), 0.95 (d, J = 6.9 Hz, 3H), 0.93 – 0.89 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 188.8, 166.8, 153.7, 134.9, 130.5, 130.3, 128.9, 119.1 (t, J = 259.7 Hz), 63.5, 58.3, 47.5 (m), 32.8, 31.5, 28.5, 22.0, 17.9, 14.9, 13.7. ¹⁹F NMR (565 MHz, CDCl₃): δ -97.1 (d, J = 271.2 Hz, 1F), -101.2 (d, J = 271.2 Hz, 1F). IR (neat): 2962, 2874, 1773, 1580, 1465, 1026, 975, 853. HRMS (ESI-TOF): calculated for [C₂₀H₂₅F₂NO₄SNa (M + Na⁺)]: 436.1365, found: 436.1375

2-(1,3-dithian-2-yl)-2,2-difluoro-1-phenylethan-1-one (3az):

Following the general procedure A, the title compound was obtained as light yellow oil, 99 mg, 72% yield. (Rf = 0.36, eluent: PE/EtOAc = 10/1).

^{3az} ¹H NMR (600 MHz, CDCl₃): δ 8.03 (d, J = 8.1 Hz, 2H), 7.66 – 7.62 (m, 1H), 7.53 – 7.48 (m, 2H), 4.21 (t, J = 16.6 Hz, 1H), 3.26 – 3.08 (m, 2H), 2.54 (d, J = 14.0 Hz, 2H), 2.19 – 2.13 (m, 1H), 2.06 – 1.92 (m, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 189.7 (t, *J* = 30.2 Hz), 134.3, 133.0, 129.8 (t, *J* = 3.0 Hz), 128.9, 119.7 (t, *J* = 261.2 Hz), 40.4 (t, *J* = 24.2 Hz), 25.6, 24.4.

¹⁹F NMR (565 MHz, CDCl₃): δ -96.4.

IR (neat): 1701, 1597, 1448, 1174, 1045, 918, 693, 648.

HRMS (ESI-TOF): calculated for $[C_{12}H_{12}F_2OS_2Na (M + Na^+)]$: 297.0190, found: 297.0209.

2,2-difluoro-3-(methylthio)-1-phenylpropan-1-one (3aa'):

Following the general procedure A, the title compound was obtained as light yellow oil, 17.2 mg, 16% yield. (Rf = 0.35, eluent: PE/EtOAc = 50/1). ¹⁹F-NMR analysis indicated that **3aa'** was obtained in 64% NMR yield. The isolated yield is only 16% is

because of the high volatility of the title compound.

¹**H NMR (600 MHz, CDCl₃):** δ 8.11 (d, *J* = 7.6 Hz, 2H), 7.66 – 7.62 (m, 1H), 7.52 – 7.48 (m, 2H), 3.24 (t, *J* = 15.5 Hz, 2H), 2.23 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 189.1 (t, *J* = 30.2 Hz), 134.5, 132.2, 130.2 (t, *J* = 3.0 Hz), 128.8, 118.9 (t, *J* = 259.7 Hz), 37.2 (t, *J* = 24.2 Hz), 17.6.

¹⁹F NMR (565 MHz, CDCl₃): δ -97.5.

IR (neat):

HRMS (ESI-TOF): calculated for $[C_{10}H_{10}F_2OSNa (M + Na^+)]$: 239.0313, found: 239.0319.

2,2-difluoro-3-(hexylthio)-1-phenyloctan-1-one (3ab'):

Following the general procedure A, the title compound was obtained as light yellow oil, 41 mg, 23% yield. (Rf = 0.35, eluent: PE/EtOAc = 50/1). ¹⁹F-NMR analysis indicated that **3ae'** was obtained in 43% NMR yield. The isolated yield is only 23% is because of the high volatility of the title compound. ¹**H NMR (600 MHz, CDCl₃):** δ 8.08 (d, *J* = 7.6 Hz, 2H), 7.66 – 7.62 (m, 1H), 7.52 – 7.48 (m, 2H), 3.27 – 3.17 (m, 1H), 2.57 – 2.43 (m, 2H), 1.93 – 1.85 (m, 1H), 1.83 – 1.67 (m, 1H), 1.59 – 1.39 (m, 4H), 1.38 – 1.17 (m, 10H), 0.93 – 0.83 (m, 6H).

¹³C NMR (151 MHz, CDCl₃): δ 190.6 (t, *J* = 30.2 Hz), 134.1, 133.5, 130.1 (t, *J* = 3.0 Hz), 128.8, 119.5 (t, *J* = 259.7 Hz), 48.4 (t, *J* = 24.2 Hz), 32.4, 31.6, 31.5, 29.4, 28.5, 27.8, 26.5, 22.63, 22.62, 14.14, 14.13.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -96.3 (d, J = 271.2 Hz, 1F), -107.3 (d, J = 271.2 Hz, 1F).

IR (neat): 2926, 1701, 1598, 1448, 1183, 1037, 714, 687.

HRMS (ESI-TOF): calculated for $[C_{20}H_{30}F_2OS (M + H^+)]$: 357.2058, found: 357.2068.

7-bromo-3-((5-bromopentyl)thio)-2,2-difluoro-1-phenylheptan-1-one (3ac'):

Following the general procedure A, the title compound was obtained as ight yellow oil, 124 mg, 51% yield. (Rf = 0.29, eluent: PE/EtOAc = 50/1). ¹H NMR (600 MHz, CDCl₃): δ 8.07 (d, J = 7.6 Hz, 2H), 7.66 – 7.61 (m, 1H), 7.52 – 7.48 (m, 2H), 3.43 (t, J = 6.8 Hz, 2H), 3.38 (t, J = 6.8 Hz, 2H), 3.26 – 3.17 (m, 1H), 2.61 – 2.54 (m, 1H), 2.52 – 2.46 (m, 1H), 1.96 – 1.75 (m, 7H), 1.55 – 1.30 (m, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 190.6 (t, J = 30.2 Hz), 134.2, 133.3, 130.1 (t, J = 3.0 Hz), 128.8, 119.5 (t, J = 259.7 Hz), 48.3 (t, J = 24.2 Hz), 33.8, 32.6, 32.5, 32.3, 32.1, 29.1, 29.0, 27.9, 27.8, 27.7, 25.9.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -96.3 (d, J = 271.2 Hz, 1F), -107.0 (d, J = 271.2 Hz, 1F).

IR (neat): 2930, 1701, 1597, 1448, 1182, 1025, 714, 658.

The title compound was detected by LC/TOF-MS with ESI and APCI sources, unfortunately the expected MS was not found.

2,2-difluoro-3-(phenethylthio)-1,4-diphenylbutan-1-one (3ad'):

Following the general procedure A, the title compound was obtained as light yellow oil, 142.7 mg, 72% yield. (Rf = 0.30, eluent: PE/EtOAc = 50/1).

¹H NMR (600 MHz, CDCl₃): δ 8.08 (d, J = 7.6 Hz, 2H), 7.66 - 7.62 (m, 1H),
7.52 - 7.48 (m, 2H), 7.36 - 7.31 (m, 4H), 7.29 - 7.26 (m, 1H), 7.23 - 7.19 (m, 2H), 7.18 - 7.14 (m,
1H), 6.94 (d, J = 7.2 Hz, 2H), 3.62 - 3.48 (m, 1H), 3.38 (dd, J = 14.0, 3.0 Hz, 1H), 2.79 (dd, J = 14.0, 3.0 Hz, 1H),

14.0, 11.3 Hz, 1H), 2.51 – 2.39 (m, 4H).

¹³C NMR (151 MHz, CDCl₃): δ 190.3 (t, J = 30.2 Hz), 140.1, 138.0, 134.2, 133.4, 130.2 (t, J = 3.0 Hz), 129.8, 128.8, 128.6, 128.47, 128.45, 127.0, 126.4, 119.1 (t, J = 259.7 Hz), 51.0 (t, J = 24.2 Hz), 35.6, 34.8, 34.4.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -95.6 (d, *J* = 271.2 Hz, 1F), -107.6 (d, *J* = 271.2 Hz, 1F).

IR (neat): 3027, 1696, 1448, 1183, 1029, 715, 695, 659.

HRMS (ESI-TOF): calculated for $[C_{24}H_{22}F_2OSNa (M + Na^+)]$: 419.1252, found: 419.1266.

2,2-difluoro-1-phenyl-2-(tetrahydrothiophen-2-yl)ethan-1-one (3ae'):

Following the general procedure A, the title compound was obtained as light yellow oil, 11 mg, 9% yield. (Rf = 0.33, eluent: PE/EtOAc = 40/1). ¹⁹F-NMR analysis indicated that **3ae'** was obtained in 59% NMR yield. The isolated yield is only 9% is because of the high volatility of the title compound.

¹**H NMR (600 MHz, CDCl₃):** δ 8.08 (d, J = 7.6 Hz, 2H), 7.66 – 7.62 (m, 1H), 7.52 – 7.48 (m,

2H), 4.22 – 4.12 (m, 1H), 2.93 – 2.83 (m, 2H), 2.26 – 2.11 (m, 3H), 2.06 – 2.00 (m, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 189.5 (t, J = 30.2 Hz), 134.5, 133.3, 130.3 (t, J = 3.0 Hz), 128.8,

119.0 (t, *J* = 259.7 Hz), 49.3 (t, *J* = 24.2 Hz), 33.1, 31.2, 30.1.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -100.8 (d, J = 271.2 Hz, 1F), -106.2 (d, J = 271.2 Hz, 1F).

IR (neat): 3063, 2872, 2231, 1700, 1580, 1379, 1001, 830.

HRMS (ESI-TOF): calculated for $[C_{12}H_{12}F_2OS (M + Na^+)]$: 265.0469, found: 265.0484.

2,2-difluoro-1-phenyl-2-(4-tosylthiomorpholin-2-yl)ethan-1-one (3af'):

Following the general procedure A, the title compound was obtained as light yellow oil, 156.3 mg, 76% yield. (Rf = 0.41, eluent: PE/EtOAc =
$$10/1$$
).

³af ¹H NMR (600 MHz, CDCl₃): δ 8.07 (d, J = 7.9 Hz, 2H), 7.67 – 7.61 (m, 3H), 7.49 (t, J = 7.9 Hz, 2H), 7.51 – 7.47 (m, 2H), 3.72 – 3.57 (m, 3H), 3.39 – 3.30 (m, 2H), 2.96 – 2.89 (m, 1H), 2.67 – 2.57 (m, 1H), 2.41 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 188.3 (t, J = 30.2 Hz), 144.1, 134.7, 133.8, 132.0, 130.2, 130.0, 128.8, 127.5, 118.2 (t, J = 259.7 Hz), 47.0, 45.8, 40.2 (t, J = 24.2 Hz), 26.3, 21.6.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -97.7 (d, J = 282.5 Hz, 1F), -104.8 (d, J = 282.5 Hz, 1F).

IR (neat): 1696, 1596, 1449, 1338, 1155, 1045, 712, 547.

HRMS (ESI-TOF): calculated for $[C_{19}H_{19}F_2NO_3S_2Na (M + Na^+)]$: 434.0667, found: 434.0689.

tert-butyl 2-(1,1-difluoro-2-oxo-2-phenylethyl)thiomorpholine-4-carboxylate (3ag'):

Following the general procedure A, the title compound was obtained as light yellow oil, 100 mg, 56% yield. (Rf = 0.62, eluent: PE/EtOAc = 10/1). ^{3ag'} ¹H NMR (600 MHz, CDCl₃): δ) δ 8.07 (d, J = 7.7 Hz, 2H), 7.63 (d, J = 5.8

Hz, 1H), 7.50 (d, *J* = 6.8 Hz, 2H), 4.60 – 3.90 (m, 2H), 3.75 – 3.20 (m, 3H), 3.05 – 2.85 (m, 1H), 2.40 – 2.30 (m, 1H), 1.39 (s, 9H).

¹³C NMR (151 MHz, CDCl₃): δ 189.1 (t, J = 30.2 Hz), 154.2, 134.5, 132.5, 130.2, 128.8, 117.6 (t, J = 259.7 Hz), 80.4, 44.6, 44.2, 37.5 (t, J = 24.2 Hz), 28.3, 24.8.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -95.7 (d, *J* = 282.5 Hz, 1F), -104.9 (d, *J* = 282.5 Hz, 1F).

IR (neat): 3006, 2854, 1702, 1579, 1206, 965, 825, 771.

HRMS (ESI-TOF): calculated for $[C_{17}H_{21}F_2NO_3SNa (M + Na^+)]$: 380.1102, found: 380.1121.

2,2-difluoro-2-(1,4-oxathian-3-yl)-1-phenylethan-1-one (3ah'):

Following the general procedure A, the title compound was obtained as light yellow oil, 71.2 mg, 55% yield. (Rf = 0.30, eluent: PE/EtOAc = 10/1).

^{3ah'} ¹H NMR (600 MHz, CDCl₃): δ 8.10 (d, J = 7.5 Hz, 2H), 7.68 – 7.63 (m, 1H), 7.54 – 7.49 (m, 2H), 4.39 (dd, J = 12.6, 3.7 Hz, 1H), 4.09 – 4.03 (m, 2H), 3.85 – 3.79 (m, 1H), 3.43 – 3.35 (m, 1H), 3.07 – 3.00 (m, 1H), 2.36 (d, J = 13.7 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 189.2 (t, *J* = 30.2 Hz), 134.5, 132.5, 130.2, 128.8, 119.2 (t, *J* = 259.7 Hz), 68.2, 66.3, 37.6 (t, *J* = 24.2 Hz), 25.0.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -95.9 (d, J = 282.5 Hz, 1F), -104.6 (d, J = 282.5 Hz, 1F).

IR (neat): 1697, 1596, 1448, 1183, 1097, 1039, 875, 686.

HRMS (ESI-TOF): calculated for $[C_{12}H_{12}F_2O_2SNa (M + Na^+)]$: 281.0418, found: 281.0434.

2-(1,1-difluoro-2-oxo-2-phenylethyl)tetrahydro-4H-thiopyran-4-one (3ai'):

Following the general procedure A, the title compound was obtained as light yellow oil, 82.4 mg, 61% yield. (Rf = 0.54, eluent: PE/EtOAc = 20/1).

¹**H NMR (600 MHz, CDCl₃):** δ 8.05 (d, *J* = 7.6 Hz, 2H), 7.69 – 7.61 (m, 1H), 7.55 – 7.46 (m, 2H), 4.10 – 3.98 (m, 1H), 3.26 – 3.18 (m, 1H), 2.99 (dd, *J* = 15.0, 5.3 Hz, 1H), 2.90 – 2.78 (m, 2H), 2.77 – 2.67 (m, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 205.6, 188.4 (t, *J* = 30.2 Hz), 134.7, 132.3, 130.1 (t, *J* = 3.0 Hz), 128.9, 119.0 (t, *J* = 261.2 Hz), 43.5 (t, *J* = 24.2 Hz), 42.3, 40.0, 26.8.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -95.0 (d, J = 276.9 Hz, 1F), -106.3 (d, J = 276.9 Hz, 1F).

IR (neat): 3373, 2850, 1718, 1596, 1336, 1109, 847, 791.

HRMS (ESI-TOF): calculated for $[C_{13}H_{12}F_2O_2SNa (M + Na^+)]$: 293.0418, found: 293.0432.

2,2-difluoro-3-(heptylthio)-1-phenylpropan-1-one (3aj'):

Following the general procedure A, the title compound was obtained as light yellow oil, 64.5 mg, 43% yield. (Rf = 0.30, eluent: PE/EtOAc = 50/1). ¹H NMR (600 MHz, CDCl₃): δ 8.22 – 8.04 (m, 2H), 7.66 – 7.60 (m, 1H), 7.52

-7.48 (m, 2H), 3.25 (t, J = 15.6 Hz, 1H), 2.63 (t, J = 7.4 Hz, 1H), 2.06 (s,

1.62H), 1.94 – 1.85 (m, 0.65H), 1.73 – 1.67 (m, 0.74H), 1.67 – 1.53 (m, 3.31H), 1.39 – 1.22 (m, 4H), 0.93 – 0.86 (m, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 190.4 (t, *J* = 30.2 Hz), 189.2 (t, *J* = 30.2 Hz), 134.5, 134.1, 130.2 (t, *J* = 3.0 Hz), 129.9 (t, *J* = 3.0 Hz), 128.8, 128.7, 120.3, 117.9 (t, *J* = 259.7 Hz), 48.6, 35.0 (t, *J* = 25.7 Hz), 33.8, 31.5, 31.4, 31.3, 29.4, 28.5, 26.4, 26.3, 22.64, 22.61, 14.3, 14.2.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -95.2 (d, *J* = 271.2 Hz, 1F, C2), -97.6 (s, 2F, C1), -107.9 (d, *J* = 271.2 Hz, 1F, C2).

IR (neat): 2922, 1698, 1597, 1449, 1137, 1060, 863, 684.

The title compound was detected by LC/TOF-MS with ESI and APCI sources, unfortunately the expected MS was not found.

2,2-difluoro-3-(hexylthio)-4-methyl-1-phenylpentan-1-one (3ak'):

Following the general procedure A, the title compound was obtained as light

1.27 (m, 3.79H), 1.14 (d, J = 6.7 Hz, 0.79H), 1.05 (d, J = 6.6 Hz, 0.81H), 0.94 – 0.84 (m, 7.70H). ¹³C NMR (151 MHz, CDCl₃): δ 190.6 (t, J = 30.2 Hz), 134.1, 134.0, 133.5, 130.1, 130.0 (t, J = 3.0 Hz), 128.8, 128.7, 120.0, 119.5 (t, J = 259.7 Hz), 54.6, 48.7 (t, J = 25.7 Hz), 41.4, 34.7, 31.6, 31.5, 29.8, 29.4, 28.6, 28.5, 27.8, 27.6, 22.6, 22.2, 21.9, 21.8, 18.6, 14.2.

¹⁹F NMR (565 MHz, CDCl₃): δ -93.9 (d, J = 271.2 Hz, 1F, C1), -96.3 (d, J = 271.2 Hz, 1F, C2),
-106.4 (d, J = 271.2 Hz, 1F, C1), -107.3 (d, J = 271.2 Hz, 1F, C2)

IR (neat): 2953, 2932, 2858, 1703, 1596, 1578, 1468, 1447, 1263, 1037, 1031, 921.

The title compound was detected by LC/TOF-MS with ESI and APCI sources, unfortunately the expected MS was not found.

2,2-difluoro-2-(hexylthio)-1-phenylethan-1-one (4):

Following the general procedure A, the title compound was obtained as light yellow oil, 85.7 mg, 63% yield. (Rf = 0.56, eluent: PE/EtOAc = 20/1).

¹**H NMR (600 MHz, CDCl₃):** δ 8.14 (d, J = 7.6 Hz, 2H), 7.68 – 7.62 (m, 1H),

7.50 (t, *J* = 7.6 Hz, 2H), 2.89 (t, *J* = 7.4 Hz, 2H), 1.77 – 1.61 (m, 2H), 1.44 – 1.35 (m, 2H), 1.33 – 1.27 (m, 4H), 0.88 (t, *J* = 6.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 185.4 (t, *J* = 28.9 Hz), 134.7, 131.2, 130.7, 128.8, 124.6 (t, *J* = 288.4 Hz), 31.3, 29.7, 29.1, 28.5, 22.6, 14.1.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -79.1 (s, 2F).

IR (neat): 2962, 2929, 2861, 1701, 1596, 1581, 1453, 1278, 1129, 888, 831.

The title compound was detected by LC/TOF-MS with ESI and APCI sources, unfortunately the expected MS was not found.

3-(benzylthio)-2,2-difluoro-3-phenyl-1-(p-tolyl)propan-1-one (3ba):

Following the general procedure A, the title compound was obtained as light yellow oil, 147.1 mg, 77% yield. (Rf = 0.35, eluent: PE/EtOAc = 40/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.85 (d, *J* = 8.1 Hz, 2H), 7.37 – 7.31 (m, 5H), 7.29 – 7.20 (m, 7H), 4.44 (dd, *J* = 18.7, 13.1 Hz, 1H), 3.73 (dd, *J* = 114.0, 13.2 Hz, 2H), 2.45 (s, 3H)

¹³C NMR (151 MHz, CDCl₃): δ 188.9 (t, *J* = 31.7 Hz), 136.6, 134.3, 130.3, 130.1 (t, *J* = 3.0 Hz),

129.9, 129.4, 129.3, 128.59, 128.57, 128.5, 127.4, 118.3 (t, *J* = 256.7 Hz), 51.5 (t, *J* = 22.7 Hz), 36.6, 21.9.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -96.9 (d, J = 265.6 Hz, 1F), -103.5 (d, J = 271.2 Hz, 1F).

IR (neat): 3033, 2951, 1691, 1605, 1494, 1454, 1272, 1364, 1055, 710, 693.

HRMS (ESI-TOF): calculated for $[C_{23}H_{20}F_2OSNa (M + Na^+)]$: 405.1095, found: 405.1092.

3-(benzylthio)-1-(4-bromophenyl)-2,2-difluoro-3-phenylpropan-1-one (3ca):

Ph S Ph F A Following the general procedure A, the title compound was obtained as

$$F = 0$$
 Br Na+ light yellow oil, 111.7 mg, 50% yield. (Rf = 0.33, eluent: PE/EtOAc = 40/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.90 (d, *J* = 8.1 Hz, 2H), 7.61 (d, *J* = 7.9 Hz, 2H), 7.37 – 7.31 (m, 5H), 7.27 – 7.23 (m, 3H), 7.21 – 7.18 (m, 2H), 4.44 (dd, *J* = 18.7, 13.1 Hz, 1H), 3.73 (dd, *J* = 114.0, 13.2 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 189.7 (t, J = 31.7 Hz), 148.8, 136.6, 133.6, 132.9, 130.0, 129.3, 128.7 (t, J = 3.0 Hz), 128.60, 128.59, 128.5, 127.5, 118.3 (t, J = 256.7 Hz), 51.3 (t, J = 22.7 Hz), 36.7.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -95.4 (d, J = 265.6 Hz, 1F), -104.2 (d, J = 271.2 Hz, 1F).

IR (neat): 3027, 1687, 1448, 1265, 1167, 1058, 918, 695, 683.

HRMS (ESI-TOF): calculated for $[C_{22}H_{17}BrF_2OSNa (M + Na^+)]$: 469.0044, found: 469.0052.

3-(benzylthio)-2,2-difluoro-3-phenyl-1-(thiophen-2-yl)propan-1-one (3da):

Following the general procedure A, the title compound was obtained as light yellow oil, 106.7 mg, 57% yield. (Rf = 0.26, eluent: PE/EtOAc = 40/1).

 $_{3da}$ ¹H NMR (600 MHz, CDCl₃): δ 7.88 (d, J = 2.9 Hz, 1H), 7.78 (d, J = 4.9, 1H), 7.36 - 7.27 (m, 8H), 7.25 - 7.21 (m, 2H), 7.15 - 7.13 (m, 1H), 4.41 (dd, J = 19.2, 12.8 Hz, 1H), 3.82 (d, J = 13.2 Hz, 1H), 3.65 (d, J = 13.2 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 182.5 (t, *J* = 31.7 Hz), 138.9, 136.6, 136.5, 135.9, 134.2, 129.9, 129.3, 128.8, 128.63, 128.60, 128.59, 118.1 (t, *J* = 256.7 Hz), 51.3 (t, *J* = 22.7 Hz), 36.7.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -98.1 (d, J = 265.6 Hz, 1F), -105.5 (d, J = 271.2 Hz, 1F).

IR (neat): 3101, 1662, 1514, 1493, 1409, 1166, 1049, 692.

HRMS (ESI-TOF): calculated for $[C_{20}H_{16}F_2OS_2Na (M + Na^+)]$: 397.0503, found: 397.0501.

3-(benzylthio)-2,2-difluoro-1-(naphthalen-1-yl)-3-phenylpropan-1-one (3ea):

Ph_S_Ph F_C_C_C_C

Following the general procedure A, the title compound was obtained as light yellow oil, 148.4 mg, 71% yield. (Rf = 0.30, eluent: PE/EtOAc = 40/1).

3ea H NMR (600 MHz, CDCl₃): δ 8.12 - 8.08 (m, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.93 - 7.84 (m, 2H), 7.58 - 7.55 (m, 2H), 7.47 - 7.45 (m, 1H), 7.39 - 7.32 (m, 5H), 7.26 - 7.22 (m, 3H), 7.16 - 7.12 (m, 2H), 4.56 (dd, J = 20.3, 11.7 Hz, 1H), 3.80 (d, J = 13.4 Hz, 1H), 3.61 (d, J = 13.2 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 193.0 (t, J = 31.7 Hz), 136.4, 134.2, 133.9, 133.5, 131.1, 130.8, 130.1, 129.2, 129.1, 128.7, 128.59, 128.58, 128.57, 128.1, 127.5, 127.1, 126.7, 125.4, 124.1, 117.6 (t, J = 256.7 Hz), 51.3 (t, J = 22.7 Hz), 36.7.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -95.3 (d, J = 265.6 Hz, 1F), -104.8 (d, J = 271.2 Hz, 1F).

IR (neat): 3060, 1701, 1593, 1508, 1493, 1175, 1054, 775, 694.

HRMS (ESI-TOF): calculated for $[C_{26}H_{20}F_2OSNa (M + Na^+)]$: 441.1095, found: 441.1090.

methyl N-(tert-butoxycarbonyl)-S-(2,2-difluoro-3-oxo-1,3-diphenylpropyl)-L-cysteinate (5a):

To a mixture of Benzylcysteine sulfoxide (171 mg, 0.5 mmol) and difluoroenol silyl ether **2a** (171 mg, 0.75 mmol) in MeCN (5.0 mL) was added trifluoroacetic anhydride (105 μ L, 0.75 mmol) at -40 °C. After stirring for 5 min, the reaction mixture was gradually warmed to 0 °C and kept stirring for 6 h. After that, the mixture was passed through a short silica gel column and concentrated under vacuum. The obtained residue was further purified by flash chromatography on silica gel affording product **5a** as a mixture of two diastereoisomers (1.2:1 dr) in 62% yield, 148.5 mg.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.99 – 7.94 (m, 2H), 7.64 – 7.58 (m, 1H), 7.49 – 7.43 (m, 2H), 7.41 – 7.37 (m, 2H), 7.35 – 7.28 (m, 3H), 5.32 (d, *J* = 7.7 Hz, 0.47H), 5.13 (d, *J* = 7.8 Hz, 0.47H), 4.80 – 4.65 (m, 1H), 4.51 (d, *J* = 5.5 Hz, 1H), 3.70 (s, 1.61), 3.63 (s, 1.35), 3.10 – 3.05 (m, 0.56H), 3.02 – 2.90 (m, 1.47H), 1.45 (s, 4H), 1.42 (s, 5H).

¹³C NMR (151 MHz, CDCl₃): δ 189.6 (t, J = 30.2 Hz), 189.5 (t, J = 30.2 Hz), 171.2, 171.1, 155.2, 155.1, 134.3, 134.2, 132.9, 132.8, 130.1, 130.0, 128.8, 128.7, 118.0 (t, J = 259.7 Hz), 117.9 (t, J = 259.7 Hz), 80.4, 80.3, 53.3 (t, J = 27.2 Hz), 53.1 (t, J = 27.2 Hz), 52.8, 52.7, 35.5, 34.8, 28.4, 28.3.
¹⁹F NMR (565 MHz, CDCl₃): δ -97.8 (dd, J = 276.9 Hz), -98.1 (d, J = 276.9 Hz), -103.3 (d, J = 276.9 Hz).

IR (neat): 2977, 1741, 1700, 1597, 1498, 1448, 1241, 1159, 1125, 1009, 853, 817.

HRMS (ESI-TOF): calculated for $[C_{24}H_{28}F_2NO_5S(M + H^+)]$: 480.1651, found: 480.1663.

2-(benzhydrylsulfinyl)-3,3-difluoro-4-oxo-4-phenylbutanamide (5b):

To a mixture of Modafinil sulfoxide (186.5 mg, 0.5 mmol) and difluoroenol silyl ether **2a** (171 mg, 0.75 mmol) in DCM (2.5 mL) was added trifluoromethanesulfonic anhydride (125 μ L, 0.75 mmol) at -78 °C. After stirring for 6 h, the mixture was passed through a short silica gel column and concentrated under vacuum. The obtained residue was dissolved in DCM (5.0 mL) and a solution of *m*-CPBA (95 mg, 0.55 mmol) in DCM (3 mL) was added slowly at -5 °C. After the sulfide completely consumed, the reaction was quenched with sat. aq. NaHCO₃. The organic layer was separated, and the aqueous layer was extracted with DCM. The combined organic layers were washed with brine, dried over Na₂SO₄, filtrated and concentrated in vacuo. The obtained residue was then purified by column chromatography on silica gel affording the title compound **5b** as the mixture of two diastereoisomers (1:1 dr) in 59% yield, 126 mg.

¹**H NMR (600 MHz, CDCl₃):** δ 7.54 – 7.44 (m, 4H), 7.42 – 7.26 (m, 11H), 4.85 – 4.75 (m, 1H), 4.70 – 4.55 (m, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 137.7, 137.6, 137.4, 137.3, 136.5, 129.8, 128.9, 128.8, 128.6, 128.4, 128.2, 127.6, 127.4, 124.5, 117.9 (t, *J* = 252.2 Hz), 73.9 (m), 54.7 (t, *J* = 22.7 Hz).
¹⁹F NMR (565 MHz, CDCl₃): δ -97.7 - -102.9 (m)

IR (neat): 3051, 2919, 2844, 2222, 1631, 1442, 1125, 1040, 860, 748, 688.

HRMS (ESI-TOF): calculated for $[C_{23}H_{20}F_2NO_3S(M + H^+)]$: 428.1126, found: 428.1119.

To a mixture of CPI-613 sulfoxide (217 mg, 0.5 mmol) and difluoroenol silyl ether **2a** (171 mg, 0.75 mmol) in MeCN (2.5 mL) was added trifluoroacetic anhydride (105 μ L, 0.75 mmol) at -40 °C. After stirring for 12 h, the mixture was passed through a short silica gel column and concentrated under vacuum. The obtained residue was further purified by flash chromatography on silica gel affording product **5c** as the mixture of two diastereoisomers (1:1 dr) in 53% yield, 147 mg. Note: The other sulfoxide group was probably reducted to sulfide by the excess difluoroenol silyl ether.

¹**H NMR (600 MHz, CDCl₃)**: δ 8.15 (d, *J* = 7.3 Hz, 0.86H), 8.03 (d, *J* = 7.8 Hz, 1.17H), 7.65 – 7.60 (m, 1H), 7.55 – 7.45 (m, 5H), 7.41 – 7.19 (m, 7H), 4.61 (dd, *J* = 20.4, 11.4 Hz, 1H), 3.76 – 3.56 (m, 5H), 3.13 – 2.79 (m, 0.41H), 2.75 – 2.44 (m, 2.49H), 2.41 – 2.12 (m, 2H), 1.82 – 1.08 (m, 8H).

¹³C NMR (151 MHz, CDCl₃): δ 189.97 (t, J = 30.2 Hz), 189.92 (t, J = 30.2 Hz), 174.1, 138.6, 138.5, 138.4, 134.8, 134.7, 134.6, 134.2, 133.8, 133.0, 130.6, 130.2, 130.0, 129.9, 129.89, 128.9, 128.8, 128.6, 128.5, 127.1, 127.0, 118.0 (t, J = 259.7 Hz), 117.8 (t, J = 259.7 Hz), 52.4 (t, J = 27.2 Hz), 51.6, 44.0, 43.9, 39.7, 38.5, 38.3, 35.1, 34.5, 34.4, 33.93, 33.91, 30.5, 30.0, 26.2, 26.1, 26.0, 24.7, 24.6.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -97.8 (d, J = 271.2 Hz), -98.3 (d, J = 271.2 Hz,), -103.3 (d, J = 271.2 Hz).

IR (neat): 3072, 2952, 1697, 1596, 1448, 1230, 1183, 1124, 1010, 809, 711.

HRMS (ESI-TOF): calculated for $[C_{31}H_{35}F_2O_3S_2(M + H^+)]$: 557.1990, found: 557.1997.

tert-butyl (4-(2-(1,1-difluoro-2-oxo-2-phenylethyl)thiomorpholino)-3-fluorophenyl)(2-pheny lacetyl)carbamate (5d):

To a mixture of Sutezolid precursor sulfoxide (223 mg, 0.5 mmol) and difluoroenol silyl ether **2a** (171 mg, 0.75 mmol) in MeCN (5.0 mL) was added trifluoroacetic anhydride (105 μ L, 0.75 mmol) at -20 °C. After stirring for 12 h, the mixture was passed through a short silica gel column and concentrated under vacuum. The obtained residue was further purified by flash chromatography on silica gel affording product **5d** in 55% yield, 160.3 mg.

¹**H NMR (600 MHz, CDCl₃):** δ 8.14 (d, *J* = 7.8 Hz, 2H), 7.67 (dd, *J* = 7.8, 7.4 Hz, 1H), 7.53 (t, *J* = 7.8, 7.6 Hz, 2H), 7.36 – 7.24 (m, 5H), 7.00 – 6.85 (m, 3H), 5.21 (s, 2H), 3.90 – 3.73 (m, 1H), 3.66 (d, J = 4.8 Hz, 2H), 3.43 – 3.33 (m, 2H), 3.15 – 2.95 (m, 1H), 2.87 – 2.70 (m, 1H), 1.44 (s, 9H).

¹³C NMR (151 MHz, CDCl₃): δ 189.0 (t, J = 30.2 Hz), 156.0 (d, J = 249.2 Hz), 153.0, 151.5, 139.9, 135.4, 134.6, 133.4, 132.4, 130.2, 128.9, 128.6, 128.4, 128.0, 124.4, 120.4, 118.0 (t, J = 259.7 Hz), 116.8, 83.9, 68.5, 52.3, 51.4, 41.2 (t, J = 27.2 Hz), 27.9, 26.9.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -95.8 (dd, J = 276.9 Hz), -105.6 (dd, J = 276.9 Hz).

IR (neat): 3026, 2982, 1628, 1561, 1498, 1408, 1245, 1206, 1118, 760.

HRMS (ESI-TOF): calculated for $[C_{31}H_{32}F_3N_2O_4S(M + H^+)]$: 585.2029, found: 585.2033.

di-tert-butyl

(3aR,6S,6aS)-4-(1,1-difluoro-2-oxo-2-phenylethyl)-6-(5-methoxy-5-oxopentyl)-2-oxotetrahyd ro-1H-thieno[3,4-d]imidazole-1,3(2H)-dicarboxylate (5e):

To a mixture of Biotin sulfoxide (237 mg, 0.5 mmol) and difluoroenol silyl ether **2a** (171 mg, 0.75 s33

mmol) in MeCN (5.0 mL) was added trifluoroacetic anhydride (105 μ L, 0.75 mmol) at -40 °C. After stirring for 24 h, the mixture was passed through a short silica gel column and concentrated under vacuum. The obtained residue was further purified by flash chromatography on silica gel affording product **5e** as the mixture of two diastereoisomers (1.5:1 dr) in 47% yield, 144 mg.

¹**H NMR (600 MHz, CDCl₃):** δ 8.18 (d, *J* = 7.4 Hz, 0.79H), 8.04 (d, *J* = 7.8 Hz, 1.17H), 7.69 – 7.60 (m, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 6.52 (s, 1H), 5.08 (d, *J* = 7.9 Hz, 0.55H), 4.93 (d, *J* = 7.1 Hz, 0.54H), 4.77 (s, 0.63H), 4.28 (dd, *J* = 27.5, 5.5 Hz, 0.57H), 3.82 – 3.66 (m, 1H), 3.63 (s, 1.2H), 3.62 (s, 1.67H), 2.32 – 2.20 (m, 2H), 1.64 – 1.43 (m, 22.43H), 1.32 – 1.20 (m, 1.69H).

¹³C NMR (151 MHz, CDCl₃): δ 188.0 (t, *J* = 30.2 Hz), 186.0 (t, *J* = 30.2 Hz), 174.0, 155.6, 150.5, 149.9, 149.6, 149.0, 148.3, 135.2, 134.7, 132.2, 132.1, 130.7, 130.1, 128.9, 128.8, 118.9 (t, *J* = 259.7 Hz), 115.0 (t, *J* = 259.7 Hz), 84.9, 84.6, 84.3, 84.2, 61.2, 60.4, 59.5, 54.1, 53.2, 52.9 (t, *J* = 27.2 Hz), 51.7, 33.71, 33.70, 30.5, 29.3, 28.9, 28.1, 28.0, 27.9, 27.8, 26.7, 24.8, 24.2.

¹⁹**F NMR (565 MHz, CDCl₃)**: δ -95.7 (d, J = 276.9 Hz, 1F), -96.9 (d, J = 276.9 Hz, 1F), -104.9 (d, J = 276.9 Hz, 1F), -105.5 (d, J = 276.9 Hz, 1F).

IR (neat): 3026, 2982, 1628, 1561, 1498, 1408, 1245, 1206, 1118, 760.

HRMS (ESI-TOF): calculated for $[C_{29}H_{39}F_2N_2O_8S(M + H^+)]$: 613.2390, found: 613.2377.

(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]ph enanthren-3-yl (S)-2-(butylthio)-3,3-difluoro-4-oxo-4-phenylbutanoate (5f):

To a mixture of Estrone sulfoxide (208 mg, 0.5 mmol) and difluoroenol silyl ether **2a** (171 mg, 0.75 mmol) in DCM (2.5 mL) was added trifluoromethanesulfonic anhydride (125 μ L, 0.75 mmol) at -60 °C. After stirring for 5 min, the reaction mixture was gradually warmed to 0 °C and kept stirring for 12 h. After that, the mixture was passed through a short silica gel column and concentrated under vacuum. The obtained residue was further purified by flash chromatography on silica gel affording product **5f** as the mixture of two diastereoisomers (1:1 dr) in 43% yield, 119

¹**H NMR (600 MHz, CDCl₃):** δ 8.13 (d, *J* = 7.8 Hz, 2H), 7.65 (dd, *J* = 7.8, 7.4 Hz, 1H), 7.51 (dd, *J* = 7.8, 7.8 Hz, 2H), 7.30 (d, *J* = 8.6 Hz, 1H), 6.95 – 6.90 (m, 1H), 6.88 (s, 1H), 4.34 (dd, *J* = 18.0, 11.1 Hz, 1H), 2.98 – 2.81 (m, 4H), 2.50 (dd, *J* = 19.1, 8.7 Hz, 1H), 2.44 – 2.35 (m, 1H), 2.30 – 2.24 (m, 1H), 2.18 – 2.10 (m, 1H), 2.09 – 1.90 (m, 3H), 1.73 – 1.38 (m, 10H), 0.94 (t, *J* = 7.4 Hz, 3H), 0.90 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 188.8 (t, J = 30.2 Hz), 166.5, 148.2, 138.2, 137.9, 134.8, 130.3, 128.8, 126.6, 121.3, 118.5, 116.7 (t, J = 259.7 Hz), 50.4, 49.7 (t, J = 27.2 Hz), 48.0, 44.2, 38.0, 35.9, 33.0, 31.6, 31.3, 29.4, 26.3, 25.8, 21.8, 21.6, 13.9, 13.7.

¹⁹**F** NMR (565 MHz, CDCl₃): δ -99.88 (d, J = 276.9 Hz, 1F), -100.41 (d, J = 276.9 Hz, 1F), -102.31 (d, J = 276.9 Hz, 1F), -102.84 (d, J = 276.9 Hz, 1F).

IR (neat): 3012, 2982, 1628, 1561, 1498, 1408, 1245, 1206, 1118, 760.

HRMS (ESI-TOF): calculated for $[C_{32}H_{37}F_2O_4S(M + H^+)]$: 555.2375, found: 555.2377.

5 NMR analysis.

To a solution of dibenzyl sulfoxide **1a** (0.1 mmol in 0.5 mL of CD₃CN) in NMR tube was added trifluoroacetic anhydride TFAA (21 μ L, 0.15 mmol) at – 40 °C. After shaking for 5 min, the reaction mixture was brought for NMR analysis (**spectrum B**, 600 MHz, temperature of NMR was -40 °C). After addition of difluoroenol silyl ether **2a** (34 mg, 0.15 mmol) in cooling bath (-40 °C), the tube was quickly inserted into NMR again. The whole reaction process was then monitored. With the temperature gradually increased, **spectra C**, **D**, **E** were obtained at -40, -30 and 0 °C, respectively.

Note: To better understand the reaction process, unlike the general procedure, sulfoxide **1a** was treated with Tf_2O prior to the addition of **2a**. Both procedures gave similar yields of product **3aa**. The ¹⁹F-NMR analysis of intermediates were also carried out, however the given NMR spectrums were too complicated to be analyzed.

NMR spectrum B

NMR spectrum C

9.0 8,5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4,5 .4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 The structure of intermediate IM3-2a was proposed on the basis of reported literature (Tetrahedron Lett. 1984, 25, 4681) and NMR analysis. A similar oxygen-attacked imtermediate was studied in our recent work on the [3,3]-rearrangement reaction of aryliodane with difluoroenol silyl ether (Angew. Chem. Int. Ed. 2019, 58, 5956).

The structure of intermediate **IM7-2a** was proposed on the basis of DFT calculation and NMR analysis.

NMR spectrum D

Note: According to NMR intergrations, it was found that intermediate **IM4** would completely convert to the desired product **3aa**, while **IM4-2a** and **IM7-2a** were not stable and decomposed to unknown byproducts with the increasing temperature.

NMR spectrum E

6 Density functional theory (DFT) calculations

Computational Details

All structures were optimized at $M062X^{1}/6-31G(d,p)$ with solvent effects accounted by the SMD^2 solvent model, using the experimental solvent (acetonitrile). Harmonic frequency analysis calculations were subsequently performed to verify the optimized geometries to be minima (no imaginary frequency) or transition states (TSs, having unique one imaginary frequency). The energies were then improved by M062X/6-311++G(d,p)//M062X/6-31(d,p) single-point calculations with solvent effects accounted by the SMD solvent model, using the experimental solvent (acetonitrile). The refined energies were then corrected to enthalpies and free energies at experimental temperature (233.15K) and 1 atm, using the M062X/6-31G(d,p) harmonic frequencies. In addition, considering the overestimation of entropic contributions by the ideal gas phase model implemented program, correction in Gaussian а of $RTln(V^{T})$ [=R*233.15*ln(22.4*233.15/273.15)=1.37 kcal mol⁻¹] to the calculated free energies of all species was applied to adjust 1 atm to 1M standard-state concentration.³ Atomic partial charge were calculated at the M062X(SMD)/6-311++G(d,p)//M062X(SMD) /6-31G(d,p) level according to the natural bond orbital (NBO) method.⁴ Total energies and Cartesian coordinates of all optimized structures are given below in this Supporting Information. All standard DFT calculations were carried out using Gaussian 09 program.⁵

References

[1] (a) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120,215–241; (b) Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157–167; (c) R. Valero, R. Costa, I. D. P. R. Moreira, D. G. Truhlar and F. Illas, J. Chem. Phys., 2008, 128, 114103.

[2] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.

[3] C. J. Cramer, *Essentials of Computational Chemistry: Theories and Models*, 2nd ed.; John Wiley & Sons, Ltd: New York, 2004, pp 378–379; c) L. Vigara, M. Z. Ertem, N. Planas, F. Bozoglian, N. Leidel, H. Dau, M. Haumann, L. Gagliardi, C. J. Cramer, A. Llobet, *Chem. Sci.* 2012, *3*, 2576-2586.

[4] A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem.Rev.* 1988, 88, 899-926. c) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746. d) J. P. Foster, F. Weinhold *J. Am. Chem. Soc.* 1980, *102*, 7211-7218
[5] Gaussian 09, Revision A.01, M. J. Frisch, G W. Trucks, H. B. Schlegel, G E. Scuseria, M. A. Robb, J. R. Cheeseman, G Scalmani, V. Barone, B. Mennucci, G A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Fig. S1. Free energy profile for the reaction of **1a** with **2a**, along with relative free energies in kcal mol⁻¹. The pathway in pink color lead to the byproduct **IM7-2a** which was observed at NMR (See Section 5). **IM7-2a** was not stable and decomposed with the increasing temperature.

Fig. S2. Free energy profile for the reaction of 1a with 2b, along with relative free energies in kcal mol⁻¹.

Cartesian Coordinates (in Å), SCF Energies, and Free Energies (in a.u.) at 233.15 K and 1 atm for the Optimized Structures BSI=6-31G(d,p) BSII=6-311++G(d,p)

1a

a.u.

M062X/BSI SCF energy: -1015.013729 a.u. M062X/BSII SCF energy in solution: -1015.207973 a.u. M062X/BSII free energy in solution: -1014.995267

S	0.000008	0.164149	-0.016992
0	-0.000178	-1.311577	-0.350674
С	-1.361877	0.429748	1.178976
С	1.361874	0.429310	1.179045
С	-2.678672	0.220116	0.492734
С	-3.211321	-1.067035	0.371455
С	-4.412311	-1.270957	-0.303514
С	-5.088753	-0.191238	-0.869361
С	-4.558844	1.093563	-0.759720
С	-3.357767	1.297131	-0.084972
С	2.678690	0.219846	0.492780
С	3.211171	-1.067307	0.370849
С	4.412175	-1.271041	-0.304170
С	5.088795	-0.191127	-0.869403
С	4.559052	1.093702	-0.759097
С	3.357976	1.297072	-0.084322
Н	-1.203480	-0.287488	1.990264
Н	-1.253811	1.449669	1.560469
Н	-2.679865	-1.906145	0.811148
Н	-4.820967	-2.273281	-0.387877
Н	-6.026850	-0.350346	-1.392147
Н	-5.080975	1.937836	-1.199472
Н	-2.942758	2.298175	0.002312
Н	1.253883	1.449095	1.560917
Н	1.203407	-0.288199	1.990081
Н	2.679571	-1.906590	0.810048
Н	4.820688	-2.273381	-0.389024
Н	6.026887	-0.350075	-1.392243
Н	5.081359	1.938139	-1.198330
Н	2.943074	2.298125	0.003436

TFAA

M062X/BSI SCF energy: -976.804709 a.u.

M062X/BSII SCF energy in solution: -977.136137 a.u.

M062X/BSII free energy in solution: -977.11092 a.u.

0	-1.380519	1.897752	0.000158
0	1.380510	1.897753	-0.000205
0	-0.000003	0.065182	0.000293
С	2.306371	-0.340106	-0.000025
С	-2.306369	-0.340112	-0.000020
F	3.492175	0.246081	-0.000364
F	2.194559	-1.110123	-1.080244
F	2.194975	-1.109599	1.080637
F	-2.194771	-1.109629	-1.080637
F	-3.492175	0.246075	0.000087
F	-2.194748	-1.110095	1.080248
С	1.197271	0.726786	-0.000037
С	-1.197277	0.726785	0.000165

2a

M062X/BSI SCF energy: -991.733775 a.u. M062X/BSII SCF energy in solution: -991.965444 a.u. M062X/BSII free energy in solution: -991.770098 a.u.

С	0.254682	2.028379	-0.313498
С	-0.020679	0.731639	-0.458353
F	1.451838	2.549191	-0.524134
F	-0.611241	2.967766	0.029744
С	-1.351334	0.126123	-0.241784
С	-1.638989	-1.083507	-0.886815
С	-2.316479	0.695587	0.600347
С	-2.872144	-1.702901	-0.707255
Н	-0.889238	-1.532215	-1.530412
С	-3.547924	0.071609	0.774657
Н	-2.102214	1.615469	1.132532
С	-3.832546	-1.126758	0.121768
Н	-3.082131	-2.637803	-1.217736
Н	-4.284553	0.520096	1.434112
Н	-4.793871	-1.610421	0.263747
0	0.982798	-0.079922	-0.914601

Si	1.995164	-0.878984	0.199586
С	2.983026	0.397708	1.141978
Н	3.659222	-0.104735	1.842957
Н	3.589665	1.015752	0.473708
Н	2.334663	1.057070	1.728353
С	0.948468	-1.883898	1.379854
Н	0.392340	-2.671980	0.862763
Н	1.593765	-2.360354	2.126630
Н	0.229881	-1.255793	1.917208
С	3.075211	-1.953814	-0.873260
Н	3.730945	-2.579132	-0.258652
Н	2.467550	-2.616272	-1.497890
Н	3.706165	-1.348144	-1.531044

2b

M062X/BSI SCF energy: -793.332279 a.u. M062X/BSII SCF energy in solution: -793.491136 a.u. M062X/BSII free energy in solution: -793.280443 a.u.

С	0.185281	2.422065	-0.640749
С	-0.016467	1.100308	-0.634064
С	-1.311919	0.440346	-0.318641
С	-1.534674	-0.876200	-0.738461
С	-2.319295	1.101979	0.396581
С	-2.743518	-1.512131	-0.465946
Н	-0.755587	-1.395904	-1.286299
С	-3.525958	0.465076	0.666961
Н	-2.152225	2.110880	0.761475
С	-3.744066	-0.843251	0.235133
Н	-2.902605	-2.532006	-0.802780
Н	-4.295844	0.988424	1.225595
Н	-4.685368	-1.339338	0.450426
0	0.985914	0.234052	-0.983052
Si	2.089730	-0.333583	0.174381
С	3.340768	1.010733	0.527529
Н	4.111502	0.643478	1.214175
Н	3.836391	1.341428	-0.390874
Н	2.869655	1.882487	0.993559
С	1.160647	-0.789997	1.733983
Н	0.450777	-1.604446	1.558346
Н	1.865018	-1.116435	2.507045
Н	0.604708	0.066005	2.132009

С	2.880271	-1.818229	-0.631916
Н	3.641081	-2.256981	0.022064
Н	2.133971	-2.590338	-0.845302
Н	3.364839	-1.543595	-1.574307
Н	-0.617569	3.117996	-0.430441
Н	1.161286	2.821889	-0.894069

CF₃COO ·

M062X/BSI SCF energy: -526.144045 a.u.

M062X/BSII SCF energy in solution: -526.350597 a.u. M062X/BSII free energy in solution: -526.345334

a.u.

0	1.506973	-1.142410	0.000028
0	1.577617	1.129182	0.000052
С	-0.516206	0.015985	0.000050
F	-1.063335	1.243256	0.001186
F	-1.014569	-0.625623	1.078945
F	-1.014306	-0.623448	-1.080304
С	1.041736	0.010375	0.000105

CF₃COOH

M062X/BSI SCF energy: -526.609593 a.u. M062X/BSII SCF energy in solution: -526.792937 a.u. M062X/BSII free energy in solution: -526.775676 a.u.

0	-1.438830	-1.242628	0.001247
0	-1.661202	0.971753	-0.001471
С	0.578887	0.007271	0.000237
F	0.947220	1.293566	0.050998
F	1.086065	-0.534013	-1.104088
F	1.095285	-0.621918	1.051548
С	-0.955809	-0.146631	0.001366
Η	-1.095343	1.764439	0.006067

CF₃COOTMS

M062X/BSI SCF energy: -935.231625 a.u. M062X/BSII SCF energy in solution: -935.471168 a.u.

M062X/BSII free energy in solution: -935.369569 a.u.

Si	1.869731	-0.075884	0.000001
С	2.216200	0.874070	1.563023
Н	1.906339	0.300576	2.442391
Н	3.290574	1.067560	1.651541
Н	1.694371	1.834483	1.574831
С	2.646785	-1.763770	-0.000005
Н	2.352643	-2.333660	-0.886639
Н	3.738665	-1.682469	-0.000083
Н	2.352766	-2.333621	0.886694
С	2.216026	0.873980	-1.563113
Н	3.290401	1.067375	-1.651823
Н	1.905974	0.300473	-2.442405
Н	1.694278	1.834438	-1.574885
0	0.162644	-0.470930	0.000099
0	-0.605735	1.655385	-0.000018
С	-2.161767	-0.173092	0.000013
F	-3.106133	0.760870	0.000011
F	-2.324506	-0.941751	1.080488
F	-2.324451	-0.941704	-1.080509
С	-0.760864	0.461287	0.000049

CF₃COOBn

M062X/BSI SCF energy: -796.862563 a.u.

M062X/BSII SCF energy in solution: -797.108448 a.u.

M062X/BSII free energy in solution: -796.98696 a.u.

0	-0.950444	1.591046	0.014717
С	0.472513	0.006557	1.703261
С	1.638284	-0.026447	0.753002
С	2.203419	1.157832	0.277790
С	3.281995	1.116207	-0.603434
С	3.792454	-0.110784	-1.022062
С	3.226545	-1.297491	-0.555469
С	2.154530	-1.254857	0.331026
Н	0.317413	1.004804	2.117655
Н	1.794247	2.110987	0.600495
Н	3.719889	2.041115	-0.965791
Н	4.632625	-0.143625	-1.708945
Н	3.624606	-2.254277	-0.878818
Н	1.716148	-2.177061	0.704396
0	-0.752533	-0.416884	1.042908

С	-2.580155	-0.137450	-0.381328
F	-2.275643	-1.224950	-1.094091
F	-3.170404	0.743753	-1.179650
F	-3.445272	-0.497164	0.570307
С	-1.314689	0.470484	0.245337
Н	0.591387	-0.714290	2.512187

3aa

M062X/BSI SCF energy: -1521.825383 a.u.

M062X/BSII SCF energy in solution: -1522.163253 a.u.

M062X/BSII free energy in solution: -1521.855209 a.u.

S	-0.167539	-0.898488	-1.213801
С	0.198534	0.135746	0.253812
С	0.847211	-2.371865	-0.807535
С	1.356652	1.093942	0.083066
С	2.283972	1.237199	1.117023
С	3.361036	2.111199	0.981181
С	3.507528	2.862372	-0.182845
С	2.571681	2.737840	-1.209658
С	1.502192	1.857462	-1.078289
С	2.266399	-2.038760	-0.431216
С	3.132561	-1.426588	-1.344552
С	4.425781	-1.082558	-0.966454
С	4.873379	-1.350942	0.329250
С	4.021376	-1.968020	1.240024
С	2.721201	-2.306091	0.860651
Η	0.395952	-0.541430	1.091491
Н	2.169250	0.648376	2.023696
Н	4.086461	2.202133	1.784010
Н	4.347455	3.541628	-0.291221
Η	2.678432	3.322730	-2.118123
Н	0.786037	1.747735	-1.887254
Н	0.354276	-2.922200	-0.002796
Н	0.802960	-2.979522	-1.716072
Н	2.780587	-1.203599	-2.349123
Н	5.087550	-0.602174	-1.680936
Η	5.882417	-1.078422	0.623026
Н	4.361232	-2.181325	2.248998
Н	2.051133	-2.778297	1.574932
С	-1.079506	0.875407	0.626227
С	-2.225300	-0.080771	1.037686

F	-0.831546	1.660151	1.711294
F	-1.448282	1.721478	-0.374212
С	-3.538144	-0.112034	0.338269
С	-4.627647	-0.576024	1.088213
С	-3.721450	0.245167	-1.003841
С	-5.888719	-0.661114	0.513170
Н	-4.469853	-0.857710	2.124380
С	-4.984307	0.140164	-1.579318
Н	-2.889219	0.583988	-1.607877
С	-6.067273	-0.303276	-0.823224
Н	-6.731380	-1.006876	1.103032
Н	-5.121468	0.406829	-2.622150
Н	-7.051344	-0.374204	-1.276245
0	-1.993044	-0.762157	2.014434

3bb

M062X/BSI SCF energy: -1053.154765 a.u.

M062X/BSII SCF energy in solution: -1053.354131 a.u.

M062X/BSII free energy in solution: -1053.133708 a.u.

S	-0.310038	-1.622639	0.114259
С	-1.368204	-0.645446	1.250164
С	-2.646195	-0.169658	0.616582
С	-2.749664	1.135052	0.125685
С	-3.931545	1.572825	-0.472337
С	-5.019761	0.711163	-0.583257
С	-4.922719	-0.593141	-0.096065
С	-3.742690	-1.030086	0.497201
Н	-1.569493	-1.328584	2.079903
Н	-0.782612	0.193129	1.636873
Н	-1.893706	1.800440	0.209610
Н	-4.000834	2.588639	-0.849670
Н	-5.941164	1.052747	-1.044949
Н	-5.769193	-1.268473	-0.175837
Н	-3.666282	-2.046517	0.876262
С	0.166310	-0.314671	-1.066401
С	1.084055	0.670182	-0.377045
С	2.536809	0.348336	-0.213850
С	3.338848	1.278599	0.457523
С	3.112834	-0.827260	-0.708108
С	4.696585	1.040542	0.631164
Н	2.880562	2.186161	0.836726

С	4.473295	-1.064862	-0.531828
Н	2.513730	-1.568836	-1.226653
С	5.265623	-0.133072	0.135696
Н	5.312365	1.767028	1.151891
Н	4.913402	-1.979210	-0.916401
Н	6.326286	-0.321396	0.271119
0	0.621276	1.701612	0.082381
Н	-0.727211	0.213241	-1.407845
Н	0.633068	-0.810048	-1.918969

TS1

M062X/BSI SCF energy: -1991.829875 a.u. M062X/BSII SCF energy in solution: -1992.356068 a.u. M062X/BSII free energy in solution: -1992.096141 a.u.

S	-0.391444	-1.777271	-0.408518
0	0.201486	-0.292952	-0.088203
С	-1.833810	-1.412182	-1.461087
С	0.872924	-2.188554	-1.657406
С	-3.084876	-1.298287	-0.638849
С	-3.489894	-0.048805	-0.163838
С	-4.647559	0.057827	0.602610
С	-5.394387	-1.079886	0.904560
С	-4.984489	-2.328963	0.439357
С	-3.830432	-2.439282	-0.330820
С	2.223317	-2.193398	-1.001392
С	2.962272	-1.009371	-0.914430
С	4.196058	-1.007525	-0.270588
С	4.696276	-2.184204	0.285270
С	3.960962	-3.365570	0.199388
С	2.724212	-3.370193	-0.438871
Н	-1.570905	-0.484134	-1.979895
Н	-1.867230	-2.251743	-2.165190
Н	-2.892664	0.827342	-0.400612
Н	-4.966711	1.029726	0.965625
Н	-6.297014	-0.994616	1.501816
Н	-5.564935	-3.215605	0.673692
Н	-3.508289	-3.409347	-0.701324
Н	0.575145	-3.171238	-2.035579
Н	0.773102	-1.438409	-2.446957
Η	2.564339	-0.092869	-1.340834
Н	4.765333	-0.085921	-0.202037

Н	5.659275	-2.180391	0.786328
Н	4.349887	-4.283011	0.629260
Н	2.144600	-4.287347	-0.504678
0	-1.023838	1.731658	-1.662308
0	-0.935280	-0.296453	1.903415
0	-0.755383	1.906551	0.577604
С	1.163485	0.872214	1.735741
С	0.382557	3.433980	-0.860686
F	0.899730	1.698403	2.739045
F	1.863070	1.523191	0.804639
F	1.938465	-0.119821	2.199408
F	0.750134	4.027859	0.276308
F	-0.188860	4.361665	-1.640915
F	1.500420	3.024127	-1.485224
С	-0.125825	0.237328	1.193961
С	-0.568017	2.232312	-0.644044

$IM1^+$

M062X/BSI SCF energy: -1465.658573 a.u. M062X/BSII SCF energy in solution: -1465.994703 a.u. M062X/BSII free energy in solution: -1465.758262 a.u.

S	0.294536	-1.439791	-0.045963
0	0.074695	0.165473	-0.423646
С	-1.091139	-2.135026	-1.017031
С	1.768006	-1.681284	-1.087238
С	-2.349863	-1.530130	-0.467983
С	-2.891704	-0.390647	-1.070246
С	-3.995334	0.236985	-0.496100
С	-4.556063	-0.271653	0.673999
С	-4.018643	-1.411732	1.271024
С	-2.914131	-2.038893	0.704920
С	2.920252	-0.955994	-0.453940
С	3.196351	0.366223	-0.813204
С	4.251232	1.041373	-0.204475
С	5.021253	0.403377	0.766217
С	4.740852	-0.913175	1.130337
С	3.690493	-1.593323	0.522507
Н	-0.896959	-1.892578	-2.064913
Н	-2.451674	-0.000238	-1.984080
Н	-4.414893	1.122095	-0.963346
Н	-5.413382	0.220412	1.122191

Н	-4.456372	-1.808836	2.181023
Н	-2.483629	-2.920441	1.173246
Н	1.898398	-2.769386	-1.104375
Н	1.503948	-1.321500	-2.085555
Н	2.594093	0.859401	-1.571327
Н	4.470975	2.065471	-0.488343
Н	5.841950	0.932258	1.240399
Н	5.340180	-1.410097	1.886237
Н	3.466244	-2.620685	0.798114
0	-0.916825	0.580492	1.588693
С	-0.630164	2.371578	-0.038442
F	-1.310884	2.372831	-1.180776
F	0.596171	2.832476	-0.272905
F	-1.237203	3.150365	0.838736
С	-0.540372	0.940172	0.523170
Н	-1.013327	-3.215091	-0.850804

IM2

M062X/BSI SCF energy: -1991.855107 a.u. M062X/BSII SCF energy in solution: -1992.380235 a.u. M062X/BSII free energy in solution: -1992.120442 a.u.

S	-0.299040	0.059096	-0.366653
0	1.350189	-0.806978	-0.444032
С	0.384529	1.415570	-1.429596
С	-0.880057	-1.211964	-1.559430
С	1.616530	2.017316	-0.822375
С	2.880836	1.613369	-1.258960
С	4.026762	2.138563	-0.667320
С	3.913942	3.079311	0.355159
С	2.653761	3.491570	0.786664
С	1.507240	2.959581	0.203675
С	-1.446458	-2.368085	-0.785646
С	-0.617866	-3.425242	-0.398416
С	-1.140339	-4.487402	0.334772
С	-2.488633	-4.495559	0.688583
С	-3.314441	-3.436492	0.313666
С	-2.795529	-2.372703	-0.418676
Н	0.584067	0.949831	-2.398133
Н	-0.432073	2.130472	-1.524322
Н	2.963329	0.872989	-2.049575
Н	5.005422	1.813299	-1.006117

Н	4.807258	3.491087	0.814558	
Н	2.563318	4.225663	1.581119	
Н	0.522067	3.262536	0.546776	
Н	-1.619885	-0.716117	-2.186388	
Н	-0.004144	-1.486534	-2.146518	
Н	0.434538	-3.410418	-0.669062	
Н	-0.495551	-5.309737	0.628245	
Н	-2.895627	-5.325691	1.257714	
Н	-4.363635	-3.439043	0.591986	
Н	-3.429134	-1.536317	-0.700197	
0	-2.098767	0.779234	-0.549359	
0	1.910520	-0.079999	1.631943	
0	-1.639629	2.310083	1.044005	
С	3.387796	-1.539786	0.423817	
С	-3.902691	1.999422	0.305077	
F	4.042562	-1.177822	-0.683641	
F	3.068539	-2.834273	0.303306	
F	4.205517	-1.402686	1.461285	
F	-4.231201	2.848276	1.274198	
F	-4.607714	0.875131	0.472280	
F	-4.263888	2.537020	-0.865595	
С	2.111927	-0.696546	0.618355	
С	-2.390333	1.702895	0.312218	

$IM2-2a^+$

M062X/BSI SCF energy: -2457.411496 a.u.

M062X/BSII SCF energy in solution: -2457.977273 a.u. M062X/BSII free energy in solution: -2457.526906

a.u.

S	0.405995	0.084305	-0.697615
0	2.009745	0.568286	-0.710439
С	-0.070851	1.291694	-1.984074
С	0.614360	-1.511020	-1.598947
С	-0.093697	2.651459	-1.350667
С	1.027309	3.483106	-1.420350
С	1.004428	4.726610	-0.794099
С	-0.127389	5.134886	-0.090146
С	-1.242242	4.300769	-0.011193
С	-1.225032	3.059782	-0.638636
С	1.707419	-2.286645	-0.925518
С	3.024864	-2.144210	-1.372277
С	4.063757	-2.777712	-0.694083

С	3.789474	-3.558074	0.427335
С	2.475426	-3.710284	0.868014
С	1.436206	-3.072745	0.197934
Н	0.667988	1.183531	-2.782614
Н	1.909395	3.160723	-1.966688
Н	1.872368	5.375294	-0.852980
Н	-0.140463	6.103999	0.398670
Н	-2.123540	4.615650	0.538595
Н	-2.086100	2.399418	-0.580854
Н	-0.368308	-1.984720	-1.523376
Н	0.839481	-1.252572	-2.637070
Н	3.234835	-1.531884	-2.244961
Н	5.084624	-2.659305	-1.042542
Н	4.599156	-4.050344	0.956434
Н	2.258216	-4.321518	1.737866
Н	0.415638	-3.191527	0.548551
0	2.313569	-0.154605	1.428287
С	4.129547	0.931764	0.226999
F	4.859640	0.713243	1.306543
F	4.039966	2.242454	0.007972
F	4.714682	0.366601	-0.825789
С	2.716899	0.355364	0.434163
Н	-1.049910	0.954952	-2.333178
С	-2.039766	-2.403739	0.745501
С	-2.111933	-1.074910	0.693257
С	-2.055861	-0.191777	1.873588
С	-2.775315	1.008025	1.848800
С	-1.278504	-0.508020	2.994611
С	-2.732809	1.872306	2.938784
Н	-3.372234	1.258593	0.976218
С	-1.241244	0.359157	4.081763
Н	-0.690022	-1.419886	3.006683
С	-1.967488	1.549171	4.058061
Н	-3.299401	2.797831	2.914146
Н	-0.632906	0.109489	4.945246
Н	-1.931980	2.224972	4.906593
0	-2.210874	-0.474564	-0.536574
F	-1.930001	-3.132391	1.838274
F	-2.077248	-3.172984	-0.336506
Si	-3.549296	-0.677394	-1.613897
С	-4.122486	1.048491	-2.026416
н	-3.326080	1.643833	-2.485504
Н	-4.949299	0.998522	-2.743893
Н	-4.480729	1.579695	-1.138453

С	-2.861178	-1.529819	-3.122268
Н	-2.529975	-2.547777	-2.895966
Н	-3.623848	-1.588542	-3.906262
Н	-2.010464	-0.972401	-3.531000
С	-4.869479	-1.650623	-0.728881
Н	-5.780758	-1.645976	-1.337171
Н	-4.587149	-2.693320	-0.559211
Н	-5.113669	-1.195362	0.236956

$IM2B-2b^+$

M062X/BSI SCF energy: -2259.006261 a.u.

M062X/BSII SCF energy in solution: -2259.500954 a.u.

M062X/BSII free energy in solution: -2259.034169 a.u.

S	0.589581	-0.254844	-0.837259
0	1.706179	-1.365194	-0.219416
С	1.522282	0.126863	-2.378637
С	-0.573359	-1.515720	-1.407688
С	2.849891	0.673625	-1.949456
С	3.952538	-0.181267	-1.865735
С	5.152930	0.283838	-1.332128
С	5.251585	1.600136	-0.885041
С	4.154911	2.457138	-0.979286
С	2.954222	1.995510	-1.509346
С	-1.502976	-2.011446	-0.325774
С	-1.261233	-1.857838	1.038539
С	-2.177494	-2.346119	1.969933
С	-3.327292	-3.003195	1.544385
С	-3.562276	-3.173752	0.179503
С	-2.657586	-2.676150	-0.751370
Н	1.592949	-0.809012	-2.938251
Н	3.863847	-1.208009	-2.209958
Н	6.005972	-0.383563	-1.263702
Н	6.184794	1.960517	-0.464021
Н	4.232468	3.482913	-0.633384
Н	2.090945	2.653872	-1.571155
Н	-1.124306	-1.023593	-2.218151
Н	0.045575	-2.309587	-1.840311
Н	-0.371146	-1.353975	1.407282
Н	-1.983968	-2.210260	3.029198
Н	-4.038773	-3.382343	2.271031
Н	-4.458848	-3.682317	-0.161254

Η	-2.849012	-2.791032	-1.814931
0	2.519594	0.202424	1.221291
С	3.508778	-2.011257	1.153937
F	2.835136	-2.936173	1.834412
F	4.463279	-1.510679	1.920010
F	4.054578	-2.584187	0.085301
С	2.541374	-0.885521	0.740587
Н	0.891576	0.847950	-2.905495
С	-1.197163	1.978438	-1.542642
С	-1.959507	1.416657	-0.581245
С	-3.262680	0.747125	-0.834185
С	-4.123075	0.491553	0.239865
С	-3.650357	0.357860	-2.123989
С	-5.351611	-0.128723	0.026563
Н	-3.823713	0.777489	1.242653
С	-4.876362	-0.263776	-2.332838
Н	-2.988847	0.523836	-2.968938
С	-5.732227	-0.508355	-1.258673
Н	-6.009246	-0.321700	0.868657
Н	-5.161429	-0.564527	-3.336182
Н	-6.687629	-0.996925	-1.423038
0	-1.577082	1.386399	0.715813
Si	-1.010649	2.704250	1.642857
С	0.707182	3.232172	1.120724
Н	1.147742	3.838646	1.921057
Н	1.362592	2.368213	0.967301
Η	0.705776	3.840777	0.211471
С	-2.247267	4.087403	1.426458
Η	-3.249320	3.772570	1.734736
Н	-1.964414	4.958292	2.026822
Η	-2.296851	4.406348	0.379907
С	-0.977289	1.992916	3.363733
Η	-0.660151	2.746830	4.091521
Н	-1.964064	1.625614	3.662651
Η	-0.271835	1.156811	3.420224
Η	-1.530748	2.019298	-2.572082
Η	-0.276240	2.496497	-1.293687

$IM2A-2b^+$

M062X/BSI SCF energy: -22559.00936 a.u. M062X/BSII SCF energy in solution: -2259.504223 a.u.

M062X/BSII free energy in solution: -2259.036666 a.u.

S	0.293219	-0.102678	-0.582358
0	1.810609	0.602546	-0.694448
С	-0.352327	0.848467	-2.001547
С	0.713534	-1.747918	-1.306498
С	-0.620673	2.251411	-1.545078
С	0.370651	3.229537	-1.661947
С	0.125695	4.520936	-1.203198
С	-1.100784	4.833988	-0.619668
С	-2.087852	3.856371	-0.495971
С	-1.848992	2.565653	-0.957106
С	1.954518	-2.262718	-0.640063
С	3.203747	-1.977109	-1.199463
С	4.367528	-2.367858	-0.541140
С	4.285802	-3.048370	0.672207
С	3.040520	-3.341466	1.227098
С	1.876224	-2.944836	0.577128
Н	0.413237	0.770042	-2.778728
Η	1.326376	2.980193	-2.114804
Η	0.893279	5.281833	-1.300998
Η	-1.288034	5.841331	-0.261091
Н	-3.043187	4.098736	-0.041094
Н	-2.611638	1.796528	-0.866771
Н	-0.174931	-2.349875	-1.097518
Н	0.832659	-1.586470	-2.381271
Н	3.261297	-1.440832	-2.142946
Η	5.335005	-2.138984	-0.976465
Η	5.192644	-3.350275	1.186664
Η	2.976008	-3.872784	2.171135
Η	0.903546	-3.152054	1.015855
0	2.269964	0.125144	1.484576
С	3.878070	1.346650	0.129625
F	4.673479	1.295570	1.183989
F	3.594898	2.617260	-0.153380
F	4.495547	0.809541	-0.918808
С	2.569659	0.594434	0.435067
Η	-1.251003	0.309886	-2.309867
С	-1.702236	-2.771226	1.196378
С	-1.998946	-1.491943	0.948748
С	-2.116217	-0.433877	1.979988
С	-3.027988	0.611032	1.794037
С	-1.328384	-0.459069	3.137142
С	-3.168484	1.602986	2.760674
Η	-3.634307	0.637324	0.893064

С	-1.468642	0.535684	4.100207
Н	-0.591165	-1.246407	3.268046
С	-2.389888	1.566652	3.916104
Н	-3.886328	2.403523	2.610922
Н	-0.849161	0.513341	4.991260
Н	-2.495010	2.342564	4.667888
0	-2.207465	-1.029894	-0.333063
Si	-3.422294	-1.654683	-1.380922
С	-4.200795	-0.159880	-2.184123
Н	-3.491260	0.427559	-2.775634
Н	-4.996801	-0.488166	-2.862262
Н	-4.653921	0.500586	-1.437072
С	-2.562372	-2.733343	-2.637802
Н	-2.058998	-3.582872	-2.163979
Н	-3.287706	-3.133044	-3.355003
Н	-1.816056	-2.165784	-3.204578
С	-4.677604	-2.582291	-0.360784
Н	-5.554523	-2.791628	-0.983538
Н	-4.297019	-3.533795	0.019088
Н	-5.010628	-1.982296	0.493307
Н	-1.567148	-3.119715	2.213575
Н	-1.617387	-3.495147	0.390639

TS2

M062X/BSI SCF energy: -1991.817189 a.u. M062X/BSII SCF energy in solution: -1992.343726 a.u. M062X/BSII free energy in solution: -1992.090487 a.u.

S	-0.093327	0.186646	-0.179701
0	-1.824670	0.333498	-0.387867
С	0.354917	-1.166973	-1.123788
С	0.224226	1.600239	-1.284308
С	-0.175487	-2.437800	-0.529287
С	-1.311678	-3.040329	-1.082227
С	-1.843106	-4.196813	-0.517028
С	-1.253590	-4.754988	0.615772
С	-0.125129	-4.157224	1.175255
С	0.415339	-3.008235	0.603450
С	-0.128890	2.884061	-0.591359
С	-1.410902	3.426022	-0.716052
С	-1.730412	4.612988	-0.061528
С	-0.775115	5.257463	0.722398

С	0.502389	4.713885	0.854109	С	-1.332019	4.372170	0.974491
С	0.825354	3.528182	0.201135	С	-2.185008	3.427950	0.407626
Н	0.073968	-1.007788	-2.168304	С	-1.676887	2.436348	-0.429781
Н	1.788096	-1.156644	-1.030077	С	3.053108	-1.653854	-1.733006
Н	-1.781176	-2.592333	-1.954325	С	4.047729	-1.051294	-2.510170
Н	-2.723123	-4.656183	-0.956747	С	5.382354	-1.410235	-2.337464
Н	-1.671219	-5.652754	1.060645	С	5.726049	-2.380117	-1.398005
Н	0.339274	-4.590133	2.055923	С	4.734566	-2.996137	-0.635366
Н	1.301305	-2.549552	1.037049	С	3.402018	-2.631195	-0.797015
Н	1.289570	1.522052	-1.509551	Н	0.813875	1.648789	-2.438583
Н	-0.367470	1.411601	-2.183728	Н	-0.564257	0.632451	-1.938464
Н	-2.154237	2.917413	-1.323956	Н	1.610000	3.337471	-0.374270
Н	-2.725067	5.034885	-0.165002	Н	0.701850	5.072052	1.124193
Н	-1.025437	6.182988	1.231512	Н	-1.728353	5.139351	1.632251
Н	1.247761	5.214222	1.464133	Н	-3.250161	3.451795	0.616820
Н	1.816424	3.093512	0.301518	Н	-2.360975	1.704183	-0.854424
0	2.651856	0.659705	0.312335	Н	0.894137	-1.918574	-1.542116
0	-2.179108	-0.751544	1.577748	Н	1.395765	-0.778219	-2.840963
0	2.971894	-1.213090	-0.901785	Н	3.774923	-0.293448	-3.239832
С	-4.045518	-0.161988	0.159894	Н	6.150503	-0.931087	-2.935854
С	4.842589	-0.292504	0.176771	Н	6.766202	-2.659003	-1.261996
F	-4.245536	-0.894883	-0.936495	Н	4.999280	-3.758805	0.089865
F	-4.394483	1.096201	-0.107197	Н	2.632019	-3.113554	-0.203749
F	-4.812486	-0.627243	1.134969	0	-4.964596	-1.199961	-0.667797
F	5.562558	-0.172947	-0.945798	0	3.852781	0.256457	0.730737
F	5.169515	-1.458434	0.745580	0	-4.611865	1.019541	-0.990068
F	5.198156	0.688372	1.003359	С	4.897324	1.941123	-0.672919
С	-2.563716	-0.238029	0.569354	С	-6.811559	0.139781	-1.160609
С	3.336270	-0.245584	-0.145409	F	4.464949	3.196359	-0.551979
				F	5.215029	1.727337	-1.946202
TS3	A-2a			F	5.968864	1.772108	0.082324
M06	52X/BSI SCF e	energy: -2983.	571163 a.u.	F	-7.507328	-0.192667	-0.055357
M06	52X/BSII SCF	energy in solu	tion: -2984.331717	F	-7.243264	-0.670403	-2.145525
a.u.				F	-7.177478	1.386111	-1.491453
M06	52X/BSII free	energy in solu	ition: -2983.855954	С	3.789148	0.975189	-0.214395
a.u.				С	-5.285702	-0.016782	-0.920412
				С	0.432514	-2.864835	1.201621
S	1.362893	0.210151	-0.660624	С	-0.033496	-1.619849	1.345711
0	2.725620	1.122407	-1.048507	F	0.235471	-3.584971	0.106050
С	0.225066	1.298456	-1.584780	F	1.155826	-3.545644	2.071346
С	1.636628	-1.178075	-1.852128	С	0.201112	-0.759938	2.528173
С	-0.308456	2.393800	-0.707475	С	-0.098709	0.605637	2.426949
С	0.546460	3.351731	-0.150235	С	0.708689	-1.247737	3.742750
С	0.033920	4.333974	0.691813	С	0.123893	1.466244	3.497897

Η	-0.527881	0.992070	1.508738
С	0.926964	-0.382625	4.809883
Н	0.924445	-2.301133	3.868241
С	0.642975	0.977167	4.693752
Н	-0.116118	2.520141	3.392812
Н	1.317831	-0.778685	5.741978
Н	0.816984	1.646198	5.530536
0	-0.680764	-1.094843	0.258975
Si	-2.430461	-1.345499	-0.009850
С	-2.744091	-3.160893	0.334759
Н	-3.823983	-3.331290	0.307061
Н	-2.278058	-3.802441	-0.418567
Н	-2.378165	-3.466018	1.320684
С	-3.132292	-0.302764	1.380358
Н	-2.609025	-0.570582	2.305636
Н	-3.013389	0.770233	1.218765
Н	-4.193650	-0.519733	1.506145
С	-2.410529	-1.035103	-1.860288
Н	-3.163361	-1.688819	-2.306749
Н	-2.666156	-0.012779	-2.144977
Н	-1.432779	-1.307689	-2.275252

TS2A

M062X/BSI SCF energy: -1991.815387 a.u.

M062X/BSII SCF energy in solution: -1992.34001 a.u.

M062X/BSII free energy in solution: -1992.08502 a.u.

S	-0.825214	-1.508600	-0.301126
0	0.128688	-0.279285	0.420058
С	-2.099807	-0.549867	-0.979152
С	0.267746	-1.798223	-1.752236
С	-3.405575	-0.714751	-0.277137
С	-3.504539	-0.486482	1.100847
С	-4.729953	-0.604747	1.751217
С	-5.877618	-0.926533	1.028743
С	-5.789750	-1.136578	-0.346761
С	-4.561779	-1.038901	-0.995301
С	1.662052	-2.089555	-1.290113
С	2.578924	-1.038174	-1.185202
С	3.846643	-1.274085	-0.655975
С	4.201095	-2.555933	-0.239403
С	3.290985	-3.606637	-0.356106

С	2.021261	-3.374115	-0.875338
Н	-1.690161	0.744786	-0.865312
Н	-2.119306	-0.730379	-2.056753
Н	-2.620050	-0.199413	1.667296
Н	-4.789363	-0.430085	2.821071
Н	-6.834988	-1.009598	1.533409
Н	-6.679171	-1.387106	-0.916856
Н	-4.492991	-1.215642	-2.065239
Н	-0.209877	-2.638822	-2.264692
Н	0.193360	-0.880144	-2.340982
Н	2.285087	-0.041143	-1.503972
Н	4.554528	-0.455742	-0.566501
Н	5.187442	-2.737152	0.176277
Η	3.569131	-4.605626	-0.035860
Η	1.302427	-4.185892	-0.954884
0	0.461006	1.374763	-1.947368
0	1.170925	-1.728426	1.839718
0	-1.317990	1.919423	-0.666753
С	1.842357	0.596938	1.750258
С	0.511558	3.375743	-0.642776
F	1.122602	1.357217	2.574220
F	2.161518	1.324183	0.679078
F	2.954304	0.222285	2.365786
F	0.474289	3.432473	0.695698
F	-0.139792	4.452753	-1.107237
F	1.785807	3.473887	-1.023347
С	1.026334	-0.650229	1.351212
С	-0.150305	2.080893	-1.158777

TS3B-2a⁺

M062X/BSI SCF energy: -2457.394497 a.u. M062X/BSII SCF energy in solution: -2457.960275 a.u. M062X/BSII free energy in solution: -2457.509416 a.u.

S	-0.552114	0.155435	-0.650239
0	-1.801792	1.392480	-0.167490
С	-1.542513	-0.325588	-2.149780
С	0.460698	1.510137	-1.315416
С	-2.913574	-0.764335	-1.733194
С	-3.975983	0.141608	-1.791804
С	-5.236055	-0.229982	-1.328804
С	-5.439307	-1.510317	-0.816726

С	-4.384407	-2.421271	-0.773433
С	-3.122843	-2.049822	-1.227762
С	1.389905	2.110805	-0.287987
С	1.192808	2.001735	1.088636
С	2.096464	2.592309	1.972734
С	3.187643	3.305962	1.487616
С	3.377155	3.429909	0.110593
С	2.486412	2.830906	-0.772296
Н	-1.555539	0.571648	-2.772292
Н	-3.809296	1.139406	-2.187565
Н	-6.055817	0.480474	-1.368775
Н	-6.420398	-1.800307	-0.453958
Н	-4.542800	-3.420366	-0.380326
Н	-2.296688	-2.754340	-1.186729
Н	1.011656	1.093521	-2.165710
Н	-0.258891	2.237468	-1.701717
Н	0.340362	1.463861	1.497785
Н	1.938217	2.494020	3.042012
Н	3.889743	3.762515	2.177995
Н	4.228912	3.981169	-0.276043
Н	2.643250	2.908744	-1.845042
0	-2.688332	-0.054501	1.342934
С	-3.649837	2.134347	1.075228
F	-3.030177	3.078740	1.788034
F	-4.671128	1.668318	1.782090
F	-4.118721	2.695254	-0.039255
С	-2.658516	0.994715	0.763405
Н	-0.978593	-1.111380	-2.652008
С	0.972482	-1.541183	-1.213122
С	2.036047	-1.201927	-0.355608
С	3.242506	-0.479656	-0.759980
С	4.120964	-0.079743	0.263277
С	3.566090	-0.200586	-2.100912
С	5.299321	0.581238	-0.048282
Н	3.868532	-0.288111	1.297058
С	4.747640	0.465876	-2.398990
Н	2.909113	-0.491058	-2.909273
С	5.614655	0.856664	-1.379472
Н	5.969167	0.890093	0.747416
Н	4.991644	0.680521	-3.433939
Н	6.534844	1.379148	-1.621570
0	1.851137	-1.368395	0.921277
Si	1.241851	-2.645456	1.960761
С	-0.573008	-2.352396	2.222525

Η	-0.953017	-3.077114	2.951689
Н	-0.743734	-1.351354	2.629675
Н	-1.160803	-2.451480	1.306914
С	1.697207	-4.262778	1.162519
н	2.745081	-4.251865	0.844654
Н	1.582743	-5.069551	1.894814
Н	1.073276	-4.498231	0.297295
С	2.218615	-2.309796	3.506951
н	1.896403	-2.975762	4.314265
Н	3.288964	-2.468447	3.343945
н	2.069672	-1.278201	3.842462
F	1.150599	-1.646012	-2.532076
F	0.123917	-2.503328	-0.804695

TS2B

M062X/BSI SCF energy: -1465.584628 a.u. M062X/BSII SCF energy in solution: -1465.920493 a.u. M062X/BSII free energy in solution: -1465.689872 a.u.

S	0.309462	-1.149388	0.059480
С	1.623344	-0.745946	-0.897782
С	-0.956556	-1.722628	-1.138529
С	2.998436	-0.745131	-0.315665
С	3.343157	-1.448975	0.842022
С	4.643788	-1.387341	1.333673
С	5.612371	-0.638138	0.668697
С	5.275814	0.052423	-0.493941
С	3.973863	0.005700	-0.981803
С	-2.335144	-1.630399	-0.560172
С	-2.817220	-2.636715	0.280103
С	-4.094484	-2.531521	0.823751
С	-4.888893	-1.424226	0.529372
С	-4.408448	-0.419531	-0.309430
С	-3.131404	-0.519781	-0.851905
Н	1.498208	-1.028301	-1.948894
Н	1.230283	0.558229	-1.095238
Н	2.609668	-2.062612	1.358767
Н	4.901845	-1.939662	2.231375
Н	6.626992	-0.597947	1.051510
Н	6.025566	0.634647	-1.019981
Н	3.707469	0.553179	-1.882123
Н	-0.813715	-1.118469	-2.040324

Η	-0.636141	-2.752682	-1.334304
Н	-2.194676	-3.499765	0.502845
Н	-4.469753	-3.314158	1.474988
Н	-5.884721	-1.344431	0.953843
Н	-5.026060	0.442249	-0.540705
Н	-2.749251	0.260180	-1.505842
0	-0.602931	0.469267	0.403858
0	0.648643	1.661976	-1.044781
С	-0.964202	2.804261	0.345138
F	-0.493829	3.885892	-0.249767
F	-0.813592	2.909737	1.659241
F	-2.257793	2.666875	0.068450
С	-0.217069	1.552489	-0.162118

TS2C

M062X/BSI SCF energy: -2457.333293 a.u. M062X/BSII SCF energy in solution: -2457.905355 a.u. M062X/BSII free energy in solution: -2457.45101 a.u.

S	-1.444760	0.328950	-0.159318
0	0.414579	1.219228	-1.869492
С	-2.760413	-0.340846	0.917034
С	-1.601956	-0.770558	-1.654688
С	-4.022027	0.276030	0.366217
С	-4.935480	-0.525377	-0.325135
С	-6.106965	0.030528	-0.830263
С	-6.364214	1.389499	-0.657620
С	-5.452533	2.193317	0.025104
С	-4.282456	1.640727	0.536310
С	-0.810339	-2.036715	-1.671060
С	0.432729	-2.044608	-2.306412
С	1.204215	-3.203725	-2.306339
С	0.729799	-4.354111	-1.679584
С	-0.529499	-4.357559	-1.077504
С	-1.306607	-3.203190	-1.080696
Н	-2.782704	-1.427745	0.865363
Н	-4.731190	-1.585460	-0.453483
Н	-6.817401	-0.597516	-1.357765
Н	-7.276815	1.822180	-1.055024
Н	-5.653488	3.250560	0.163380
Н	-3.577621	2.265294	1.079403
Н	-2.682071	-0.951069	-1.647660

Н	-1.321429	-0.088693	-2.455003
Н	0.785341	-1.139611	-2.793238
Н	2.174549	-3.206274	-2.792634
Н	1.334133	-5.255619	-1.672324
Н	-0.907984	-5.261665	-0.611563
Н	-2.292616	-3.204537	-0.622697
0	0.676547	2.480097	-0.020921
С	2.199675	2.777155	-1.797401
F	2.784966	2.010214	-2.726664
F	3.126579	3.071188	-0.877808
F	1.840969	3.926930	-2.390001
С	0.969712	2.080776	-1.168030
Н	-2.529822	-0.002780	1.931434
С	0.264695	-2.263763	1.360206
С	0.798037	-1.171466	0.821057
С	2.246105	-0.973381	0.611468
С	2.762105	-0.393437	-0.552883
С	3.114474	-1.316937	1.657215
С	4.125579	-0.135518	-0.654502
Н	2.101895	-0.135475	-1.370759
С	4.479450	-1.077358	1.539112
Н	2.719650	-1.760595	2.566265
С	4.985334	-0.474460	0.389805
Н	4.514491	0.331066	-1.553690
Н	5.142631	-1.345313	2.354953
Н	6.047897	-0.269070	0.306759
0	-0.012788	0.007241	0.739934
Si	0.469714	1.432092	2.147284
С	-0.990636	2.578756	2.241459
Н	-0.662459	3.421209	2.865515
Н	-1.299749	2.987704	1.280239
Н	-1.833212	2.108388	2.757051
С	0.261515	0.183237	3.524727
Н	1.091103	-0.519037	3.630886
Н	0.227028	0.783359	4.445031
Н	-0.680365	-0.371423	3.467443
С	2.225266	2.044467	2.152707
Н	2.821017	1.624792	1.339551
Н	2.223150	3.130315	2.031041
Η	2.684690	1.775583	3.109365
F	0.930187	-3.371588	1.546233
F	-0.984762	-2.375909	1.737269

TS3A-2b

M062X/BSI SCF energy: -2785.16722 a.u.			
M062	2X/BSII SCF	energy in solu	tion: -2785.856228
a.u.			
M062	2X/BSII free	energy in solu	tion: -2785.364694
a.u.			
S	1.319536	-0.094602	-0.572332
0	2.697365	0.642800	-1.215347
С	0.181080	0.819149	-1.670234
С	1.503930	-1.717397	-1.423744
С	-0.292110	2.088367	-1.022657
С	0.603873	3.122233	-0.730929
С	0.150439	4.277545	-0.101017
С	-1.197204	4.409310	0.234764
С	-2.092093	3.384920	-0.068031
С	-1.643333	2.223701	-0.694226
С	2.882254	-2.238781	-1.147472
С	3.918054	-1.962031	-2.044692
С	5.219573	-2.361248	-1.749648
С	5.486750	-3.041544	-0.563258
С	4.453105	-3.324194	0.329627
С	3.153605	-2.918615	0.042834
Н	0.753562	0.968526	-2.591454
Н	-0.636451	0.123129	-1.862424
Н	1.653102	3.031722	-1.000850
Н	0.849374	5.076557	0.124784
Н	-1.548230	5.312175	0.724875
Н	-3.144466	3.482914	0.181002
Н	-2.358657	1.435144	-0.921141
Н	0.706881	-2.318662	-0.976821
Н	1.311393	-1.535897	-2.484603
Н	3.703605	-1.428521	-2.966848
Н	6.022183	-2.139842	-2.445814
Н	6.501457	-3.350713	-0.332864
Н	4.661133	-3.854922	1.253135
Н	2.345037	-3.116386	0.742975
0	-4.896877	-1.312617	-0.209666
0	3.882455	0.237748	0.689051
0	-4.626346	0.815847	-0.949312
С	4.897300	1.456392	-1.148787
С	-6.785318	-0.175466	-0.975934
F	4.465200	2.680684	-1.450563
F	5.221449	0.834297	-2.279605
F	5.966097	1.548014	-0.375720

F	-7.495011	-0.316655	0.159819
F	-7.156563	-1.180569	-1.790323
F	-7.188023	0.964711	-1.551682
С	3.788578	0.686229	-0.408071
С	-5.261468	-0.211953	-0.687728
С	0.082483	-2.763508	2.197175
С	-0.089068	-1.491914	1.807646
С	0.451139	-0.323041	2.560445
С	-0.032300	0.965484	2.304408
С	1.478831	-0.477442	3.501426
С	0.476945	2.067697	2.986881
Н	-0.808498	1.102604	1.560168
С	1.983218	0.622672	4.186895
Н	1.908746	-1.457727	3.681687
С	1.483621	1.900229	3.934961
Н	0.082979	3.057222	2.773974
Н	2.779863	0.483457	4.911124
Н	1.884518	2.758138	4.465865
0	-0.732271	-1.190920	0.635015
Si	-2.494045	-1.446725	0.398734
С	-2.880022	-3.194644	0.966201
Н	-3.932341	-3.392196	0.744695
Н	-2.276235	-3.935444	0.431270
Н	-2.722446	-3.336878	2.039114
С	-3.128095	-0.191641	1.645118
Н	-2.496860	-0.215979	2.540592
Н	-3.136810	0.828378	1.253225
Н	-4.148742	-0.451424	1.931273
С	-2.452888	-1.420351	-1.482273
Н	-3.215208	-2.123800	-1.825783
Η	-2.695679	-0.451626	-1.924284
Η	-1.483969	-1.771292	-1.854802
Η	0.573365	-3.008366	3.130984
Η	-0.286775	-3.580665	1.588633

$TS3B-2b^+$

M062X/BSI SCF energy: -2259.005251 a.u. M062X/BSII SCF energy in solution: -2259.500965 a.u. M062X/BSII free energy in solution: -2259.032717 a.u. S 0.560380 -0.121713 -0.710252

O 1.724034 -1.319385 -0.139708

С	1.540294	0.221786	-2.252761
С	-0.537799	-1.456699	-1.265737
С	2.901437	0.697570	-1.849430
С	3.965338	-0.207105	-1.799776
С	5.208502	0.204361	-1.324586
С	5.392097	1.521801	-0.908362
С	4.336767	2.431283	-0.975580
С	3.092462	2.021065	-1.443900
С	-1.430716	-1.982455	-0.166778
С	-1.299365	-1.646316	1.179691
С	-2.175284	-2.185359	2.123153
С	-3.175896	-3.067159	1.728708
С	-3.303170	-3.411090	0.382144
С	-2.438181	-2.868670	-0.560979
Н	1.560132	-0.724795	-2.797453
Н	3.812252	-1.232943	-2.123022
Н	6.029649	-0.503970	-1.278774
Н	6.359397	1.842901	-0.535104
Н	4.482661	3.459343	-0.659926
Н	2.265222	2.725747	-1.494760
Н	-1.117632	-1.045401	-2.097788
Н	0.130185	-2.229650	-1.657846
Н	-0.528550	-0.960525	1.524320
Н	-2.067867	-1.911344	3.167895
Н	-3.856558	-3.483672	2.464338
Н	-4.085271	-4.093393	0.063797
Н	-2.544764	-3.122709	-1.612551
0	2.630370	0.190019	1.299514
С	3.526857	-2.047808	1.178672
F	2.843421	-2.967176	1.861479
F	4.511065	-1.589275	1.937864
F	4.045938	-2.629287	0.098695
С	2.583767	-0.890880	0.792100
Н	0.967007	0.966393	-2.804205
С	-1.098627	1.648573	-1.459893
С	-2.094032	1.346269	-0.567880
С	-3.292169	0.540003	-0.901733
С	-4.170375	0.167478	0.125502
С	-3.569188	0.137890	-2.216626
С	-5.295349	-0.599726	-0.154753
Н	-3.958933	0.472197	1.144208
С	-4.692453	-0.634680	-2.490622
Н	-2.920456	0.431209	-3.035484
С	-5.557476	-1.006455	-1.462157

Н	-5.963439	-0.887304	0.650987
Н	-4.896889	-0.939641	-3.511900
Н	-6.434499	-1.607471	-1.681523
0	-2.029688	1.698930	0.711248
Si	-1.273059	3.061690	1.449166
С	0.572788	2.810569	1.521879
Н	1.006807	3.583862	2.167015
Н	0.826697	1.839285	1.956320
Н	1.063761	2.887332	0.546556
С	-1.763866	4.564431	0.457794
Н	-2.853596	4.652020	0.401947
Н	-1.378252	5.469315	0.939381
Н	-1.369756	4.534436	-0.562179
С	-2.021352	3.045751	3.151601
Н	-1.586241	3.837589	3.769934
Н	-3.103391	3.203561	3.109683
Н	-1.835579	2.089184	3.650539
Н	-1.227144	1.427552	-2.512419
Н	-0.349829	2.393204	-1.205188

$IM3^+$

M062X/BSI SCF energy: -939.06194 a.u. M062X/BSII SCF energy in solution: -939.220655 a.u. M062X/BSII free energy in solution: -939.022368 a.u.

S	0.051979	0.135345	0.000330
С	-1.348946	-0.757761	0.000098
С	1.349037	-1.179991	0.000240
С	-2.667398	-0.233114	0.000003
С	-3.727064	-1.168401	-0.000104
С	-5.039157	-0.725969	-0.000168
С	-5.301112	0.644516	-0.000143
С	-4.258988	1.582908	-0.000055
С	-2.947638	1.154610	0.000017
С	2.697023	-0.517705	0.000058
С	3.322302	-0.200587	-1.208327
С	4.569326	0.418105	-1.207713
С	5.193950	0.726658	-0.000268
С	4.569543	0.418307	1.207341
С	3.322520	-0.200387	1.208279
Н	-1.235540	-1.843779	-0.000035
Н	-3.496085	-2.229428	-0.000128

Η	-5.855917	-1.438917	-0.000242
Н	-6.329376	0.992491	-0.000200
Н	-4.485190	2.643181	-0.000050
Н	-2.139369	1.881308	0.000073
Н	1.183609	-1.780792	0.896611
Н	1.183406	-1.780880	-0.896034
Н	2.831713	-0.446806	-2.146623
Н	5.055215	0.655350	-2.148837
Н	6.167780	1.206351	-0.000398
Н	5.055602	0.655710	2.148337
Н	2.832099	-0.446453	2.146703

IM3-2a

M062X/BSI SCF energy: -2983.575449 a.u. M062X/BSII SCF energy in solution: -2984.330616 a.u. M062X/BSII free energy in solution: -2983.85332 a.u.

S	1.279586	0.127858	-0.666213
0	2.721839	0.899301	-1.133261
С	0.272231	1.194759	-1.757443
С	1.494632	-1.398301	-1.690955
С	-0.190829	2.420448	-1.026195
С	0.720569	3.384723	-0.580317
С	0.268505	4.485749	0.140722
С	-1.092236	4.635972	0.411386
С	-2.001539	3.684878	-0.046215
С	-1.553093	2.575647	-0.760715
С	2.886960	-1.930769	-1.525024
С	3.904591	-1.482074	-2.373200
С	5.217974	-1.900088	-2.171715
С	5.518311	-2.774684	-1.129169
С	4.503432	-3.238212	-0.293299
С	3.192537	-2.814992	-0.486291
Н	0.922414	1.398053	-2.613887
Н	-0.560565	0.566070	-2.073721
Н	1.780944	3.278341	-0.794345
Н	0.978499	5.228101	0.491048
Н	-1.440462	5.496072	0.974841
Н	-3.062131	3.797063	0.157929
Н	-2.268528	1.829488	-1.099777
Н	0.722717	-2.064472	-1.298551
Н	1.265939	-1.104890	-2.718933

Н	3.666636	-0.798251	-3.183510
Н	6.003430	-1.541032	-2.828933
Н	6.542152	-3.098535	-0.970614
н	4.733046	-3.926218	0.513838
н	2.405490	-3.180447	0.165383
0	-4.630658	-1.099934	-0.388010
0	3.767755	0.162977	0.749279
0	-4.624100	1.048940	-1.099994
С	4.935816	1.608474	-0.809159
С	-6.655434	-0.203759	-1.120079
F	4.610172	2.901594	-0.771783
F	5.216401	1.283749	-2.068320
F	6.003439	1.406442	-0.055315
F	-7.310447	-0.422950	0.031163
F	-6.892348	-1.254550	-1.918203
F	-7.193994	0.873499	-1.694940
С	3.758015	0.774599	-0.272240
С	-5.144637	-0.029802	-0.859733
С	0.278680	-2.588519	1.458423
С	-0.146488	-1.318240	1.459943
F	0.029921	-3.434974	0.463062
F	1.002769	-3.195679	2.387373
С	0.164632	-0.361335	2.553567
С	-0.010381	1.006872	2.304030
С	0.619569	-0.754710	3.821852
С	0.287347	1.956684	3.276143
Н	-0.408128	1.322301	1.345731
С	0.913369	0.198568	4.792177
Н	0.734507	-1.803348	4.066216
С	0.756659	1.557520	4.525323
Н	0.143444	3.010100	3.054353
Н	1.261261	-0.127945	5.767434
Н	0.986290	2.295590	5.287462
0	-0.788077	-0.884493	0.346477
Si	-2.703956	-1.100668	0.073683
С	-2.870628	-2.860128	0.729911
Н	-3.921921	-3.067173	0.945740
Н	-2.527724	-3.593929	-0.006199
Н	-2.303104	-3.018912	1.650782
С	-3.066825	0.192352	1.408442
Н	-2.522668	-0.083328	2.317700
Н	-2.750383	1.201139	1.134962
Н	-4.133195	0.223123	1.646844
С	-2.390436	-1.042348	-1.795867

Н	-3.104472	-1.730902	-2.259515
Н	-2.570554	-0.061701	-2.245412
Н	-1.386035	-1.384954	-2.058091

$IM3-2b^+$

M062X/BSI SCF energy: -2259.042435 a.u.

M062X/BSII SCF energy in solution: -2259.545346 a.u.

M062X/BSII free energy in solution: -2459.070325 a.u.

S	0.450947	0.255266	-1.151584		
0	2.668896	-1.240884	-1.736101		
С	1.426592	1.405369	-2.206191		
С	-0.409725	-0.779224	-2.400310		
С	2.311991	2.258113	-1.345777		
С	3.514618	1.736115	-0.856928		
С	4.310967	2.504473	-0.013690		
С	3.913082	3.793147	0.345266		
С	2.720165	4.317925	-0.147515		
С	1.919261	3.551810	-0.993199		
С	-1.712320	-1.289597	-1.853837		
С	-1.726781	-2.198926	-0.787138		
С	-2.941115	-2.642186	-0.273202		
С	-4.143381	-2.196610	-0.826960		
С	-4.130201	-1.305455	-1.897403		
С	-2.916434	-0.846048	-2.405494		
Η	1.988865	0.720450	-2.842983		
Н	3.794642	0.719622	-1.121750		
Н	5.240950	2.095611	0.369483		
Н	4.535192	4.389658	1.005316		
Н	2.413291	5.323129	0.123259		
Н	0.991020	3.959459	-1.386523		
Н	-0.545026	-0.157539	-3.289481		
Н	0.327376	-1.565979	-2.579520		
Н	-0.781170	-2.554014	-0.382746		
Н	-2.951455	-3.342175	0.556791		
Н	-5.088847	-2.547587	-0.424767		
Н	-5.062877	-0.956687	-2.329737		
Н	-2.901500	-0.141253	-3.232860		
0	1.437143	-2.699743	-0.532896		
С	3.640216	-2.252771	0.175596		
F	3.224587	-2.406106	1.443630		
F	4.508021	-1.228510	0.171258		

F	4.333350	-3.359808	-0.147513
С	2.453728	-2.039773	-0.800926
Н	0.706339	1.980336	-2.793937
С	-0.873253	1.398983	-0.650088
С	-1.740408	0.814048	0.430988
С	-3.175649	0.975591	0.443057
С	-3.914911	0.289822	1.429131
С	-3.841645	1.787654	-0.496645
С	-5.294065	0.410215	1.465779
Н	-3.399590	-0.341452	2.145209
С	-5.219971	1.912386	-0.439801
Н	-3.295887	2.332585	-1.257926
С	-5.944494	1.219706	0.532744
Н	-5.864287	-0.125497	2.216449
Н	-5.733663	2.543428	-1.156371
Н	-7.025645	1.312792	0.563099
0	-1.204562	0.185248	1.385238
Si	0.175899	-0.094784	2.488096
С	1.685133	0.798616	1.875818
Н	2.329720	0.982804	2.744123
Н	2.263742	0.218515	1.153958
Н	1.448654	1.779213	1.444272
С	-0.511233	0.669273	4.034148
Н	-1.438480	0.176316	4.340682
Н	0.214071	0.570153	4.848797
Н	-0.712961	1.735195	3.889894
С	0.266210	-1.940929	2.503685
Н	0.914611	-2.262353	3.326276
Н	-0.728438	-2.365759	2.673926
Н	0.678309	-2.331129	1.567699
Н	-1.435883	1.699739	-1.533314
Н	-0.362506	2.277640	-0.228260

$IM4-2a^+$

M062X/BSI SCF energy: -1930.815064 a.u. M062X/BSII SCF energy in solution: -1931.203505 a.u. M062X/BSII free energy in solution: -1930.788973 a.u.

S	-1.260542	-1.787460	-0.496118
С	0.195738	-2.130549	0.224486
С	-2.489467	-2.126052	0.833600
С	1.453744	-2.077806	-0.439913

С	2.598574	-2.422569	0.311255
С	3.851416	-2.390725	-0.281216
С	3.971048	-2.005687	-1.616895
С	2.843425	-1.650556	-2.369538
С	1.589899	-1.679742	-1.789993
С	-3.720904	-1.314502	0.534331
С	-4.117752	-0.281691	1.385877
С	-5.233637	0.492727	1.071542
С	-5.947703	0.248941	-0.099651
С	-5.556310	-0.784030	-0.950634
С	-4.451388	-1.567047	-0.631146
Н	0.178214	-2.448740	1.267976
Н	2.481599	-2.715754	1.350723
Н	4.732389	-2.655277	0.293112
Н	4.952346	-1.976991	-2.080897
Н	2.955729	-1.349755	-3.405365
Н	0.716301	-1.404020	-2.373649
Н	-2.685033	-3.200531	0.805342
Н	-2.033735	-1.855766	1.787566
Н	-3.550312	-0.081490	2.289898
Н	-5.539227	1.292230	1.739126
Н	-6.810451	0.859084	-0.347869
Н	-6.113650	-0.983372	-1.860400
Н	-4.154282	-2.379487	-1.291081
С	0.086817	0.573649	1.682156
С	0.923837	0.804330	0.662591
F	-1.232003	0.549763	1.521259
F	0.406429	0.392645	2.948349
С	2.395455	0.854639	0.757500
С	3.105453	1.272704	-0.375414
С	3.109455	0.473156	1.905764
С	4.496807	1.314766	-0.361699
Н	2.559763	1.547442	-1.271788
С	4.498683	0.522016	1.912623
Н	2.590242	0.126609	2.790778
С	5.199100	0.939715	0.781223
Н	5.032119	1.637037	-1.249641
Н	5.037669	0.223015	2.806216
Н	6.284093	0.970055	0.791258
0	0.381788	0.958608	-0.572094
Si	-0.631386	2.251836	-1.058674
С	-0.702755	3.496496	0.331764
Н	-1.207842	4.402619	-0.020305
Н	-1.255640	3.123670	1.199162

Η	0.302125	3.783504	0.659730
С	0.185929	2.963412	-2.578073
Н	0.401945	2.180576	-3.312682
Н	-0.470375	3.699407	-3.054847
Н	1.126210	3.464646	-2.327014
С	-2.310241	1.546631	-1.467988
Н	-2.963196	2.341312	-1.846956
Н	-2.245861	0.774294	-2.241562
Н	-2.788535	1.115438	-0.582558

IM4

M062X/BSI SCF energy: -1465.270814 a.u. M062X/BSII SCF energy in solution: -1465.613713 a.u. M062X/BSII free energy in solution: -1465.387361 a.u.

S	0.495520	-1.231671	0.024080
0	-1.045740	0.819765	-0.833942
С	-1.006170	-0.635893	-0.804010
С	1.726230	-0.427356	-1.075108
С	-2.274146	-1.250329	-0.258409
С	-3.322615	-1.473199	-1.154304
С	-4.516794	-2.038727	-0.714331
С	-4.665018	-2.393719	0.624345
С	-3.619186	-2.177787	1.520902
С	-2.428861	-1.603704	1.084482
С	3.095217	-0.607202	-0.478685
С	3.605084	0.345383	0.408395
С	4.860328	0.169919	0.985153
С	5.614915	-0.963428	0.683661
С	5.110140	-1.919296	-0.196249
С	3.854282	-1.742471	-0.773176
Н	-0.920799	-0.868260	-1.867262
Н	-3.198365	-1.205480	-2.200397
Н	-5.325036	-2.207666	-1.418655
Н	-5.592996	-2.838713	0.970034
Н	-3.731531	-2.452928	2.564828
Н	-1.626911	-1.415648	1.791384
Н	1.658902	-0.878942	-2.068174
Н	1.473623	0.633328	-1.143755
Н	3.011772	1.226884	0.640907
Н	5.250282	0.917147	1.669464
Н	6.593884	-1.099784	1.132786

Η	5.694733	-2.802192	-0.435695
Н	3.458835	-2.485498	-1.461335
0	-1.254841	1.122494	1.414831
С	-0.856395	2.995530	-0.038848
F	-1.661020	3.414680	-1.015574
F	0.409201	3.156882	-0.446051
F	-1.053392	3.750963	1.033760
С	-1.097539	1.512895	0.293560

IM4-2a

M062X/BSI SCF energy: -2048.359802 a.u.

M062X/BSII SCF energy in solution: -2048.8799 a.u.

M062X/BSII free energy in solution: -2048.536564 a.u.

S	0.118875	-0.083139	-0.908589
0	-1.576267	-1.247499	-0.571802
С	0.556902	-1.420940	-2.076861
С	-1.016139	0.996083	-1.883788
С	1.543017	-2.328839	-1.399429
С	1.114404	-3.194329	-0.386862
С	2.037530	-3.988344	0.286555
С	3.390682	-3.925838	-0.047919
С	3.818892	-3.070077	-1.061028
С	2.897404	-2.268782	-1.732433
С	-2.082443	1.605423	-1.020152
С	-3.383057	1.096810	-1.045364
С	-4.365669	1.641091	-0.222563
С	-4.055641	2.701917	0.627006
С	-2.761011	3.218250	0.650195
С	-1.777858	2.670384	-0.169127
Н	-0.378367	-1.916208	-2.331346
Н	0.058157	-3.237111	-0.130785
Н	1.701571	-4.657242	1.072647
Н	4.109108	-4.546136	0.479016
Н	4.870594	-3.021724	-1.325527
Н	3.226632	-1.587722	-2.512279
Н	-0.356015	1.742809	-2.328456
Н	-1.434503	0.360086	-2.667041
Н	-3.615821	0.258945	-1.695914
Н	-5.372167	1.234565	-0.243723
Н	-4.820796	3.125715	1.270055
Н	-2.515583	4.046925	1.306960

Н	-0.766269	3.070329	-0.146459
0	-1.717456	-0.469236	1.554160
С	-3.218548	-2.166032	0.795982
F	-3.704508	-2.153250	2.037270
F	-2.820536	-3.418237	0.523090
F	-4.226317	-1.876170	-0.041686
С	-2.051318	-1.170975	0.619322
Н	0.980431	-0.918856	-2.948684
С	1.903774	3.003858	-1.071079
С	1.919487	1.778753	-0.540822
С	2.325755	1.460510	0.843370
С	2.827397	0.181182	1.115072
С	2.196219	2.381489	1.891028
С	3.206117	-0.165871	2.407917
Н	2.926250	-0.540084	0.308828
С	2.583999	2.030054	3.180291
Н	1.779760	3.365657	1.705320
С	3.089219	0.758047	3.444677
Н	3.593455	-1.161690	2.601272
Н	2.476611	2.751568	3.984191
Н	3.382691	0.486901	4.453889
0	1.591575	0.750785	-1.392075
F	2.295865	4.103308	-0.459114
F	1.530468	3.261921	-2.310753

$IM4-2b^+$

M062X/BSI SCF energy: -1323.835853 a.u. M062X/BSII SCF energy in solution: -1324.096692 a.u. M062X/BSII free energy in solution: -1323.759584 a.u.

S	1.142417	-1.312970	0.059900
С	2.649719	-1.248875	-0.984031
С	0.103587	-2.464191	-0.942553
С	3.652974	-0.296775	-0.398622
С	4.399919	-0.655944	0.727885
С	5.326310	0.234399	1.261643
С	5.512126	1.486163	0.674196
С	4.768472	1.847797	-0.446770
С	3.837347	0.959530	-0.980809
С	-1.342834	-2.339938	-0.567148
С	-1.834181	-2.981846	0.572669
С	-3.159995	-2.807061	0.953520

С	-4.003807	-1.990905	0.198337	С	-1.615248	-1.925354	0.359260
С	-3.520688	-1.357877	-0.944158	С	-2.708167	-2.223898	-0.470583
С	-2.192009	-1.531118	-1.327123	С	-3.989325	-2.296870	0.063512
Н	3.007125	-2.283078	-0.991143	С	-4.188588	-2.069146	1.424708
Н	4.258920	-1.635070	1.179239	С	-3.107993	-1.759016	2.253531
Н	5.906992	-0.049295	2.133435	С	-1.827222	-1.676412	1.726215
Н	6.237866	2.177918	1.089978	С	3.637068	-1.467383	-0.332145
Н	4.912507	2.819662	-0.907769	С	4.023696	-0.644458	-1.392200
Н	3.257233	1.233010	-1.858264	С	5.115044	0.211508	-1.256909
Н	0.289697	-2.204971	-1.988262	С	5.823195	0.256581	-0.057988
Н	0.516233	-3.452157	-0.722000	С	5.449169	-0.571610	1.000073
Н	-1.171924	-3.609002	1.164152	С	4.366302	-1.435123	0.861010
Н	-3.537300	-3.305455	1.840876	Н	-0.200062	-2.283451	-1.247457
Н	-5.037637	-1.853027	0.499450	Н	-2.538217	-2.396407	-1.530041
Н	-4.173878	-0.725913	-1.537675	Н	-4.830797	-2.530720	-0.580352
Н	-1.812310	-1.040800	-2.220226	Н	-5.188485	-2.131995	1.842489
Н	2.334861	-0.962624	-1.990631	Н	-3.268060	-1.577277	3.311007
С	0.383960	0.283826	-0.325048	Н	-0.993550	-1.430336	2.378077
С	-0.766569	0.533369	0.648523	Н	2.668940	-3.393824	-0.201186
С	-1.718680	1.630286	0.332365	Н	2.015468	-2.337070	-1.471459
С	-2.885224	1.707743	1.102946	Н	3.463957	-0.670258	-2.322616
С	-1.488825	2.557593	-0.688942	Н	5.407038	0.846237	-2.087720
С	-3.818007	2.704374	0.851549	Н	6.666739	0.931098	0.050622
Н	-3.046563	0.972898	1.885091	Н	6.003301	-0.547069	1.933138
С	-2.422038	3.562831	-0.929206	Н	4.081580	-2.082238	1.687913
Н	-0.584614	2.511081	-1.288496	С	-0.094059	0.055086	-1.413032
С	-3.584583	3.633886	-0.163757	С	-0.867338	0.759532	-0.511649
Н	-4.726297	2.759164	1.442654	F	1.226169	0.153685	-1.359333
Н	-2.242912	4.289370	-1.714803	F	-0.492337	-0.339988	-2.607634
Н	-4.312693	4.415248	-0.358228	С	-2.314395	0.924169	-0.606464
0	-0.871611	-0.148365	1.648188	С	-3.005964	1.288274	0.560560
Н	0.075546	0.289931	-1.374137	С	-3.021061	0.755697	-1.810795
Н	1.161525	1.043957	-0.179944	С	-4.383956	1.456321	0.527678
				Н	-2.456943	1.426920	1.485907
TS4-	2a ⁺			С	-4.396718	0.940051	-1.834720
M062	2X/BSI SCF e	energy: -1930.	809069 a.u.	Н	-2.503628	0.497119	-2.725427
M062	2X/BSII SCF	energy in solu	tion: -1931.195097	С	-5.081230	1.279090	-0.667421
a.u.				Н	-4.916186	1.725206	1.434179
M062	2X/BSII free	energy in solu	tion: -1930.780043	Н	-4.936515	0.815447	-2.767445
a.u.				Н	-6.158168	1.413128	-0.690883
				0	-0.266665	1.129344	0.606628
S	1.106473	-1.852138	0.715840	Si	0.895104	2.414060	0.795302
С	-0.296020	-1.850942	-0.250445	С	0.958800	3.309089	-0.837759
С	2.432896	-2.359606	-0.462938	Н	1.563521	4.216332	-0.732787

Н	1.407649	2.699111	-1.627532
Н	-0.042172	3.614767	-1.160741
С	0.158283	3.447427	2.155238
Н	0.003371	2.849905	3.059284
Н	0.823136	4.279125	2.410663
Н	-0.806132	3.865721	1.850286
С	2.511695	1.635838	1.277778
Н	3.250048	2.416272	1.493801
Н	2.402911	1.018239	2.174735
Н	2.901886	1.012293	0.468453

TS4A-2a

M062X/BSI SCF energy: -2983.578737 a.u. M062X/BSII SCF energy in solution: -2984.334588 a.u. M062X/BSII free energy in solution: -2983.856598

a.u.

S	-1.003025	0.947576	0.423039
0	-1.594458	2.563636	0.161847
С	0.068618	1.430797	1.860721
С	-2.541240	0.491903	1.293204
С	0.966176	2.564523	1.473032
С	0.560357	3.880626	1.717660
С	1.341582	4.946585	1.277263
С	2.536610	4.702311	0.602127
С	2.952039	3.391436	0.373102
С	2.167952	2.324959	0.802610
С	-3.569721	-0.100391	0.368357
С	-3.898767	0.514998	-0.843302
С	-4.840755	-0.065560	-1.687743
С	-5.476858	-1.249177	-1.318047
С	-5.172262	-1.849470	-0.097669
С	-4.215505	-1.281426	0.739570
Η	-0.631589	1.699203	2.656716
Η	-0.373601	4.066417	2.240975
Η	1.016121	5.965440	1.462528
Н	3.144503	5.533818	0.259109
Η	3.885209	3.191827	-0.144380
Η	2.502644	1.311413	0.606848
Н	-2.240694	-0.201993	2.079940
Н	-2.864184	1.427436	1.760268
Η	-3.431772	1.453324	-1.132329
Н	-5.080408	0.412217	-2.632263

Н	-6.209500	-1.701156	-1.979387
Н	-5.665312	-2.771071	0.195725
Н	-3.954085	-1.765480	1.677157
0	-0.091115	2.848007	-1.521249
С	-1.698361	4.584052	-1.019684
F	-1.053097	5.313771	-1.916500
F	-1.755044	5.253511	0.129938
F	-2.946694	4.373930	-1.444457
С	-0.992612	3.228991	-0.836831
Н	0.573482	0.494480	2.098863
С	-1.187675	-2.394563	2.331206
С	-0.984727	-2.222180	1.019711
С	-1.686759	-3.006951	-0.024286
С	-1.768390	-2.448316	-1.306910
С	-2.278991	-4.253900	0.211387
С	-2.457881	-3.103039	-2.322067
Н	-1.287796	-1.493065	-1.498372
С	-2.964055	-4.907879	-0.809920
Н	-2.198764	-4.724481	1.184527
С	-3.064957	-4.334175	-2.075831
Н	-2.524011	-2.649434	-3.306548
Н	-3.417014	-5.875236	-0.614613
Н	-3.603236	-4.846484	-2.867090
0	-0.163266	-1.224368	0.625131
Si	1.750711	-1.630506	0.068790
С	1.532944	-0.449206	-1.391024
Н	2.286229	0.342410	-1.392828
Н	1.711911	-1.054567	-2.288827
Н	0.546622	0.001412	-1.492261
С	2.363570	-1.274430	1.822324
Н	3.142028	-2.012940	2.045970
Н	2.830111	-0.291202	1.927217
Н	1.579667	-1.372571	2.574948
С	1.425053	-3.459484	-0.243768
Н	2.382481	-3.971788	-0.362677
Н	0.888010	-3.934583	0.581701
Н	0.840265	-3.620076	-1.154477
0	4.399531	0.192609	-0.108052
0	3.587219	-1.886338	-0.505937
С	5.849371	-1.508094	-0.933119
F	6.359168	-2.330490	-0.001988
F	6.727951	-0.524343	-1.131234
F	5.748199	-2.204996	-2.071298
С	4.480658	-0.969422	-0.469138

F	-2.011040	-3.264934	2.898228	С	-5.118315	0.880898	0.573304
F	-0.634403	-1.616102	3.258463	С	1.280721	0.979980	-1.339234
				С	0.549812	-0.184800	-1.108563
TS4	-2a'			F	0.854089	2.161137	-0.910183
M06	52X/BSI SCF	energy: -2456.9	944127 a.u.	F	2.155155	1.151131	-2.343688
M06	52X/BSII SCF	energy in solu	tion: -2457.535285	С	1.078269	-1.492788	-1.580986
a.u.				С	0.276310	-2.617469	-1.331114
M06	52X/BSII free	energy in solu	tion: -2457.099008	С	2.363995	-1.689343	-2.108822
a.u.				С	0.741223	-3.895324	-1.594288
				Н	-0.703792	-2.458708	-0.894207
S	2.739249	0.318221	0.762893	С	2.828596	-2.977648	-2.374125
0	-4.494556	0.323204	-0.418650	Н	3.012074	-0.846832	-2.321116
С	3.207343	-1.264656	0.773988	С	2.027520	-4.081285	-2.109441
С	4.176900	1.141815	-0.036187	Н	0.111420	-4.753428	-1.382046
С	2.431898	-2.336428	1.352352	Н	3.825218	-3.112493	-2.783273
С	3.021775	-3.609723	1.429609	Н	2.396087	-5.083297	-2.305914
С	2.327044	-4.672942	1.993700	0	-0.415691	-0.162765	-0.279499
С	1.038155	-4.479458	2.483175	Si	-2.678186	0.157174	-0.378530
С	0.434807	-3.221168	2.390966	С	-2.213042	1.972034	-0.319805
С	1.114366	-2.159258	1.819491	Н	-3.092585	2.620749	-0.345980
С	4.150155	2.615133	0.261870	Н	-1.646445	2.195741	0.587311
С	3.660367	3.520430	-0.680357	Н	-1.573235	2.215921	-1.171595
С	3.634013	4.882230	-0.391209	С	-2.644537	-0.666077	-2.065475
С	4.090696	5.343989	0.839895	Н	-3.067454	-1.675175	-2.005888
С	4.576425	4.442448	1.785815	Н	-3.283846	-0.096632	-2.748036
С	4.605224	3.082878	1.497894	Н	-1.649405	-0.740006	-2.507723
Н	4.156048	-1.511221	0.302652	С	-2.540336	-0.935507	1.146865
Н	4.030321	-3.752873	1.051707	Н	-3.519324	-1.222682	1.538929
Н	2.792191	-5.651487	2.052020	Н	-1.977313	-1.840884	0.902898
Н	0.494839	-5.309460	2.923494	Н	-1.997796	-0.410394	1.938694
Н	-0.580634	-3.075950	2.746026				
Н	0.601895	-1.211130	1.667625	TS4	-2b		
Н	5.069205	0.661649	0.371644	M06	62X/BSI SCF e	energy: -2259.	028458 a.u.
Н	4.105831	0.941562	-1.107508	M06	52X/BSII SCF	energy in solu	tion: -2259.528328
Н	3.300012	3.157774	-1.637867	a.u.			
Н	3.253293	5.581354	-1.128455	M06	52X/BSII free	energy in solu	tion: -2259.054906
Н	4.067919	6.405564	1.064309	a.u.			
Н	4.934175	4.799599	2.745985				
Н	4.984070	2.376876	2.233174	S	0.449233	0.747236	-1.261665
0	-4.656809	1.333468	1.596193	0	1.412421	-2.034371	-1.959143
С	-6.633262	0.934402	0.304968	С	1.359078	2.191036	-1.947098
F	-6.890592	1.714838	-0.752511	С	-0.632781	0.328437	-2.689170
F	-7.296519	1.422172	1.350460	С	2.477948	2.564059	-1.020543
F	-7.115070	-0.285005	0.037721	С	3.671816	1.837249	-1.052499

С	4.689703	2.128189	-0.150994
С	4.520011	3.147088	0.787213
С	3.335316	3.880091	0.815860
С	2.313188	3.589507	-0.086110
С	-1.932488	-0.286208	-2.257639
С	-1.961212	-1.553368	-1.662007
С	-3.176053	-2.102795	-1.267429
С	-4.365340	-1.400962	-1.473922
С	-4.339344	-0.147228	-2.079585
С	-3.123251	0.413030	-2.465512
Н	1.722443	1.823959	-2.911810
Н	3.791751	1.031917	-1.773636
Н	5.612758	1.557961	-0.176338
Н	5.313827	3.371031	1.492834
Н	3.204978	4.677086	1.540695
Н	1.388045	4.160296	-0.070013
Н	-0.785873	1.257638	-3.243796
Н	-0.006481	-0.363359	-3.258640
Н	-1.027660	-2.084560	-1.499876
Н	-3.197744	-3.081600	-0.798115
Н	-5.311174	-1.833137	-1.161325
Н	-5.262549	0.399377	-2.244631
Н	-3.094747	1.395208	-2.930363
0	0.704271	-1.896827	0.167996
С	2.950633	-2.631032	-0.301652
F	3.103104	-2.710012	1.027177
F	3.907266	-1.805531	-0.762563
F	3.199759	-3.846085	-0.806491
С	1.549198	-2.134148	-0.739502
Н	0.631490	2.990796	-2.107599
С	-0.698178	1.595189	-0.133764
С	-1.485699	0.602590	0.692849
С	-2.916119	0.748464	0.914061
С	-3.587522	-0.279629	1.603338
С	-3.622539	1.892446	0.502365
С	-4.942920	-0.165489	1.868151
Н	-3.039247	-1.163771	1.910977
С	-4.975989	2.003871	0.786515
Н	-3.128938	2.704940	-0.017930
С	-5.635763	0.976072	1.461245
Н	-5.461114	-0.963020	2.389088
Н	-5.519147	2.890887	0.479754
Н	-6.696903	1.065736	1.672253
0	-0.890971	-0.347434	1.247418

Si	0.682491	-0.797575	2.087572
С	2.239252	0.092522	1.547110
Η	2.968828	-0.029697	2.358138
Н	2.708075	-0.227053	0.618993
Н	2.036461	1.169462	1.486005
С	0.151744	0.301783	3.551515
Н	-0.778096	-0.054322	4.009612
Н	0.930038	0.279200	4.324364
Η	0.004030	1.349580	3.263156
С	0.550101	-2.510640	2.814483
Η	0.762207	-2.480883	3.887506
Η	-0.486483	-2.847515	2.694162
Η	1.198430	-3.236168	2.326529
Н	-1.325272	2.264918	-0.722126
Н	-0.068200	2.188326	0.545810

$IM5-2a^+$

M062X/BSI SCF energy: -1930.849925 a.u. M062X/BSII SCF energy in solution: -1931.234727 a.u. M062X/BSII free energy in solution: -1930.817604

a.u.

S	-0.655148	1.079427	-1.302997
С	-0.788396	0.130347	0.256087
С	-2.323599	0.745828	-1.983150
С	-1.141140	-1.334448	0.105783
С	-1.810192	-1.955176	1.166559
С	-2.122578	-3.309762	1.104546
С	-1.784290	-4.052864	-0.026470
С	-1.136514	-3.434895	-1.093729
С	-0.813035	-2.081137	-1.027532
С	-3.435803	1.019538	-1.007508
С	-4.216278	-0.034467	-0.527739
С	-5.247890	0.205213	0.380005
С	-5.503612	1.501635	0.818126
С	-4.724473	2.559128	0.346065
С	-3.695928	2.319196	-0.559539
Н	-1.555775	0.612388	0.875918
Н	-2.083824	-1.371204	2.041380
Н	-2.636995	-3.783453	1.934581
Η	-2.033905	-5.108079	-0.078125
Н	-0.876386	-4.006243	-1.979103
Н	-0.297945	-1.605009	-1.857463

Н	-2.381014	1.407973	-2.851908	С	2.128561	-0.472131	-1.118694
Н	-2.362018	-0.286828	-2.337530	С	-0.490665	-1.103435	-1.089555
Н	-4.014489	-1.047004	-0.869377	С	3.445691	-0.615223	-0.408811
Н	-5.849208	-0.622781	0.742912	С	4.207333	-1.771130	-0.598365
Н	-6.305435	1.689791	1.525347	С	5.433439	-1.919304	0.044877
Н	-4.921380	3.572403	0.682758	С	5.904507	-0.911183	0.884066
Н	-3.087636	3.143381	-0.924649	С	5.145039	0.241434	1.080104
С	0.500514	0.360270	1.066416	С	3.917394	0.391036	0.438954
С	1.805862	0.015554	0.322868	С	-1.801710	-1.631683	-0.724829
F	0.571365	1.674416	1.398302	С	-1.996224	-2.496130	0.366292
F	0.442001	-0.329856	2.227309	С	-3.269188	-2.947380	0.685890
С	2.272836	-1.324149	0.106974	С	-4.370216	-2.548942	-0.075809
С	3.330548	-1.503409	-0.816608	С	-4.186413	-1.702492	-1.166874
С	1.728427	-2.441564	0.780090	С	-2.912051	-1.247515	-1.491854
С	3.814356	-2.771159	-1.071602	Н	2.090529	-1.094449	-2.014284
Н	3.741314	-0.642419	-1.333339	Н	3.838985	-2.551745	-1.259389
С	2.234638	-3.704922	0.522460	Н	6.020743	-2.818621	-0.113003
Н	0.932268	-2.327696	1.503415	Н	6.862202	-1.023261	1.383127
С	3.266308	-3.870718	-0.401928	Н	5.510401	1.027429	1.734001
Н	4.613146	-2.912767	-1.790562	Н	3.308026	1.275386	0.595426
Н	1.820348	-4.563141	1.039549	Н	-0.385602	-0.594526	-2.045918
Н	3.650119	-4.866169	-0.603540	Н	-1.147354	-2.822150	0.962006
0	2.446836	0.978003	-0.177131	Н	-3.405279	-3.616105	1.530074
Si	2.901075	2.711236	0.055843	Н	-5.364318	-2.902445	0.179005
С	3.258927	2.861906	1.870172	Н	-5.037524	-1.390969	-1.764466
Н	3.900414	3.735316	2.030326	Н	-2.768279	-0.576296	-2.334313
Н	2.351174	2.985738	2.463571	Н	1.899133	0.563479	-1.373945
Н	3.801140	1.982457	2.232140	С	0.547509	2.621840	-0.537243
С	4.424903	2.731231	-1.001047	С	0.046705	1.708848	0.322432
Н	4.188280	2.472065	-2.037646	С	-1.420107	1.576980	0.567719
Н	4.869473	3.731985	-0.995790	С	-1.808443	0.786897	1.656755
Н	5.172508	2.025535	-0.626243	С	-2.420379	2.145193	-0.237180
С	1.550701	3.789552	-0.609349	С	-3.154537	0.573076	1.942798
Н	1.909113	4.825083	-0.560982	Н	-1.033561	0.332623	2.266126
Н	1.338172	3.561575	-1.657499	С	-3.764556	1.933997	0.055260
Н	0.625135	3.719546	-0.035138	Н	-2.159487	2.737372	-1.105810
IM5	-2a			С	-4.140769	1.148088	1.144687
M06	52X/BSI SCF e	energy: -1521.7	714138 a.u.	Н	-3.431842	-0.048247	2.789462
M06	52X/BSII SCF	energy in solu	tion: -1522.055636	Н	-4.523580	2.375202	-0.584142
a.u.				Н	-5.190972	0.977806	1.361187
M06	52X/BSII free	energy in solu	tion: -1521.750527	0	0.875258	0.896189	0.951252
a.u.				F	-0.126174	3.568586	-1.182368
				F	1.853142	2.772950	-0.759535

IM5-2b

M062X/BSI SCF energy: -1850.007659 a.u. M062X/BSII SCF energy in solution: -1850.46091 a.u.

M062X/BSII free energy in solution: -1850.103227 a.u.

S	-0.076549	-0.032327	-0.237850
С	-0.668645	-0.230063	1.485980
С	-0.078509	-1.731866	-0.961790
С	-0.842874	1.135787	2.091005
С	-1.928756	1.928741	1.702023
С	-2.101616	3.190912	2.260595
С	-1.194360	3.668831	3.207473
С	-0.111005	2.882737	3.592864
С	0.067549	1.618235	3.033082
С	0.012680	-2.827369	0.051893
С	1.251943	-3.344106	0.440756
С	1.319436	-4.354313	1.398094
С	0.150063	-4.855090	1.967147
С	-1.089166	-4.347199	1.577040
С	-1.158867	-3.335492	0.624253
Н	-1.618503	-0.751633	1.376575
Н	-2.626955	1.541326	0.963181
Н	-2.947229	3.802058	1.960506
Н	-1.332880	4.652952	3.644412
Н	0.595963	3.252085	4.329021
Н	0.909404	0.998915	3.332483
Н	-1.010759	-1.733694	-1.529600
Н	0.770537	-1.715693	-1.648719
Н	2.160724	-2.964042	-0.019809
Н	2.284165	-4.753818	1.694586
Н	0.204343	-5.644508	2.710513
Н	-2.001316	-4.741082	2.014238
Н	-2.116547	-2.922295	0.315860
Н	0.055736	-0.845045	2.024977
С	1.679766	0.207283	0.136367
С	2.450188	0.475172	-1.145613
С	3.905516	0.756771	-1.032279
С	4.619398	1.016914	-2.208398
С	4.564344	0.764515	0.201881
С	5.981171	1.282490	-2.149415
Н	4.092698	1.006472	-3.157188
С	5.929387	1.029068	0.256028

Н	4.023668	0.565115	1.121936
С	6.636124	1.287889	-0.916975
Н	6.533975	1.485511	-3.060884
Н	6.440817	1.034162	1.212905
Н	7.700842	1.495224	-0.871849
0	1.873447	0.452259	-2.217328
Н	2.068648	-0.669642	0.665677
Н	1.741848	1.069612	0.809826
0	-2.874690	-0.500795	-0.396763
0	-2.485884	-0.378877	-2.622871
С	-4.351356	0.767451	-1.693972
F	-5.457311	0.129864	-1.268893
F	-4.592921	1.186729	-2.941894
F	-4.225407	1.870264	-0.927028
С	-3.096847	-0.138489	-1.575876

IM6-2a

a.u.

M062X/BSI SCF energy: -2457.028177 a.u. M062X/BSII SCF energy in solution: -2457.603372 a.u. M062X/BSII free energy in solution: -2457.161629

S	-1.012625	-1.848822	-1.266015
С	-0.725404	-0.909922	0.285440
С	-1.708134	-0.520113	-2.308329
С	-1.969739	-0.766140	1.135830
С	-2.503036	0.510457	1.323543
С	-3.682682	0.678546	2.047159
С	-4.325246	-0.426408	2.601173
С	-3.788352	-1.701976	2.424094
С	-2.619644	-1.873709	1.688630
С	-3.066467	-0.002566	-1.895248
С	-4.112077	-0.862877	-1.546833
С	-5.349445	-0.352623	-1.165600
С	-5.561632	1.026887	-1.136996
С	-4.527881	1.888816	-1.493341
С	-3.285338	1.376468	-1.866460
Н	-0.365310	0.081411	-0.013378
Н	-2.004921	1.360988	0.863288
Н	-4.102331	1.672544	2.170645
Н	-5.245254	-0.296572	3.162929
Н	-4.286371	-2.566243	2.852768
Н	-2.219530	-2.871721	1.535128

Η	-0.986175	0.299335	-2.335334
Н	-1.752305	-0.977185	-3.302902
Н	-3.946027	-1.937145	-1.551196
Н	-6.149823	-1.031342	-0.885731
Н	-6.525731	1.423356	-0.833002
Н	-4.682543	2.963538	-1.468640
Н	-2.461677	2.044926	-2.099106
С	0.402353	-1.593510	1.064196
С	1.828977	-1.322657	0.533299
F	0.398466	-1.149549	2.348746
F	0.205825	-2.938038	1.137804
С	2.465671	-2.038611	-0.548357
С	3.585185	-1.419615	-1.143979
С	2.028582	-3.296595	-1.008722
С	4.247721	-2.047180	-2.184166
Н	3.890173	-0.436468	-0.803502
С	2.714109	-3.921442	-2.039046
Н	1.183965	-3.794388	-0.554917
С	3.815124	-3.299483	-2.627816
Н	5.096729	-1.564781	-2.655524
Н	2.387718	-4.895511	-2.385703
Н	4.338536	-3.792339	-3.441188
0	2.484906	-0.433083	1.120565
Si	2.415672	0.972492	2.233345
С	2.900771	0.201459	3.850498
Н	3.027591	0.985766	4.604550
Н	2.135308	-0.492867	4.207122
Н	3.849154	-0.336545	3.761623
С	3.761199	1.991078	1.463371
Н	3.584876	2.096942	0.390287
Н	3.803543	2.989051	1.910270
Η	4.731908	1.507077	1.610131
С	0.746312	1.783056	2.288513
Η	0.891844	2.756362	2.774045
Н	0.297616	1.971151	1.310329
Н	0.044727	1.206840	2.896107
0	-0.372154	2.149820	-0.942698
0	1.561975	0.977138	-1.003957
С	1.628162	3.344476	-1.185331
F	1.696462	3.945486	0.022678
F	1.020890	4.204608	-2.014267
F	2.889117	3.198758	-1.619870
С	0.859616	2.003806	-1.054988

IM7-2a

M062X/BSI SCF energy: -1521.700206 a.u. M062X/BSII SCF energy in solution: -1522.047032 a.u.

M062X/BSII free energy in solution: -1521.743856 a.u.

S	1.397734	0.893402	0.233078
С	-0.078849	0.984604	-0.832510
С	2.614224	0.427054	-1.055030
С	-1.215702	1.659614	-0.103033
С	-1.976772	2.608633	-0.787498
С	-3.073360	3.209434	-0.173733
С	-3.417875	2.859817	1.130295
С	-2.657679	1.916589	1.821167
С	-1.557730	1.321708	1.209657
С	3.965534	0.249964	-0.418376
С	4.860223	1.321432	-0.356002
С	6.104768	1.169276	0.251322
С	6.464124	-0.057097	0.807364
С	5.573813	-1.128926	0.755274
С	4.330147	-0.975241	0.147376
Н	0.189368	1.574102	-1.712515
н	-1.711600	2.870202	-1.808641
Н	-3.657830	3.947478	-0.714204
н	-4.275071	3.322838	1.609197
Н	-2.923248	1.641544	2.837208
Н	-0.978753	0.575072	1.748212
Н	2.268583	-0.496408	-1.522717
Н	2.640215	1.223007	-1.804328
Н	4.577013	2.276684	-0.791394
Н	6.794076	2.007385	0.287845
Н	7.434607	-0.178204	1.278723
Н	5.849454	-2.086485	1.186714
Н	3.632880	-1.808189	0.108277
С	-0.122424	-2.205835	-0.148735
С	-0.951244	-1.248444	-0.566728
С	-2.410101	-1.255957	-0.321143
С	-3.246138	-0.618719	-1.245748
С	-2.976175	-1.852527	0.812693
С	-4.621648	-0.581301	-1.041714
Н	-2.807648	-0.143500	-2.117413
С	-4.353532	-1.817634	1.008203
Н	-2.341650	-2.322827	1.555893

С	-5.181318	-1.181344	0.085191
Н	-5.257818	-0.080326	-1.765052
Н	-4.779072	-2.276938	1.895096
Н	-6.254286	-1.148603	0.245929
0	-0.420436	-0.291524	-1.401735
F	-0.480563	-3.265472	0.551918
F	1.165766	-2.255603	-0.429912

TS5-2a

M062X/BSI SCF energy: -2457.021579 a.u. M062X/BSII SCF energy in solution: -2457.595846 a.u. M062X/BSII free energy in solution: -2457.153148 a.u.

S	-0.398661	-1.138942	-1.801956
С	-0.599117	-1.127941	0.020472
С	-1.205503	0.449983	-2.224646
С	-1.887413	-1.754734	0.514643
С	-2.700032	-1.034787	1.391978
С	-3.904915	-1.571529	1.841075
С	-4.301640	-2.839524	1.423733
С	-3.489931	-3.566352	0.552889
С	-2.290700	-3.027177	0.096534
С	-2.595184	0.612875	-1.667340
С	-3.617806	-0.284110	-1.997198
С	-4.889959	-0.133117	-1.456704
С	-5.159252	0.922290	-0.581278
С	-4.150059	1.822690	-0.255915
С	-2.871833	1.667070	-0.795477
Н	-0.536550	-0.080957	0.343336
Н	-2.401035	-0.037775	1.701012
Н	-4.535313	-0.991924	2.508589
Н	-5.241682	-3.257908	1.769951
Н	-3.795896	-4.553541	0.220749
Н	-1.677005	-3.590246	-0.600103
Н	-0.551936	1.254917	-1.887413
Н	-1.210419	0.447796	-3.319226
Н	-3.406139	-1.113044	-2.668504
Н	-5.673964	-0.838990	-1.714255
Н	-6.151698	1.037290	-0.156275
Н	-4.350929	2.646828	0.422008
Н	-2.091144	2.378925	-0.540129
С	0.612022	-1.837395	0.621999

С	1.967464	-1.147871	0.351652
F	0.486559	-1.867678	1.976371
F	0.667017	-3.129565	0.218934
С	2.995621	-1.640391	-0.553342
С	4.267896	-1.041997	-0.447803
С	2.774512	-2.643628	-1.517174
С	5.297304	-1.442705	-1.281605
Н	4.437242	-0.273967	0.298741
С	3.811400	-3.026606	-2.355404
Н	1.805947	-3.110489	-1.632271
С	5.068404	-2.433635	-2.238144
Н	6.276363	-0.985677	-1.189706
Н	3.638867	-3.791203	-3.104537
Н	5.874418	-2.744891	-2.895343
0	2.200167	-0.124287	1.017684
Si	1.642271	1.002562	2.361063
С	2.572633	-0.027515	3.646357
Н	2.497834	0.468696	4.621375
Н	2.160093	-1.035711	3.754207
Н	3.637228	-0.120489	3.405559
С	2.613213	2.591254	2.218860
Н	1.959870	3.452539	2.061980
Н	3.196829	2.749692	3.131003
Н	3.309901	2.533056	1.376483
С	-0.123456	1.007547	2.955387
Н	-0.094625	1.393957	3.982889
Н	-0.769453	1.646749	2.354103
Н	-0.524447	-0.007303	3.010910
0	-0.375983	3.544743	0.969852
0	0.812650	1.731882	0.304982
С	0.666310	3.618170	-1.128141
F	1.524021	4.622163	-0.875180
F	-0.422449	4.159287	-1.696681
F	1.242587	2.828090	-2.043223
С	0.311711	2.886053	0.191116

TS5A-2a

M062X/BSI SCF energy: -2048.332541 a.u. M062X/BSII SCF energy in solution: -2048.850666 a.u. M062X/BSII free energy in solution: -2048.51332 a.u. S 0.389337 -0.610278 -0.026104

S69

0	3.069804	0.562745	-0.314088
С	1.435882	-1.758356	0.927099
С	0.063302	0.615630	1.125242
С	1.774049	-2.964529	0.101431
С	2.855874	-2.918095	-0.782216
С	3.172877	-4.032038	-1.554310
С	2.408435	-5.193501	-1.449265
С	1.324262	-5.239260	-0.574154
С	1.003877	-4.125253	0.198080
С	-0.802829	1.717773	0.600454
С	-0.385001	2.496297	-0.486173
С	-1.210870	3.493553	-0.998562
С	-2.454203	3.740577	-0.418544
С	-2.865387	2.986362	0.680094
С	-2.045910	1.981146	1.184703
Н	2.318151	-1.161918	1.168424
Н	3.443679	-2.006272	-0.855633
Н	4.017455	-3.995266	-2.235119
Н	2.658500	-6.063306	-2.048767
Н	0.728182	-6.142816	-0.493323
Н	0.157872	-4.149101	0.879530
Н	-0.237842	0.203368	2.091978
Н	1.336037	1.193841	1.301088
Н	0.588018	2.316423	-0.940361
Н	-0.880543	4.082245	-1.848899
Н	-3.099656	4.515787	-0.819598
Н	-3.833907	3.169397	1.136058
Н	-2.382488	1.367109	2.017000
0	2.335271	1.877365	1.363824
С	4.079832	2.695432	0.009820
F	3.440176	3.623663	-0.719849
F	5.097661	2.235555	-0.717005
F	4.578325	3.301760	1.090229
С	3.090984	1.572443	0.376711
Н	0.880375	-2.003006	1.833879
С	-2.307751	-1.628099	1.660205
С	-2.158249	-1.313967	0.370045
С	-3.123052	-0.574538	-0.465272
С	-2.663988	-0.004878	-1.659580
С	-4.458152	-0.374969	-0.085889
С	-3.507929	0.783485	-2.436073
Н	-1.643232	-0.176067	-1.986998
С	-5.298236	0.406370	-0.872760
Н	-4.849180	-0.824136	0.818732

С	-4.826473	0.998555	-2.042891
Н	-3.129398	1.228154	-3.351256
Н	-6.329103	0.552921	-0.565704
Н	-5.483443	1.615177	-2.647954
0	-0.960878	-1.685889	-0.202123
F	-3.362446	-1.370943	2.398979
F	-1.381552	-2.251449	2.362595

TS5-2b

M062X/BSI SCF energy: -1849.967977 a.u. M062X/BSII SCF energy in solution: -1850.423094 a.u. M062X/BSII free energy in solution: -1850.067443 a.u.

0.469472	-1.217391	1.443495
0.220590	-2.520083	0.184759
-1.589755	0.097756	1.082047
1.478490	-3.287183	-0.120313
1.931268	-4.290615	0.741440
3.102982	-4.985830	0.456962
3.836595	-4.681781	-0.690086
3.392287	-3.681693	-1.551871
2.217539	-2.987645	-1.267851
-1.229944	0.728603	-0.177701
-0.628723	1.996143	-0.183517
-0.250475	2.581316	-1.385353
-0.479520	1.912110	-2.589417
-1.108872	0.667736	-2.594148
-1.493531	0.079781	-1.393306
-0.555536	-3.166994	0.603436
1.359403	-4.527188	1.635351
3.443575	-5.767371	1.129108
4.749980	-5.225109	-0.911438
3.957153	-3.442538	-2.447593
1.863973	-2.211451	-1.942874
-2.113614	-0.848436	1.096673
-1.377270	0.589607	2.020742
-0.461102	2.512691	0.757574
0.224242	3.557651	-1.385861
-0.176104	2.368098	-3.526760
-1.305676	0.159664	-3.532569
-2.008976	-0.877099	-1.388176
-0.168894	-2.039583	-0.717856
	0.469472 0.220590 -1.589755 1.478490 1.931268 3.102982 3.836595 3.392287 2.217539 -1.229944 -0.628723 -0.250475 -0.479520 -1.108872 -1.493531 -0.555536 1.359403 3.443575 4.749980 3.957153 1.863973 -2.113614 -1.377270 -0.461102 0.224242 -0.176104 -1.305676 -2.008976 -0.168894	0.469472-1.2173910.220590-2.520083-1.5897550.0977561.478490-3.2871831.931268-4.2906153.102982-4.9858303.836595-4.6817813.392287-3.6816932.217539-2.987645-1.2299440.728603-0.6287231.996143-0.2504752.581316-0.4795201.912110-1.1088720.667736-1.4935310.079781-0.555536-3.1669941.359403-4.5271883.443575-5.7673714.749980-5.2251093.957153-3.4425381.863973-2.211451-2.113614-0.848436-1.3772700.589607-0.4611022.5126910.2242423.557651-0.1761042.368098-1.3056760.159664-2.008976-0.877099-0.168894-2.039583

1.685257	-0.215644	0.558995
1.899772	1.087038	1.303375
2.793677	2.103993	0.680839
2.986590	3.314803	1.355235
3.418552	1.884891	-0.551997
3.799092	4.297387	0.803434
2.492891	3.469871	2.309186
4.231495	2.871594	-1.101646
3.277032	0.950596	-1.087073
4.421986	4.075484	-0.425651
3.948313	5.236086	1.327222
4.715823	2.701296	-2.057627
5.057575	4.842826	-0.856879
1.349357	1.283945	2.371854
1.327303	-0.024819	-0.459939
2.631234	-0.763795	0.489195
-4.259494	1.819424	-0.634170
-3.470924	0.984974	1.316855
-4.958893	-0.336934	0.069827
-5.691782	-0.366266	-1.047107
-5.790462	-0.548019	1.102671
-4.125629	-1.402058	0.022969
-4.155384	0.976207	0.247132
	1.685257 1.899772 2.793677 2.986590 3.418552 3.799092 2.492891 4.231495 3.277032 4.421986 3.948313 4.715823 5.057575 1.349357 1.327303 2.631234 -4.259494 -3.470924 -4.958893 -5.691782 -5.790462 -4.125629 -4.125629 -4.155384	1.685257-0.2156441.8997721.0870382.7936772.1039932.9865903.3148033.4185521.8848913.7990924.2973872.4928913.4698714.2314952.8715943.2770320.9505964.4219864.0754843.9483135.2360864.7158232.7012965.0575754.8428261.327303-0.0248192.631234-0.763795-4.2594941.819424-3.4709240.984974-4.958893-0.336934-5.691782-0.366266-5.790462-0.548019-4.125629-1.402058-4.1553840.976207

TS6A-2a

M062X/BSI SCF energy: -1521.700206 a.u. M062X/BSII SCF energy in solution: -1522.047032 a.u. M062X/BSII free energy in solution: -1521.743856 a.u.

S	-0.158231	-1.905304	-0.297748
С	-1.621207	-2.167438	0.778053
С	1.090602	-2.108320	0.747877
С	-2.855665	-1.790769	0.008381
С	-3.516438	-2.738167	-0.777206
С	-4.650692	-2.378855	-1.501545
С	-5.127437	-1.070123	-1.445206

С	-4.467744	-0.121783	-0.664109
С	-3.330455	-0.477000	0.056705
С	2.480717	-1.988511	0.404345
С	2.919194	-1.606695	-0.881092
С	4.273891	-1.489926	-1.140936
С	5.206353	-1.746245	-0.129579
С	4.783888	-2.120385	1.145499
С	3.427817	-2.239430	1.415647
Н	-1.620768	-3.220463	1.067282
Н	-3.143259	-3.758711	-0.814730
Η	-5.162959	-3.120571	-2.106417
Η	-6.012674	-0.790807	-2.008211
Н	-4.838781	0.897534	-0.617211
Н	-2.800627	0.247224	0.668605
Н	0.841471	-2.343839	1.781879
Н	2.199720	-1.393360	-1.667353
Н	4.610623	-1.193737	-2.128665
Н	6.266882	-1.649951	-0.340204
Η	5.511312	-2.313662	1.926436
Н	3.084611	-2.527408	2.404976
Η	-1.452804	-1.508110	1.630011
С	-1.428552	2.414887	1.474159
С	-0.468667	1.680297	0.862484
С	0.516881	2.355443	-0.046327
С	1.696703	1.649206	-0.311702
С	0.331022	3.597073	-0.672173
С	2.672376	2.166154	-1.158571
Η	1.824374	0.684582	0.168183
С	1.305582	4.112525	-1.523475
Η	-0.580975	4.160088	-0.511548
С	2.481135	3.404404	-1.770147
Η	3.581268	1.599717	-1.344891
Η	1.140276	5.072151	-2.004959
Η	3.235245	3.811040	-2.437102
0	-0.365990	0.400000	1.045059
F	-1.610542	3.745165	1.418183
F	-2.338251	1.878735	2.305253

7 KIE studies and control experiments

To a solution of dibenzyl sulfoxide- $d_2 d_2$ -1a (116 mg, 0.5 mmol) and difluoroenol silyl ether 2a (171 mg, 0.75 mmol) in MeCN (2.5 mL) was added trifluoroacetic anhydride (105 µL, 0.75 mmol) at -40 °C. After stirring for 5 min, the reaction mixture was gradually warmed to 0 °C and kept stirring for 12 h. After that, the mixture was passed through a short silica gel column and concentrated under vacuum. The obtained residue was further purified by flash chromatography on silica gel affording a mixture of d_2 -3aa and d_1 -3aa in 87% yield. The ratio of d_2 -3aa and d_1 -3aa (82/12) was determined by ¹H NMR as shown blow.

11.0 10.5

10.0 9.5 9.0 8.5

6.5 6.0

3.0 2.5 2.0

1.5 1.0

4.5 4.0 3.5

5.5 5.0 f1 (ppm)

To a mixture of dibenzyl sulfoxide **1a** (115 mg, 0.5 mmol) or dibenzyl sulfoxide- $d_4 d_4$ -**1a** (117 mg, 0.5 mmol) in MeCN (2.5 mL) was added internal standard trifluorotoluene (73 mg, 0.5 mmol) and trifluoroacetic anhydride (210 µL, 1.5 mmol) at -40 °C. After that, 0.1 mL of reaction mixtures were taken by syringes at the indicated time, and quickly quenched with Et₃N in CDCl₃ (0.5 mL, 1 M). The obtained samples were then brought for ¹⁹F-NMR analysis. Above experiment was repeated for three times. The resulting data of three experiments was then taken an average for further analysis on Microsoft Excel. The $k_{\rm H} = 8.0 \times 10^{-4}$ min⁻¹ and $k_{\rm D} = 6.0 \times 10^{-4}$ min⁻¹ were determined by a linear regression model. As the result, the $k_{\rm H}/k_{\rm D}$ could be calculated from the equation $8.0 \times 10^{-4}/6.0 \times 10^{-4} = 1.33$.

Reacti	on with 1a				
Time (min)	NMR yield (%)	NMR yield (%)	NMR yield (%)	NMR yield (%)	[Product] (M)
	1 st trial	2 nd trial	3 rd trial	AVG of 3 trials	
15	22	25	20	22	0.044
30	26	25	25	25	0.05
45	34	31	37	34	0.068
60	41	44	46	44	0.088
90	51	52	55	53	0.106
120	64	67	62	64	0.128

Reaction with d₄-1a

Time (min)	NMR yield (%)	NMR yield (%)	NMR yield (%)	NMR yield (%)	[Product] (M)
	1 st trial	2 nd trial	3 rd trial	AVG of 3 trials	
15	14	11	13	13	0.026
30	18	14	13	15	0.03
45	22	20	22	21	0.042
60	24	27	29	27	0.054
90	36	33	40	36	0.072
120	45	42	45	44	0.088

7.2 Control experiments

To a solution of dibenzyl sulfoxide **1a** (0.1 mmol in 0.5 mL of CD₃CN) in NMR tube was added trifluoroacetic anhydride TFAA (21 μ L, 0.15 mmol) at – 40 °C. After shaking for 5 min, enol silyl ether **2b** (28 mg, 0.15 mmol) was added, and the resulting tube was quickly inserted into NMR for intermediate determination. After that, the mixture was warmed to 0 °C and then kept at the same temperature for 12 h. During the whole reaction process, no expected product **3ba** was determined. Insteadly, sulfide **6** was obtained in 76% yield. ¹H NMR (**600 MHz, CDCl₃**): δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.65 – 7.60 (m, 1H), 7.48 – 7.44 (m, 2H), 7.49 – 5.32 (m, 4H), 7.30 – 7.27 (m, 1H), 3.79 (s, 2 H), 3.60 (s, 2 H).

The NMR spectra of title compound is consisitant with the data reported in literature (Dias, R. M. P.; Burtoloso, A. C. B. *Org. Lett.* **2016**, *18*, 3034).

8 NMR spectra

ZWZ-08-46B(1c) 1H NMR

ZWZ-08-48B(1h) 1H NMR

10 II III				- 14 - 14									6 I.C. 1		90 - 90 SG							C. U. C.
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

индерский самональная самонал

-7.26

ZYL-01-25-1(1w) 1H NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

88

-10

ZWZ-08-99C(1aa) 1H

90 80

60 50 40 30 20 10

70

210 200 190 180 170 160 150 140 130 120

--7.26

90

0 -10

13CNWK 190.043 132.000 133.26 132.000 133.26 132.000 133.26 113.000 133.26 113.000 133.26 113.000 133.26 113.000 133.26 111.000 128.87 111.000 128.48	₹77.16 76.95	€52.64 €52.34 52.34	~32.69	21.82	
---	-----------------	---------------------------	--------	-------	--

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 _-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

ZM2-08-20C1(5q) 0.02 (2000) 13CNM& 0.02 (2000) 13CNM& 0.02 (2000) 13CNM& 0.02 (2000) 0.02	77.37 77.37 77.37 77.37 77.37 77.37	51.96 51.80 51.65 31.02	21.79 13.63
--	--	----------------------------------	----------------

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

ZWZ-08-50H-1(2) 13CNMR 61 28 - 0.61 28 - 0.61 28 - 0.61 28 - 0.61	135.41 135.40 133.409 133.400 133.400 133.400 130.002 130.002 130.002 112.855 112.855 112.855 112.83577 112.83577 112.83577 112.83577 112.835777 112.835777 112.8357777 112.835777777777777777777777777777777777777	77.37 77.16 76.95	51.60 51.45 51.30	36.70	$<^{23.40}_{23.01}$
--	--	-------------------------	-------------------------	-------	---------------------

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

--2.13

0.88

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 _-100 _-110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

ZWZ-08-95E-1(2v) 9 9 9 13CNMR 8888	<167.44 <167.39	136.29 136.4 130.28 130.28 130.28 130.24 129.43 128.82 115.88 128.82 115.88 128.82 115.88 115	77.37 77.16 77.16	62.07	49.23 49.06 48.91	37.09	14.05
---------------------------------------	--------------------	--	-------------------------	-------	-------------------------	-------	-------

ZYG-03-87(2ay) 1H NMR	8.04 7.55 7.55 7.55 7.55 7.75 7.75 7.75 7.7	5,18 √5,15 √5,12
--------------------------	---	------------------------

(1) 10 (1

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

ZWZ-09-08-1(2am) 1H NMR

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

ZWZ-08-20D-1(2am) 15 0.06 13CNMR 15 0.06 1 13CNMR 06 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	140.07 137.98 133.35 132.35 12.35 12.35 12.35 12.35 12.35 12.35 12.35 12	(77.37 (77.16 76.95	51.18 51.02 50.87 35.60 34.39
--	---	---------------------------	---

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

																	· · ·					
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

ZWZ-08-93E-1(2an) F19CPD

C94.97 C95.46 C106.31 C106.80

代表の 代表の

137.65 137.65 137.36 137.36 137.36 137.36 137.36 128.78 128.78 128.62 128.62 127.56 127.56 122.138 127.56 122.133 127.56 122.133 127.56 122.133 127.37 127.37 127.37 127.37 127.36 122.133 127.37 127.37 127.37 127.35 127.37 127.35 127.37 127.35 127.37 127.35 127.35 127.37 127.35 127.

ZYG-03-75 F19CPD

Biotin 1H

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210