Electronic Supplementary Information for

Asymmetric Double-Conjugate Addition of Alkenylboronic Acid to

Dienones Catalyzed by Chiral Diols

Ping Zhang, Guo-Li Chai,* En-Ze Yao, Li-Xiao Guo, Xue-Yu Liu, Junbiao Chang*

Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

E-mail: guolichai@126.com; changjunbiao@zzu.edu.cn

Contents:

1. General information	S2
2. Preparation of starting materials	S2
3. Detailed optimization of reaction conditions	S5
4. General procedures for the preparation of racemic products	S9
5. General procedures for the catalytic asymmetric conjugate addition of boron	ic acid
to dienones using Cat 5	S9
6. General procedures for the catalytic asymmetric conjugate addition of boron	ic acid
to dienones using Cat 9	S24
7. General procedures for scale-up reaction	S28
8. General procedures for transformation of the product 4ai	S29
9. References	S30
10. Copies of ¹ H, ¹³ C, and ¹⁹ F NMR spectra	S32
11. HPLC traces of optically active compounds	S71

1. General information

All reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques. All the reactions that require heating were heated by oil bath. All solvents and reagents were obtained from commercial sources and purified according to established procedures before use. Flash chromatography (FC) was carried out using silica gel (300-400 mesh). HPLC analysis was performed on a Dionex UltiMate 3000, ThermoScientific. Chiral HPLC data for the products could be obtained using Chiralpak IB, Chiralpak ID, Chiralpak IE, Chiralpak IF, and Chiralpak IG column. These chiral columns were purchased from Daicel Chemical Industries Ltd. Optical rotations were measured on an Insmark polarimeter (IP-digi 300). ¹H NMR spectra were measured on a 400 MHz (Bruker, AVANCE NEO) or a 600 MHz spectrometer (Bruker, AVANCE III HD). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, $\delta = 7.26$). Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet), coupling constants in hertz (Hz), integration. 13 C NMR spectra were measured at 100 MHz (Bruker, AVANCE NEO) or 150 MHz (Bruker, AVANCE III HD). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, $\delta = 77.16$). High-resolution mass spectra (HRMS) were recorded with a Bruker (Compact, TOF) mass spectrometer. All melting points were determined using a digital melting point apparatus (Shanghai INESA Physico-Optical Instrument Co., Ltd. SGW ® X-4B) and were uncorrected. TLC was performed on glass-backed silica gel plate.

(*R*)-BINOL Cat 1, (*R*)-3,3'-Br₂-BINOL Cat 2, (*R*)-3,3'-I₂-BINOL Cat 3, (*R*)-3,3'-Ph₂-BINOL Cat 4, and Cat 5 bearing two 3,5-*bis*(trifluoromethyl)phenyl groups were purchased from Daicel Chemical Industries Ltd. (*S*,*S*)-1,8,9,16tetrahydroxytetraphenylene Cat 6 [(*S*,*S*)-THTP] and (*S*)-1,16-dihydroxytetraphenylene Cat 7 [(*S*)-DHTP] were prepared according to the literature.¹ Chiral ligand (*S*)-2,15dichlorotetraphenylene-1,16-diol Cat 8, (*S*)-2,15-dibromotetraphenylene-1,16-diol Cat 9 [(*S*)-2,15-Br₂-DHTP] and (*S*)-2,15-diphenyltetraphenylene-1,16-diol Cat 10 [(*S*)-2,15-Ph₂-DHTP] were prepared according to the procedure previously reported.²

2. Preparation of starting materials

Symmetrical dienones **1a-1q** were prepared following the literature procedure^{3a} with starting acetone and appropriate aromatic aldehyde, using typical procedures for the aldol condensation.

Symmetrical dienones **1a-1b**,^{3a} **1d-1f**,^{3a} **1g**,^{3b} **1h-1j**,^{3a} **1m**,^{3c} **1n**,^{3d} **1o-1p**,^{3a} and **1q**^{3e} are known compounds. The ¹H NMR spectral data match those previously reported for these compounds. The ¹H NMR, ¹³C{¹H} NMR, ¹⁹F{¹H} NMR, HRMS spectra and the corresponding characterization data of starting materials **1c**, **1k**, and **1l** not reported previously are provided.

(*1E*,4*E*)-1,5-di-m-tolylpenta-1,4-dien-3-one (**1c**)

Yellow solid (686.5 mg, 52% yield); mp 66-67 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 16.0 Hz, 2H), 7.44-7.42 (m, 4H), 7.33-7.29 (m, 2H), 7.24-7.22 (m, 2H), 7.07 (d, *J* = 16.0 Hz, 2H), 2.40 (s, 6H);

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) δ 189.2, 143.6, 138.8, 134.9, 131.5, 129.2, 129.0, 125.8, 125.4, 21.5;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₁₈ONa 285.1250; Found 285.1236.

(1E,4E)-1,5-bis(3-(trifluoromethyl)phenyl)penta-1,4-dien-3-one (1k)

Yellow solid (256.4 mg, 14% yield); mp 114-115 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 2H), 7.79-7.75 (m, 4H), 7.68-7.67 (m, 2H), 7.58-7.54 (m, 2H), 7.14 (d, *J* = 16.0 Hz, 2H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 188.2, 142.1, 135.6, 131.72 (q, *J* = 33.0 Hz), 131.73, 129.7, 127.1 (q, *J* = 3.0 Hz), 126.8, 124.9 (q, *J* = 3.0 Hz), 123.9 (q, *J* = 271.0 Hz);

¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ –62.9;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{19}H_{12}F_6ONa$ 393.0685; Found 393.0674.

Yellow solid (699.2 mg, 31% yield); mp 129-131 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 16.0 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H), 7.21 (d, J = 3.2 Hz, 2H), 7.00 (d, J = 16.0 Hz, 2H), 6.85 (dd, J = 2.8, 8.8 Hz, 2H); 3.85 (s, 6H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 188.9, 159.2, 142.3, 135.6, 134.3, 127.9, 117.9, 116.7, 112.9, 55.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{19}H_{16}Br_2O_3Na$ 472.9358; Found 472.9340.

Unsymmetrical dienones $1r^{4a}$ and $1s^{4b}$ were prepared according to the literature procedures.^{4a}

Dienones 1t and $1u^5$ were synthesized according to the reported procedures.^{3a} The analytic data of the 1t is provided below.

(*1E*, *4E*)-*1*, *7*-*diphenylhepta*-*1*, *4*-*dien*-*3*-*one* (**1t**)

Yellow oil (308.8 mg, 65% yield);

¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 16.0 Hz, 1H), 7.58-7.56 (m, 2H), 7.41-7.39 (m, 3H), 7.33-7.29 (m, 2H), 7.24-7.20 (m, 3H), 7.07-6.99 (m, 1H), 6.94 (d, *J* = 16.0 Hz, 1H), 6.48-6.43 (m, 1H), 2.84 (t, *J* = 8.0 Hz, 2H), 2.63-2.60 (m, 2H);

 ^{13}C {¹H} NMR (150 MHz, CDCl₃) δ 189.1, 146.8, 143.1, 140.8, 134.8, 130.4, 129.7, 128.9, 128.5, 128.4, 128.3, 126.2, 124.9, 34.5, 34.4;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₁₈ONa 285.1250; Found 285.1241.

Boronic acid **2a-2j** were purchased from commercial suppliers and used without further purification.

3. Detailed Optimization of Reaction Conditions

Table S1. Screening of Additives.^a

toluene 25 °C

	1a 2a			Jaa Š	
entry ^a	Additives	time (h)	yield (%) ^b	dl-/meso- ^c	ee (%) ^d
1	4 Å MS(100 mg), Mg(O'Bu) ₂ (0.1 eq)	24	94	94.8:5.2	>99
2	4 Å MS(100 mg)	24	91	95.5:4.5	>99
3	-	36	trace	-	-
4	4 Å MS(100 mg), LiO'Bu(0.1 eq)	24	96	94.2:5.8	>99
5	4 Å MS(100 mg), 1-Adamantanol (0.1 eq)	24	98	95.8:4.2	>99
6	4 Å MS(100 mg), 1-Adamantanol (1 eq)	48	72	96.1:3.9	>99
7	4 Å MS(100 mg), 1-Adamantanol (2 eq)	48	63	96.3:3.7	>99
8	4 Å MS(100 mg), MeOH (2 eq)	36	88	95.6:4.4	>99
9	4 Å MS(100 mg), HO'Bu (2 eq)	48	89	96.3:3.7	>99
10	4 Å MS(100 mg), HO'Bu (0.1 eq)	24	90	95.5:4.5	>99
11	4 Å MS(100 mg), ^{<i>i</i>} PrOH (2 eq)	48	79	96.3:3.7	>99
12	4 Å MS(100 mg), ^{<i>i</i>} PrOH (0.1 eq)	24	96	95.1:4.9	>99
13	4 Å MS(100 mg), HFIP (0.1 eq)	24	96	85.0:15.0	>99
14 ^e	4 Å MS(100 mg) 0 °C	48	66	96.0:4.0	>99
15	3 Å MS(100 mg)	24	98	95.5:4.5	>99

16	5 Å MS(100 mg)	24	97	95.8:4.2	>99
17 ^f	4 Å MS(100 mg)	36	89	92.9:7.1	>99

^{*a*}Unless otherwise stated, reactions were performed with **1a** (0.1 mmol), **2a** (0.3 mmol), 10 mol% Cat **5** in a dry toluene (1.0 mL) at 25 °C under N₂. ^{*b*}Isolated yield. ^{*c*}*dl/meso* ratios were determined by chiral HPLC. ^{*d*}Determined by HPLC on a chiral stationary phase. ^eAt 0 °C. ^fUsing 5 mol% Cat 5.

In the optimization of the reaction conditions, we used other additives such as LiO'Bu, 1-Adamantanol, MeOH, HO'Bu, 'PrOH, HFIP and molecular sieves to improve the ratio of *dl/meso*, as shown in Table S1. In most cases, except for molecule sieves, the effect of other additives are not obvious.

Table S2. Screening of Solvent Using Cat 9 as Catalyst.^a

entry ^a	solvent	time	yield of 3aa' (%) ^b	3aa' dl-/meso- ^c	ee of 3aa' (%) ^d	yield of 4aa' (%) ^b	ee of 4aa' (%) ^d
1 ^e	PhCF ₃	48	85	95.7:4.3	>99	-	-
2	PhCF ₃	24	87	95.9:4.1	>99	-	-
3	Toluene	24	92	96.3:3.7	>99	-	-
4	DCM	24	96	94:6	92	-	-
5	DCE	24	95	92.7:7.3	>99	-	-
6	o-xylene	24	84	96.2:3.8	>99	-	-
7	PhCl	24	88	94.4:5.6	>99	-	-
8	C_6HF_5	48	84	93.4:6.6	>99	-	-

4aa'

9	MTBE	24	87	96.2:3.8	>99	-	-
10	THF	48	-	-	-	36	62
11	MeCN	72	7	79.4:20.6	98	25	60
12	Et ₂ O	48	79	96.6:3.4	>99	-	-
13	CF ₃ CH ₂ OH	72	15	82.5:17.5	99	31	78

^{*a*}Unless otherwise stated, reactions were performed with **1a** (0.1 mmol), **2a** (0.3 mmol), 10 mol% **Cat 9**, 10 mol% Mg(O'Bu)₂, 4 Å MS (100 mg) in a dry solvent (1.0 mL) at 25 °C under N₂. ^{*b*}Isolated yield. ^{*c*}*dl/meso* ratios were determined by chiral HPLC. ^{*d*}Determined by HPLC on a chiral stationary phase. ^{*e*}Using 2.0 eq of **2a**.

As shown in Table S2, the result in entry 3 was the best in terms of enantioselectivity and yield, and toluene was thus selected as the optimal solvent to further optimize the reaction conditions.

Table S3. Screening of Additives Using Cat 9 as Catalyst.^a

	MeOH (2 eq)				
9	4 Å MS(100 mg),	24	85	97 1 2 9	>99
	^{<i>i</i>} PrOH (2 eq)	21	05	<i>)1.1.2.)</i>	
10	4 Å MS(100 mg),	24	02	71.2:28.8	05
	HFIP (2 eq)	24	93		95
11	4 Å MS(100 mg),	24	91	97.2:2.8	>00
	1-Adamantanol (2 eq)	24			~ } }
12	4 Å MS(100 mg),	16	05	07 2.2 8	>00
	1-Adamantanol (1 eq)	10	93	91.2.2.8	299
13°	4 Å MS(100 mg),	22	0(96.6.2.4	>00
	1-Adamantanol (1 eq)	25	90	90.0.3.4	~99
14 ^e	4 Å MS(100 mg)	24	92	96.1:3.9	>99

^{*a*}Unless otherwise stated, reactions were performed with **1a** (0.1 mmol), **2a** (0.3 mmol), 10 mol% Cat **9**, 4 Å MS (100 mg) in a dry toluene (1.0 mL) at 25 °C under N₂. ^{*b*}Isolated yield. ^{*c*}*dl/meso* ratios were determined by chiral HPLC. ^{*d*}Determined by HPLC on a chiral stationary phase. ^{*e*}Using 5 mol% Cat **9**.

As shown in Table S3, the result in entry 14 was the best in terms of catalyst loading, enantioselectivity and yield, and was thus selected as the optimal conditions.

4. General procedures for the preparation of racemic products

$$R^{1} \xrightarrow{O} R^{2} + R^{2} \xrightarrow{B(OH)_{2}} \frac{(t)-BINOL (20 \text{ mol}\%)}{4 \text{ A MS, PhCF}_{3}} \qquad R^{1} \xrightarrow{R O R} + R^{0} \xrightarrow{R O R} + R^{1} \xrightarrow{R O R} +$$

To a 10 mL Schlenk tube equipped with a stirring bar was added 4 Å MS (100 mg), and the tube was flamed-dried under high vacuum. After cooling to r.t., the tube was then backed-filled with nitrogen. Then boronic acid **2a–2i** (0.3 mmol, 3.0 equiv), Mg(O'Bu)₂ (0.02 mmol, 20 mol %), (\pm)-BINOL (0.02 mmol, 20 mol %), dienones **1a–1u** (0.1 mmol, 1.0 equiv), and dry PhCF₃ (1.0 mL) were successively added to the test tube under N₂. The tube was capped, sealed and allowed to stir at 80 °C in an oil bath for 24 h. After the removal of solvents via rotary evaporation, the residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/DCM = 3:1–1:1) to give pure bis-adduct **3** (a mixture of the *dl*- and *meso*-isomers) and mono-adduct **4**.

5. General procedures for the catalytic asymmetric conjugate addition of boronic acid to dienones using Cat 5

To a 10 mL Schlenk tube equipped with a stirring bar was added 5 Å MS (100 mg), and the tube was flamed-dried under high vacuum. After cooling to r.t., the tube was then backed-filled with nitrogen. Then boronic acid **2a–2i** (0.3 mmol, 3.0 equiv), **Cat 5** (0.01 mmol, 10 mol %), dienones **1a–1u** (0.1 mmol, 1.0 equiv), and dry toluene (1.0 mL) were successively added to the test tube under N₂. The tube was capped, sealed and allowed to stir at 25 °C for 24-72 h. After the removal of solvents via rotary evaporation, the residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/DCM = 3:1–1:1) to give pure bis-adduct **3** (a mixture of the *dl*- and *meso*-isomers) and mono-adduct **4**.

(1E,3S,7S,8E)-1,3,7,9-tetraphenylnona-1,8-dien-5-one (3aa)⁶

Eluent: hexane/DCM = 3:1-1:1; Colorless solid (42.8 mg, 97% yield); mp 102-103 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 90:10, flow rate 0.8 mL/min, λ = 254 nm) t_R (1) = 15.4 min, t_R (2) = 18.6 min, t_R (3) = 26.2 min, dl-/meso- = 95.8:4.2, >99% *ee*; $[\alpha]_D^{25} = -8.2$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.29-7.16 (m, 20H), 6.31-6.20 (m, 4H), 4.05 (q, *J* = 6.8 Hz, 2H), 2.89-2.85 (m, 4H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 206.9, 143.1, 137.2, 132.4, 130.1, 128.8, 128.6, 127.8, 127.4, 126.8, 126.4, 49.5, 43.8;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₃H₃₀ONa 465.2189; Found 465.2168.

(1E,3S,7S,8E)-1,9-diphenyl-3,7-di-p-tolylnona-1,8-dien-5-one (3ba)

Eluent: hexane/DCM = 3:1–1:1; Colorless solid (46.8 mg, 99% yield); mp 75-77 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 90:10, flow rate 0.8 mL/min, λ = 254 nm) t_R (1) = 12.5 min, t_R (2) = 13.8 min, t_R (3) = 16.7 min, *dl-/meso-* = 97.0:3.0, >99% *ee*; [α]_D²⁵ = -10.1 (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.25-7.21 (m, 8H), 7.19-7.16 (m, 2H), 7.10-7.05 (m, 8H), 6.29-6.18 (m, 4H), 4.02 (q, *J* = 6.8 Hz, 2H), 2.91-2.79 (m, 4H), 2.29 (s, 6H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.1, 140.0, 137.3, 136.3, 132.7, 129.9, 129.5, 128.5, 127.6, 127.3, 126.4, 49.5, 43.4, 21.1;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₅H₃₄ONa 493.2502; Found 493.2500.

(1E,3S,7S,8E)-1,9-diphenyl-3,7-di-m-tolylnona-1,8-dien-5-one (3ca)

Eluent: hexane/DCM = 2:1–1:1; Colorless solid (43.6 mg, 93% yield); mp 90-93 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 90:10, flow rate 0.8 mL/min, λ = 254 nm) t_R (1) = 10.4 min, t_R (2) = 12.9 min, t_R (3) = 17.7 min, *dl-/meso-* = 95.5:4.5, >99% *ee*; [α]_D²⁷ = -8.1 (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.25-7.13 (m, 12H), 7.01-6.99 (m, 6H), 6.31-6.20 (m, 4H), 4.02 (q, *J* = 6.8 Hz, 2H), 2.88-2.85 (m, 4H), 2.29 (s, 6H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.0, 143.1, 138.4, 137.3, 132.6, 130.0, 128.7, 128.57, 128.55, 127.6, 127.3, 126.4, 124.7, 49.5, 43.7, 21.6;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₅H₃₄ONa 493.2502; Found 493.2482.

(1E,3S,7S,8E)-1,9-diphenyl-3,7-di-o-tolylnona-1,8-dien-5-one (3da)

Eluent: hexane/DCM = 2:1-1:1; Colorless solid (43.1 mg, 92% yield); mp 91-93 °C;

HPLC (Daicel Chiralpak IG, hexane/*i*-PrOH = 95:5, flow rate 0.5 mL/min, λ =

254 nm) $t_R(1) = 19.6$ min, $t_R(2) = 20.3$ min, $t_R(3) = 22.1$ min, dl-/meso- = 92.0:8.0, >99% ee; $[\alpha]_D^{26} = -5.5$ (c 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.24-7.21 (m, 8H), 7.19-7.09 (m, 10H), 6.23-6.12 (m, 4H), 4.32-4.27 (m, 2H), 2.91-2.88 (m, 4H), 2.34 (s, 6H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.1, 141.0, 137.3, 136.2, 132.1, 130.9, 130.0, 128.5, 127.3, 126.6, 126.43, 126.41, 126.35, 49.0, 39.2, 19.7;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₅H₃₄ONa 493.2502; Found 493.2494.

(1E,3S,7S,8E)-3,7-bis(4-methoxyphenyl)-1,9-diphenylnona-1,8-dien-5-one (3ea)⁶

Eluent: hexane/DCM = 2:1-1:1; Colorless solid (47.9 mg, 95% yield); mp 144-147 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 85:15, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 14.4 min, t_R (2) = 17.6 min, t_R (3) = 22.1 min, *dl-/meso-* = 97.3:2.7, >99% *ee*; [α]_D²⁶ = -12.2 (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.26-7.10 (m, 14H), 6.80 (d, *J* = 8.4 Hz, 4H), 6.28-6.19 (m, 4H), 4.03-3.98 (m, 2H), 3.75 (s, 6H), 2.90-2.78 (m, 4H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.3, 158.4, 137.3, 135.0, 132.8, 129.7, 128.8, 128.6, 127.3, 126.3, 114.2, 55.3, 49.6, 42.9;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₅H₃₄O₃Na 525.2400; Found 525.2378.

(1E,3S,7S,8E)-3,7-bis(2-methoxyphenyl)-1,9-diphenylnona-1,8-dien-5-one (3fa)

Eluent: hexane/DCM = 2:1–1:1; Colorless solid (48.3 mg, 96% yield); mp 75-76 °C;

HPLC (Daicel Chiralpak ID, hexane/*i*-PrOH = 90:10, flow rate 0.8 mL/min, λ = 254 nm) t_R (1) = 17.7 min, t_R (2) = 19.1 min, t_R (3) = 23.4 min, dl-/meso- = 95.6:4.4, >99% *ee*; $[\alpha]_D^{26} = -20.5$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.26-7.14 (m, 14H), 6.89-6.83 (m, 4H), 6.37-6.28 (m, 4H), 4.44 (q, *J* = 6.8 Hz, 2H), 3.79 (s, 6H), 2.96-2.86 (m, 4H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.9, 156.9, 137.6, 131.9, 131.5, 130.1, 128.5, 128.4, 127.7, 127.1, 126.4, 120.8, 111.0, 55.5, 48.1, 38.2;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₅H₃₄O₃Na 525.2400; Found 525.2368.

(1E, 3S, 7S, 8E)-3, 7-bis(4-fluorophenyl)-1,9-diphenylnona-1,8-dien-5-one (3ga)

Eluent: hexane/DCM = 2:1-1:1; Colorless solid (46.0 mg, 96% yield); mp 68-69 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 7.6$ min, $t_R(2) = 14.1$ min, $t_R(3) = 18.3$ min, *dl-/meso-* = 94.0:6.0, >99% *ee*; $[\alpha]_D^{27} = -6.9$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.28-7.10 (m, 14H), 6.95-6.91 (m, 4H), 6.31-6.16 (m, 4H), 4.04 (q, *J* = 6.8 Hz, 2H), 2.91-2.79 (m, 4H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 206.5, 161.7 (d, *J* = 244.0 Hz,), 138.6 (d, *J* = 3.0 Hz), 137.0, 132.1, 130.3, 129.2 (d, *J* = 8.0 Hz), 128.6, 127.6, 126.3, 115.6 (d, *J* = 21.0 Hz), 49.5, 42.9;

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –116.1;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₃H₂₈F₂ONa 501.2000; Found 501.1990.

(1E, 3S, 7S, 8E)-3, 7-bis(4-chlorophenyl)-1,9-diphenylnona-1,8-dien-5-one (3ha)

Eluent: hexane/DCM = 3:1-1:1; Colorless solid (47.1 mg, 92% yield); mp 51-52 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 9.7$ min, $t_R(2) = 17.5$ min, $t_R(3) = 24.9$ min, dl-/meso- = 96.3:3.7, >99% *ee*; $[\alpha]_D^{23} = -8.5$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.28-7.17 (m, 14H), 7.12-7.07 (m, 4H), 6.31-6.15 (m, 4H), 4.03 (q, *J* = 10.2 Hz, 2H), 2.93-2.77 (m, 4H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 206.2, 141.5, 137.0, 132.6, 131.8, 130.6, 129.2, 128.9, 128.7, 127.6, 126.4, 49.3, 43.1;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₃H₂₈Cl₂ONa 533.1409; Found 533.1390.

(1E,3S,7S,8E)-3,7-bis(2-chlorophenyl)-1,9-diphenylnona-1,8-dien-5-one (3ia)

Eluent: hexane/DCM = 2:1-1:1; Colorless oil (46.9 mg, 92% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 7.4$ min, $t_R(2) = 8.0$ min, $t_R(3) = 9.8$ min, dl-/meso- = 92.6:7.4, >99% *ee*; $[\alpha]_D^{23} = -25.3$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.35-7.33 (m, 2H), 7.25-7.10 (m, 16H), 6.35-6.22 (m, 4H), 4.60 (q, *J* = 7.2 Hz, 2H), 2.97-2.96 (m, 4H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.9, 140.4, 137.1, 133.8, 131.1, 130.5, 130.2, 128.7, 128.6, 128.0, 127.5, 127.2, 126.5, 47.9, 40.3;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{33}H_{28}Cl_2ONa 533.1409$; Found 533.1391.

(1E,3S,7S,8E)-3,7-bis(4-bromophenyl)-1,9-diphenylnona-1,8-dien-5-one (3ja)⁶

Eluent: hexane/DCM = 2:1-1:1; Colorless solid (55.4 mg, 92% yield); mp 103-104 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 9.9$ min, $t_R(2) = 16.7$ min, $t_R(3) = 23.2$ min, dl-/meso- = 96.5:3.5, >99% *ee*; $[\alpha]_D^{25} = -6.2$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.38-7.35 (m, 4H), 7.29-7.17 (m, 10H), 7.06-7.04 (m, 4H), 6.28-6.14 (m, 4H), 4.01 (q, *J* = 7.2 Hz, 2H), 2.91-2.79 (m, 4H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 206.2, 141.9, 136.9, 131.9, 131.6, 130.6, 129.6, 128.7, 127.6, 126.4, 120.6, 49.2, 43.1;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₃₃H₂₈Br₂ONa 621.0399; Found 621.0401.

(1E,3S,7S,8E)-1,9-diphenyl-3,7-bis(3-(trifluoromethyl)phenyl)nona-1,8-dien-5-one (3ka)

Eluent: hexane/DCM = 3:1-2:1; Colorless oil (27.8 mg, 48% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 6.8 \text{ min}, t_R(2) = 19.3 \text{ min}, t_R(3) = 22.5 \text{ min}, dl-/meso- = 91.5:8.5, >99% ee; <math>[\alpha]_D^{20} = -1.2$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.47-7.43 (m, 4H), 7.39-7.32 (m, 4H), 7.28-7.18 (m, 10H), 6.35-6.17 (m, 4H), 4.13 (q, *J* = 10.8 Hz, 2H), 3.01-2.83 (m, 4H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 205.6, 144.0, 136.8, 131.3, 131.2, 131.1 (q, *J* = 31.5 Hz), 131.0, 129.3, 128.7, 127.7, 126.4, 124.4 (q, *J* = 4.5 Hz), 124.2 (q, *J* = 271.5 Hz), 123.8 (q, *J* = 6.0 Hz), 49.2, 43.5;

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –62.5;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₅H₂₈F₆ONa 601.1937; Found 601.1922.

(1E,3S,7S,8E)-3,7-bis(2-bromo-5-methoxyphenyl)-1,9-diphenylnona-1,8-dien-5-one (3la)

Eluent: hexane/DCM = 3:1-1:1; Colorless solid (41.3 mg, 63% yield); mp 112-113 °C;

HPLC (Daicel Chiralpak ID, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 12.2 min, t_R (2) = 13.3 min, t_R (3) = 23.0 min, *dl-/meso-* = 82.7:17.3, >99% *ee*; [α]_D²⁰ = -2.7 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, *J* = 13.2 Hz, 2H), 7.27-7.16 (m, 10H), 6.78 (d, *J* = 4.2 Hz, 2H), 6.63-6.61 (m, 2H), 6.38-6.19 (m, 4H), 4.54 (q, *J* = 10.2 Hz, 2H), 3.73 (s, 6H), 2.99-2.89 (m, 4H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.7, 159.2, 143.1, 137.0, 133.9, 131.2, 130.3, 128.6, 127.5, 126.5, 115.1, 114.9, 113.3, 55.6, 48.0, 42.6;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{35}H_{32}Br_2O_3Na$ 681.0610; Found 681.0610.

(*1E*, *3S*, *7S*, *8E*)-*3*, *7*-*bis*(*2*, *4*-*dichlorophenyl*)-*1*, *9*-*diphenylnona*-*1*, *8*-*dien*-*5*-*one* (**3ma**)

Eluent: hexane/DCM = 3:1-1:1; Colorless oil (43.5 mg, 75% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 90:10, flow rate 0.8 mL/min, λ = 254 nm) t_R (1) = 13.0 min, t_R (2) = 18.7 min, t_R (3) = 27.9 min, dl-/meso- = 91.5:8.5, >99% *ee*; $[\alpha]_D^{27} = -17.2$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.35 (t, *J* = 1.2 Hz, 2H), 7.28-7.18 (m, 10H), 7.15-7.13 (m, 4H), 6.32-6.17 (m, 4H), 4.52 (q, *J* = 6.8 Hz, 2H), 2.99-2.89 (m, 4H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.4, 138.9, 136.8, 134.5, 133.0, 131.4, 129.9, 129.7, 129.5, 128.7, 127.7, 127.5, 126.4, 47.7, 39.8;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₃H₂₆Cl₄ONa 601.0630; Found 601.0613.

(1E,3S,7S,8E)-3,7-di(naphthalen-2-yl)-1,9-diphenylnona-1,8-dien-5-one (3na)

Eluent: hexane/DCM = 2:1-1:1; Colorless solid (53.7 mg, 99% yield); mp 136-138 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 23.4 min, t_R (2) = 28.4 min, t_R (3) = 30.0 min, *dl-/meso-* = 97.2:2.8, >99% *ee*; $[\alpha]_D^{20} = -14.2$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.77-7.70 (m, 6H), 7.61 (s, 2H), 7.44-7.40 (m, 4H), 7.32-7.30 (m, 2H), 7.23-7.14 (m, 10H), 6.34-6.25 (m, 4H), 4.24-4.21 (m, 2H), 3.06-2.92 (m, 4H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 206.7, 140.5, 137.2, 133.7, 132.5, 132.3, 130.4, 128.6, 128.5, 127.9, 127.8, 127.4, 126.37, 126.31, 126.22, 126.17, 125.7, 49.4, 43.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₄₁H₃₄ONa 565.2502; Found 565.2487.

Eluent: hexane/DCM = 3:1-1:1; Colorless oil (48.6 mg, 90% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 14.0 min, t_R (2) = 18.3 min, t_R (3) = 35.2 min, dl-/meso- = 93.9:6.1, >99% *ee*; $[\alpha]_D^{27} = -43.7$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 8.14-8.11 (m, 2H), 7.84-7.82 (m, 2H), 7.72-7.69 (m, 2H), 7.46-7.43 (m, 4H), 7.38-7.32 (m, 4H), 7.23-7.15 (m, 10H), 6.43-6.27 (m, 4H), 4.95 (q, *J* = 6.4 Hz, 2H), 3.18-3.02 (m, 4H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 206.9, 139.2, 137.2, 134.2, 132.0, 131.4, 130.7, 129.1, 128.6, 127.5, 127.4, 126.4, 125.8, 125.5, 124.4, 123.5, 49.2, 38.6;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₄₁H₃₄ONa 565.2502; Found 565.2481.

(*1E*, *3S*, *7S*, *8E*)-*3*, *7*-*di*(*furan*-*2*-*yl*)-*1*, *9*-*diphenylnona*-*1*, *8*-*dien*-*5*-*one* (**3pa**)

Eluent: hexane/DCM = 3:1-1:1; Colorless solid (39.7 mg, 94% yield); mp 86-88 °C;

HPLC (Daicel Chiralpak ID, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 8.5$ min, $t_R(2) = 10.8$ min, $t_R(3) = 11.7$ min, *dl-/meso-* = 93.8:6.2, >99% *ee*; $[\alpha]_D^{24} = 26.6$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.31-7.25 (m, 10H), 7.22-7.19 (m, 2H), 6.41 (d, *J* = 15.6 Hz, 2H), 6.28-6.24 (m, 2H), 6.20 (dd, *J* = 7.8, 15.6 Hz, 2H), 6.04-6.02 (m, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.00 (dd, *J* = 6.6, 16.2 Hz, 2H), 2.83 (dd, *J* = 7.2, 16.8 Hz, 2H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 205.9, 155.8, 141.6, 137.1, 131.5, 129.3, 128.6, 127.6, 126.5, 110.4, 105.7, 47.1, 37.7;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₉H₂₆O₃Na 445.1774; Found 445.1765.

(1E, 3S, 7S, 8E)-1,9-diphenyl-3,7-di(thiophen-2-yl)nona-1,8-dien-5-one (3qa)⁶

Eluent: hexane/DCM = 2:1-1:1; Colorless solid (36.4 mg, 80% yield); mp 112-114 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 8.7$ min, $t_R(2) = 10.9$ min, $t_R(3) = 14.2$ min, dl-/meso- = 95.1:4.9, >99% *ee*; $[\alpha]_D^{23} = 7.3$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.31-7.18 (m, 10H), 7.13-7.11 (m, 2H), 6.89-6.81 (m, 4H), 6.43-6.39 (m, 2H), 6.26-6.20 (m, 2H), 4.38 (q, *J* = 7.2 Hz, 2H), 3.02-2.87 (m, 4H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.8, 146.8, 136.9, 131.6, 130.8, 128.6, 127.6, 127.0, 126.5, 124.2, 123.9, 50.3, 39.1;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₉H₂₆OS₂Na 477.1317; Found 477.1316.

(1E, 3S, 7S, 8E)-3-(4-methoxyphenyl)-1, 7, 9-triphenylnona-1, 8-dien-5-one (3ra)

Eluent: hexane/DCM = 2:1–1:1; Colorless solid (40.3 mg, 85% yield); mp 70-71 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 10.6$ min, $t_R(2) = 13.0$ min, $t_R(3) = 16.2$ min, $t_R(4) = 17.8$ min, d.r. = 96.9:3.1, >99% ee; $[\alpha]_D^{27} = -12.3$ (c 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.28-7.22 (m, 10H), 7.20-7.15 (m, 5H), 7.12-7.09 (m, 2H), 6.81-6.78 (m, 2H), 6.31-6.19 (m, 4H), 4.08-3.98 (m, 2H), 3.75 (s, 3H), 2.91-2.80 (m, 4H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 207.1, 158.4, 143.1, 137.32, 137.28, 135.1, 132.9, 132.5, 130.2, 129.9, 128.81, 128.77, 128.6, 127.8, 127.40, 127.36, 126.8, 126.4, 114.2, 55.4, 49.6, 49.5, 43.8, 43.0;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₃₂O₂Na 495.2295; Found 495.2290.

(1E,3S,7S,8E)-1,3,9-triphenyl-7-(4-(trifluoromethyl)phenyl)nona-1,8-dien-5-one (3sa)

Eluent: hexane/DCM = 2:1-1:1; Colorless solid (48.8 mg, 96% yield); mp 94-95 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 10.4$ min, $t_R(2) = 14.7$ min, $t_R(3) = 17.3$ min, $t_R(4) = 21.5$ min, d.r. = 94.7:5.3, >99% ee; $[\alpha]_D^{27} = -4.6$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 2H), 7.29-7.16 (m, 17H), 6.32-6.16 (m, 4H), 4.12 (q, *J* = 6.8 Hz, 1H), 4.05 (q, *J* = 7.2 Hz, 1H), 2.96-2.84 (m, 4H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 206.3, 147.2, 142.9, 137.1, 136.9, 132.2, 131.4, 130.8, 130.3, 129.1, 128.9, 128.7, 128.6, 128.2, 127.72, 127.68, 127.5, 126.9, 126.4, 126.3, 125.7 (q, *J* = 4.0 Hz), 124.3 (q, *J* = 270.0 Hz), 49.3, 49.2, 44.0, 43.3;

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –62.4;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{34}H_{29}F_3ONa$ 533.2063; Found 533.2049.

(1E,3S,7S,8E)-3-phenethyl-1,7,9-triphenylnona-1,8-dien-5-one (3ta)

Eluent: hexane/DCM = 3:1-1:1; Colorless oil (27.2 mg, 58% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 9.4 min, t_R (2) = 10.4 min, t_R (3) = 12.2 min, t_R (4) = 12.9 min, d.r. = 84.1:15.9, >99% *ee*; $[\alpha]_D^{18} = 1.4$ (*c* 0.5, CHCl₃);

¹H NMR (400 MHz, CDCl₃) mixture of diastereomers δ 7.31-7.10 (m, 20H), 6.38-6.24 (m, 3H), 6.00-5.94 (m, 1H), 4.06 (q, *J* = 7.2 Hz, 1H), 2.90-2.87 (m, 2H), 2.76-2.74 (m, 1H), 2.62-2.45 (m, 4H), 1.71-1.53 (m, 2H);

¹³C{¹H} NMR (150 MHz, CDCl₃) mixture of diastereomers δ 207.7, 143.13, 143.08, 142.2, 137.4, 137.2, 132.76, 132.75, 132.52, 132.50, 131.08, 131.05, 130.17,

130.12, 128.80, 128.79, 128.64, 128.59, 128.51, 128.47, 127.82, 127.77, 127.38, 127.35, 126.8, 126.4, 126.3, 125.9, 49.5, 49.4, 49.3, 43.9, 38.5, 38.4, 36.7, 33.7, 33.6; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₅H₃₄ONa 493.2502; Found 493.2484.

(3S,7S,E)-1,3-diphenyl-7-((E)-styryl)dec-1-en-5-one (3ua)

Eluent: hexane/DCM = 3:1-1:1; Colorless oil (27.8 mg, 68% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 6.0 min, t_R (2) = 6.4 min, t_R (3) = 7.5 min, t_R (4) = 8.4 min, d.r. = 82.0:18.0, >99% *ee*; $[\alpha]_D^{21} = 12.1$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) mixture of diastereomers δ 7.30-7.15 (m, 15H), 6.37-6.25 (m, 3H), 5.96-5.90 (m, 1H), 4.08 (q, *J* = 6.8 Hz, 1H), 2.92-2.90 (m, 2H), 2.76-2.67 (m, 1H), 2.51-2.39 (m, 2H), 1.33-1.23 (m, 4H), 0.85-0.82 (m, 3H);

¹³C{¹H} NMR (150 MHz, CDCl₃) mixture of diastereomers δ 208.0, 143.2, 143.1, 137.5, 137.2, 133.34, 133.33, 132.6, 130.4, 130.3, 130.1, 128.79, 128.78, 128.6, 127.83, 127.79, 127.4, 127.2, 126.8, 126.3, 126.2, 49.54, 49.51, 49.46, 49.3, 43.9, 38.5, 37.3, 20.5, 20.4, 14.1;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{30}H_{32}ONa$ 431.2345; Found 431.2336.

(*1E*, *3S*, *7S*, *8E*)-*3*, *7*-*diphenyl*-*1*, *9*-*di*-*p*-*tolylnona*-*1*, *8*-*dien*-*5*-*one* (**3ab**)

Eluent: hexane/DCM = 3:1-1:1; Colorless oil (41.1 mg, 87% yield);

HPLC (Daicel Chiralpak IE, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 9.9$ min, $t_R(2) = 10.4$ min, $t_R(3) = 11.2$ min, dl-/meso- = 95.3:4.7, >99% *ee*; $[\alpha]_D^{20} = -6.6$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.27-7.24 (m, 4H), 7.19-7.14 (m, 10H), 7.06-7.05 (m, 4H), 6.27-6.16 (m, 4H), 4.03 (q, *J* = 7.2 Hz, 2H), 2.91-2.81 (m, 4H), 2.30 (s, 6H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 207.1, 143.2, 137.1, 134.4, 131.4, 130.0, 129.3, 128.8, 127.8, 126.7, 126.3, 49.5, 43.8, 21.3;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₅H₃₄ONa 493.2502; Found 493.2491.

(S,1E,6E)-7-(4-methoxyphenyl)-1,5-diphenylhepta-1,6-dien-3-one (4ac)

Eluent: hexane/EA = 20:1-10:1; Colorless oil (17.1 mg, 47% yield);

HPLC (Daicel Chiralpak ID, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (major) = 13.8 min, t_R (minor) = 16.6 min, 58% *ee*; $[\alpha]_D^{16} = -2.3$ (*c* 1.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.54-7.50 (m, 3H), 7.38-7.20 (m, 10H), 6.80 (d, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 16.2 Hz, 2H), 6.35 (d, *J* = 15.6 Hz, 1H), 6.25 (dd, *J* = 7.2, 15.6 Hz, 1H), 4.19 (q, *J* = 7.2 Hz, 1H), 3.78 (s, 3H), 3.22-3.14 (m, 2H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 198.4, 159.1, 143.6, 142.9, 134.6, 130.6, 130.5, 130.1, 129.6, 129.1, 128.8, 128.4, 127.9, 127.5, 126.7, 126.5, 114.0, 55.4, 47.0, 44.3;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₄O₂Na 391.1669; Found 391.1669.

(1E, 3S, 7S, 8E)-1,9-bis(4-chlorophenyl)-3,7-diphenylnona-1,8-dien-5-one (3ad)

Eluent: hexane/DCM = 3:1–1:1; Colorless solid (51.0 mg, 99% yield); mp 87-88 °C;

HPLC (Daicel Chiralpak IE, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 11.3 min, t_R (2) = 12.0 min, t_R (3) = 13.4 min, dl-/meso- = 93.6:6.4, >99% *ee*; $[\alpha]_D^{18} = -12.9$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.28-7.24 (m, 4H), 7.21-7.13 (m, 14H), 6.23-6.17 (m, 4H), 4.04 (q, *J* = 6.6 Hz, 2H), 2.91-2.82 (m, 4H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 206.7, 142.8, 135.6, 133.1, 133.0, 129.0, 128.9, 128.7, 127.7, 127.6, 126.9, 49.3, 43.7;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₃H₂₈OCl₂Na 533.1409; Found 533.1409.

(*1E*,3*S*,7*S*,8*E*)-3,7-*bis*(2-*bromo*-5-*methoxyphenyl*)-1,9-*di*-*p*-*tolylnona*-1,8-*dien*-5-*one* (3lb)

Eluent: hexane/DCM = 3:1-1:1; Colorless oil (48.3 mg, 70% yield);

HPLC (Daicel Chiralpak ID, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 12.4 min, t_R (2) = 13.4 min, t_R (3) = 20.0 min, *dl-/meso-* = 88.5:11.5, >99% *ee*; $[\alpha]_D^{21} = -3.3$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.43-7.41 (m, 2H), 7.16-7.14 (m, 4H), 7.05-7.03 (m, 4H), 6.78-6.77 (m, 2H), 6.63-6.61 (m, 2H), 6.33-6.30 (m, 2H), 6.20-6.16 (m, 2H), 4.53-4.51 (m, 2H), 3.734-3.730 (m, 6H), 2.93-2.91 (m, 4H), 2.30 (s, 6H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 205.8, 159.2, 143.3, 137.3, 134.3, 133.9, 131.1, 129.3, 126.4, 115.1, 114.9, 113.4, 55.6, 48.1, 42.7, 21.3;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{37}H_{36}Br_2O_3Na$ 709.0923; Found 709.0904.

(1R,5R)-1,5-bis(2-bromo-5-methoxyphenyl)-1,5-di(furan-2-yl)pentan-3-one (3le)

Eluent: hexane/DCM = 3:1–1:1; Colorless oil (44.8 mg, 76% yield);

HPLC (Daicel Chiralpak ID, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 220 nm) t_R (1) = 10.9 min, t_R (2) = 13.4 min, t_R (3) = 16.0 min, *dl-/meso-* = 73.0:27.0, 94% *ee*; $[\alpha]_D^{18} = -11.4$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.44-7.41 (m, 2H), 7.30-7.26 (m, 2H), 6.65-6.62 (m, 4H), 6.27-6.24 (m, 2H), 6.01-5.99 (m, 2H), 5.06-5.01 (m, 2H), 3.712-3.707 (d, 6H), 3.21-3.14 (m, 2H), 3.00-2.95 (m, 2H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 204.5, 159.2, 154.6, 142.0, 141.8, 133.8, 115.3, 114.5, 113.7, 110.4, 107.0, 55.5, 46.6, 39.5;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{27}H_{24}Br_2O_5Na$ 608.9883; Found 608.9873.

(1R,5R)-1,5-di(benzofuran-2-yl)-1,5-bis(2-bromo-5-methoxyphenyl)pentan-3-one (3lf)

Eluent: hexane/DCM = 3:1-1:1; Colorless solid (54 mg, 79% yield); mp 70-72 °C; HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 8.1 min, t_R (2) = 9.2 min, t_R (3) = 10.3 min, *dl-/meso-* = 61.6:38.4, 91% *ee*; $[\alpha]_D^{19} = -7.8$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) mixture of diastereomers δ 7.46-7.33 (m, 6H), 7.22-7.13 (m, 4H), 6.74-6.73 (m, 2H), 6.66-6.62 (m, 2H), 6.34-6.33 (m, 2H), 5.22-5.18 (m, 2H), 3.68-3.67 (d, 6H), 3.38-3.30 (m, 2H), 3.15-3.09 (m, 2H);

¹³C {¹H} NMR (100 MHz, CDCl₃) mixture of diastereomers δ 204.10, 204.05, 159.3, 157.6, 157.55, 157.53, 154.9, 141.1, 141.0, 133.89, 133.87, 128.50, 128.48, 123.9, 122.8, 120.89, 120.86, 115.49, 115.45, 114.65, 114.64, 113.9, 113.8, 111.2, 104.2, 104.1, 55.5, 46.4, 39.9;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{35}H_{28}Br_2O_5Na$ 709.0196; Found 709.0189.

(R,E)-1,5-bis(2-bromo-5-methoxyphenyl)-5-(thiophen-2-yl)pent-1-en-3-one (4lg)

Eluent: hexane/DCM = 3:1-1:1; Colorless oil (39.9mg, 74% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (major) = 8.9 min, t_R (minor) = 13.4 min, 87.3% *ee*; $[\alpha]_D^{18}$ = -7.2 (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 16.4 Hz, 2H), 7.47 (t, *J* = 8.8 Hz, 2H), 7.16-7.08 (m, 2H), 6.92-6.80 (m, 4H), 6.67-6.61 (m, 2H), 5.41 (t, *J* = 7.2 Hz, 1H), 3.81 (s, 3H), 3.74 (s, 3H), 3.53-3.38 (m, 2H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.8, 159.3, 159.2, 146.1, 143.7, 141.7, 135.1, 134.2, 133.9, 128.6, 126.9, 125.0, 124.3, 118.2, 116.6, 115.2, 114.9, 113.6, 112.6, 55.7, 55.6, 47.3, 40.9;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{23}H_{20}Br_2O_3SNa$ 556.9392; Found 556.9386.

(*R*,*E*)-5-(benzo[b]thiophen-2-yl)-1,5-bis(2-bromo-5-methoxyphenyl)pent-1-en-3-one

(4lh)

Eluent: hexane/DCM = 3:1-1:1; Colorless solid (52.9 mg, 90% yield); mp 90-91 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (major) = 10.5 min, t_R (minor) = 18.0 min, 96% *ee*; $[\alpha]_D^{23} = -15.8$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 16.2 Hz, 1H), 7.72-7.65 (m, 2H), 7.48 (dd, *J* = 2.4, 8.4 Hz, 2H), 7.30-7.24 (m, 2H), 7.12 (s, 1H), 7.08 (d, *J* = 3.0 Hz, 1H), 6.91 (d, *J* = 3.0 Hz, 1H), 6.81 (dd, *J* = 3.0, 9.0 Hz, 1H), 6.68-6.64 (m, 2H), 5.49-5.47 (m, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.58 (dd, *J* = 7.8, 16.8 Hz, 1H), 3.46 (dd, *J* = 6.6, 16.8 Hz, 1H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 196.5, 159.2, 159.1, 146.8, 142.8, 141.7, 139.7, 135.0, 134.1, 133.9, 128.5, 124.3, 124.0, 123.3, 122.2, 121.6, 118.1, 116.5, 115.3, 114.9, 113.6, 112.5, 55.6, 55.5, 46.7, 41.5;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{27}H_{22}Br_2O_3SNa$ 606.9549; Found 606.9540.

(S, 1E, 6E)-1, 5-bis(2-bromo-5-methoxyphenyl)trideca-1, 6-dien-3-one (4ai)

Eluent: hexane/DCM = 3:1-1:1; Colorless solid (25.3 mg, 73% yield); mp 43-44 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 90:10, flow rate 0.8 mL/min, λ = 254 nm) t_R (minor) = 6.4 min, t_R (major) = 6.8 min, 92% *ee*; $[\alpha]_D^{21} = 4.1$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.52-7.48 (m, 3H), 7.39-7.37 (m, 3H), 7.32-7.17 (m, 5H), 6.69 (d, *J* = 16.0 Hz, 1H), 5.63-5.43 (m, 2H), 3.98 (q, *J* = 7.2 Hz, 1H), 3.11-2.98 (m, 2H), 1.98 (q, *J* = 6.8 Hz, 1H), 1.31-1.21 (m, 8H), 0.90-0.83 (m, 3H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 198.8, 144.2, 142.8, 134.7, 132.2, 131.3, 130.6, 129.1, 128.7, 128.4, 127.7, 126.6, 126.5, 47.3, 44.3, 32.7, 31.8, 29.4, 28.9, 22.7, 14.2; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₅H₃₀ONa 369.2189; Found 369.2172.

6. General procedures for the catalytic asymmetric conjugate addition of boronic acid to dienones using Cat 9

To a 10 mL Schlenk tube equipped with a stirring bar was added 4 Å MS (100 mg), and the tube was flamed-dried under high vacuum. After cooling to r.t., the tube was then backed-filled with nitrogen. Then boronic acid **2** (0.3 mmol, 3.0 equiv), **Cat 9** (0.005-0.01 mmol, 5-10 mol %), dienones **1** (0.1 mmol, 1.0 equiv), and dry toluene (1.0 mL) were successively added to the test tube under N₂. The tube was capped, sealed and allowed to stir at 25 °C for 24-48 h. After the removal of solvents via rotary evaporation, the residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/DCM = 3:1-1:1) to give pure bis-adduct **3'** (a mixture of the *dl*- and *meso*-isomers) and mono-adduct **4'**.

(1E,3R,7R,8E)-1,3,7,9-tetraphenylnona-1,8-dien-5-one (3aa')⁶

Eluent: hexane/DCM = 3:1–1:1; Colorless solid (40.7 mg, 92% yield); HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 90:10, flow rate 0.8 mL/min, λ = 254 nm) $t_R(1)$ = 15.6 min, $t_R(2)$ = 18.7 min, $t_R(3)$ = 26.0 min, dl-/meso- = 96.1:3.9, >99% ee; $[\alpha]_D^{20}$ = 9.6 (c 2.0, CHCl₃);

(1E,3R,7R,8E)-3,7-bis(4-methoxyphenyl)-1,9-diphenylnona-1,8-dien-5-one (3ea')⁶

Eluent: hexane/DCM = 2:1–1:1; Colorless solid (49.8 mg, 99% yield); HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 85:15, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1)$ = 14.4 min, $t_R(2)$ = 17.8 min, $t_R(3)$ = 21.6 min, dl-/meso- = 96.8:3.2, >99% ee; $[\alpha]_D^{19}$ = 11.4 (c 2.0, CHCl₃);

(1E, 3R, 7R, 8E)-3, 7-bis(4-bromophenyl)-1,9-diphenylnona-1,8-dien-5-one (3ja')⁶

Eluent: hexane/DCM = 3:1–1:1; Colorless solid (57.7 mg, 96% yield); HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1)$ = 9.8 min, $t_R(2)$ = 16.2 min, $t_R(3)$ = 22.3 min, *dl-/meso-* = 97.0:3.0, >99% *ee*; $[\alpha]_D^{20}$ = 7.2 (*c* 2.0, CHCl₃);

(*1E*, *3R*, *7R*, *8E*)-*1*, *9*-*diphenyl*-*3*, *7*-*bis*(*3*-(*trifluoromethyl*)*phenyl*)*nona*-*1*, *8*-*dien*-*5*-*one* (**3ka**')

Eluent: hexane/DCM = 3:1–2:1; Colorless oil (56.1 mg, 97% yield); HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 6.5 min, t_R (2) = 19.3 min, t_R (3) = 21.9 min, *dl-/meso-* = 96.0:4.0, >99% *ee*; $[\alpha]_D^{19}$ = 1.3 (*c* 2.0, CHCl₃);

(1E,3R,7R,8E)-3,7-bis(2-bromo-5-methoxyphenyl)-1,9-diphenylnona-1,8-dien-5-one (3la')

Eluent: hexane/DCM = 3:1–1:1; Colorless solid (47.4 mg, 72% yield); HPLC (Daicel Chiralpak ID, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1)$ = 12.2 min, $t_R(2)$ = 13.4 min, $t_R(3)$ = 23.9 min, *dl-/meso-* = 97.9:2.1, >99% *ee*; $[\alpha]_D^{19}$ = 7.3 (*c* 2.0, CHCl₃);

(1E,3R,7R,8E)-3,7-bis(2,4-dichlorophenyl)-1,9-diphenylnona-1,8-dien-5-one (3ma')

Eluent: hexane/DCM = 3:1–1:1; Colorless oil (53.7 mg, 92% yield); HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 90:10, flow rate 0.8 mL/min, $\lambda = 254$ nm) $t_R(1) = 14.2$ min, $t_R(2) = 18.8$ min, $t_R(3) = 27.8$ min, dl-/meso- = 98.2:1.8, >99% ee; $[\alpha]_D^{19} = 19.8$

(*c* 2.0, CHCl₃);

(1E,3R,7R,8E)-3-(4-methoxyphenyl)-1,7,9-triphenylnona-1,8-dien-5-one (3ra')

Eluent: hexane/DCM = 2:1-1:1; Colorless solid (37.8 mg, 80% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 10.6$ min, $t_R(2) = 12.7$ min, $t_R(3) = 16.9$ min, $t_R(4) = 18.2$ min, d.r. = 97.4:2.6, >99% ee; $[\alpha]_D^{20} = 13.7$ (c 2.0, CHCl₃);

(1E, 3R, 7R, 8E)-3-phenethyl-1, 7, 9-triphenylnona-1, 8-dien-5-one (3ta')

Eluent: hexane/DCM = 3:1–1:1; Colorless oil (46.6 mg, 99% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 9.2 min, t_R (2) = 10.6 min, t_R (3) = 12.3 min, t_R (4) = 12.8 min, d.r. = 92.7:7.3, >99% ee; $[\alpha]_D^{20} = -0.4$ (c 2.0, CHCl₃);

(*1E*, *3R*, *7R*, *8E*)-*3*, *7-bis*(*2-bromo-5-methoxyphenyl*)-*1*, *9-di-p-tolylnona-1*, *8-dien-5-one* (**3lb'**)

Eluent: hexane/DCM = 3:1–1:1; Colorless oil (68.8 mg, 99% yield); HPLC (Daicel Chiralpak ID, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 12.3 min, t_R (2) = 13.3 min, t_R (3) = 20.1 min, *dl-/meso-* = 93.2:6.8, >99% *ee*; $[\alpha]_D^{19}$ = 5.1 (*c* 2.0, CHCl₃);

(1S,5S)-1,5-bis(2-bromo-5-methoxyphenyl)-1,5-di(furan-2-yl)pentan-3-one (3lc')

Eluent: hexane/DCM = 3:1–1:1; Colorless oil (49.8 mg, 85% yield); HPLC (Daicel Chiralpak ID, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 220 nm) $t_R(1)$ = 10.8 min, $t_R(2)$ = 13.2 min, $t_R(3)$ = 16.5 min, *dl-/meso-* = 86.1:13.9, >99% *ee*; $[\alpha]_D^{23}$ = 13.7 (*c* 2.0, CHCl₃);

(1S,5S)-1,5-di(benzofuran-2-yl)-1,5-bis(2-bromo-5-methoxyphenyl)pentan-3-one (3ld')

Eluent: hexane/DCM = 3:1–1:1; Colorless solid (59.1 mg, 86% yield); HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1)$ = 8.1 min, $t_R(2)$ = 9.2 min, $t_R(3)$ = 10.1 min, *dl-/meso-* = 83.8:16.2, >99% *ee*; $[\alpha]_D^{23}$ = 13.7 (*c* 2.0, CHCl₃);

(1S,5S)-1,5-bis(benzo[b]thiophen-2-yl)-1,5-bis(2-bromo-5-methoxyphenyl)pentan-3-one (3lf')

Eluent: hexane/DCM = 3:1-1:1; Colorless solid (40.3 mg, 56% yield); mp 88-90 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 85:15, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 16.8 min, t_R (2) = 17.2 min, t_R (3) = 18.6 min, dl-/meso- = 92.0:8.0, >99% ee; $[\alpha]_D^{20} = -1.6$ (c 1.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.68-7.51 (m, 4H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.28-7.20 (m, 4H), 6.94 (s, 2H), 6.78 (d, *J* = 2.8 Hz, 2H), 6.63 (dd, *J* = 2.8, 8.8 Hz, 2H), 5.35-5.32 (m, 2H), 3.68 (s, 6H), 3.35-3.17 (m, 4H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 204.0, 159.3, 146.4, 142.7, 139.7, 139.4, 133.9, 124.3, 124.1, 123.4, 122.2, 121.7, 115.2, 114.8, 113.7, 55.5, 49.1, 41.2;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{35}H_{28}Br_2O_3S_2Na$ 740.9739; Found 740.9728.

7. General procedures for scale-up reaction

To a 100 mL Schlenk tube equipped with a stirring bar was added 5 Å MS (2.5 g), and the tube was flamed-dried under high vacuum. After cooling to r.t., the tube was then backed-filled with nitrogen. Then boronic acid **2a** (7.5 mmol, 3.0 equiv), **Cat 5** (0.25 mmol, 10 mol %), dienones **1e** (2.5 mmol, 1.0 equiv), and dry toluene (25.0 mL) were successively added to the test tube under N₂. The tube was capped, sealed and allowed to stir at 25 °C for 48 h. After the removal of solvents via rotary evaporation, the residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/DCM = 2:1–1:1) to give pure bis-adduct **3ea** (a mixture of the *dl*- and *meso*-isomers). Colorless solid, 1.18 g, 94% yield, *dl-/meso-* = 96.4:3.6, >99% *ee* for *dl*- isomer.

8. General procedures for transformation of the product 4ag

To a 10 mL Schlenk tube equipped with a stirring bar was added 5 Å MS (100 mg), and the tube was flamed-dried under high vacuum. After cooling to r.t., the tube was then backed-filled with nitrogen. Then boronic acid **2a** (0.2 mmol, 2.0 equiv), **Cat 5** (0.01 mmol, 10 mol %), mono-adduct **4ai** (0.1 mmol, 1.0 equiv), and dry toluene (1.0 mL) were successively added to the test tube under N₂. The tube was capped, sealed and allowed to stir at 25 °C for 24 h. After the removal of solvents via rotary evaporation, the residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/DCM = 3:1–1:1) to give pure bis-adduct **5** (45.0 mg, 99% yield, 96.4:3.6 d.r., >99% ee).

(*1E*, *3S*, *7S*, *8E*)-1, *3*, *7*-triphenylpentadeca-1, 8-dien-5-one (**5**)

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm) t_R (1) = 5.3 min, t_R (2) = 5.7 min, t_R (3) = 6.3 min, t_R (4) = 8.5 min, d.r. = 96.4:3.6, >99% ee; $[\alpha]_D^{20} = -15.3$ (c 2.1, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.31-7.12 (m, 15H), 6.31-6.19 (m, 2H), 5.49-5.31 (m, 2H), 4.05 (q, *J* = 6.8 Hz, 1H), 3.82 (q, *J* = 7.2 Hz, 1H), 2.89-2.68 (m, 4H), 1.90 (q, *J* = 6.8 Hz, 2H), 1.30-1.88 (m, 8H), 0.86 (t, *J* = 6.8 Hz, 3H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.2, 143.9, 143.2, 137.3, 132.6, 132.1, 131.1, 130.1, 128.8, 128.64, 128.56, 127.8, 127.6, 127.4, 126.7, 126.5, 126.4, 49.8, 49.4, 43.7, 32.6, 31.8, 29.4, 28.9, 22.7, 14.2;

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₃H₃₈ONa 473.2815; Found 473.2802.

Under an argon atmosphere, a 25 mL Schlenk tube equipped with a stirring bar was diene **4ai** (34.6 mg, 0.1 mmol, 92% ee), Hoveyda-Grubbs II catalyst (6.2 mg, 10 mol%), 1,6-heptadiene (2.7 μ L, 20 mol%), and dry toluene (2 mL) at room temperature. Then, the tube was capped, sealed and allowed to stir at 80 °C for 24 h. The reaction mixture was cooled to rt and purified by flash column chromatography on silica gel (eluent: petroleum ether/DCM = 3:1) to give cyclopentenone **5** (12.2 mg, 77% yield, 92% ee).

(S)-4-Phenyl-2-cyclopenten-1-one (6)⁶

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 95:5, flow rate 1.0 mL/min, λ = 220 nm) t_R (minor) = 11.1 min, t_R (major) = 11.7 min, 92% *ee*; $[\alpha]_D^{17}$ = -157.7 (*c* 0.5, CHCl₃) [*lit*. $[\alpha]_D^{31}$ = -275 (*c* 0.680, CHCl₃) for 87% *ee*];

¹H NMR (400 MHz, CDCl₃) δ 7.61-7.59 (m, 1H), 7.29-7.07 (m, 5H), 6.26-6.24 (m, 1H), 4.11-4.09 (m, 1H), 2.83 (dd, *J* = 6.8, 18.8 Hz, 1H), 2.26 (dd, *J* = 2.4, 18.8 Hz, 1H).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{11}H_{10}ONa$ 181.0624; Found 181.0623.

9. References

[1] Chai, G.-L.; Han, J.-W.; Wong, H. N. C. Synthesis 2017, 49, 181–187.

[2] Chai, G.-L.; Zhu, B.; Chang, J. J. Org. Chem. 2019, 84, 120-127.

[3] (a) Ashtekar, K. D.; Ding, X.; Toma, E.; Sheng, W.; Gholami, H.; Rahn, C.; Reed, P.; Borhan, B. *Org. Lett.* 2016, *18*, 3976–3979; (b) Daneshfar, Z.; Rostami, A. *RSC Adv.* 2015, *5*, 104695–104707; (c) Aher, R. B.; Wanare, G.; Kawathekar, N.; Kumar, R. R.; Kaushik, N. K.; Sahal D.; Chauhan, V. S. *Bioorg. Med. Chem. Lett.* 2011, *21*, 3034–3036; (d) Horvath, K. L.; Newton, C. G.; Roper, K. A.; Ward, Jas S.; Sherburn, M. S. *Chem. Eur. J.* 2019, 25, 4072–4076; (e) Aguilera, E.; Varela, J.; Birriel, E.; Serna, E.; Torres, S.; Yaluff, G. *et al. ChemMedChem* 2016, *11*, 1328–1338.

[4] (a) Weber, M.; Frey, W.; Peters, R. Chem. Eur. J. 2013, 19, 8342–8351; (b)
Mo, D.-L.; Pecak, W. H.; Zhao, M.; Wink, D. J.; Anderson, L. L. Org. Lett. 2014, 16, 3696–3699.

[5] Ogiwara, Y.; Sakino, D.; Sakurai, Y.; Sakai, N. *Eur. J. Org. Chem.* **2017**, 4324–4327.

[6] Sugiura, M.; Kinoshita, R.; Nakajima, M. Org. Lett. 2014, 16, 5172-5175.

10. Copies of ¹H, ¹³C, and ¹⁹F NMR spectra

(*1E*,4*E*)-1,5-di-m-tolylpenta-1,4-dien-3-one (**1c**) ¹H NMR (400 MHz, CDCl₃)

 $(1E,4E) \hbox{-} 1,5 \hbox{-} bis(3 \hbox{-} (trifluoromethyl) phenyl) penta-1,4 \hbox{-} dien\hbox{-} 3 \hbox{-} one (\mathbf{1k})$

¹H NMR (400 MHz, CDCl₃)

(*1E*, *4E*)-*1*, *5*-*bis*(2-*bromo*-*5*-*methoxyphenyl*)*penta*-*1*, *4*-*dien*-*3*-*one* (**1I**)

¹H NMR (400 MHz, CDCl₃)

(*1E*, *4E*)-*1*, *7*-*diphenylhepta*-*1*, *4*-*dien*-*3*-*one* (**1t**)

(*1E*, *3S*, *7S*, *8E*)-*1*, *3*, *7*, *9*-*tetraphenylnona*-*1*, *8*-*dien*-*5*-*one* (**3aa**) ¹H NMR (400 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*1*, *9*-*diphenyl*-*3*, *7*-*di*-*p*-*tolylnona*-*1*, *8*-*dien*-*5*-*one* (**3ba**) ¹H NMR (400 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*1*, *9*-*diphenyl*-*3*, *7*-*di*-*m*-*tolylnona*-*1*, *8*-*dien*-*5*-*one* (**3ca**) ¹H NMR (400 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*1*, *9*-*diphenyl*-*3*, *7*-*di*-*o*-*tolylnona*-*1*, *8*-*dien*-*5*-*one* (**3da**) ¹H NMR (400 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*3*, *7-bis*(*4-methoxyphenyl*)-*1*, *9-diphenylnona-1*, *8-dien-5-one* (**3ea**) ¹H NMR (400 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*3*, *7*-*bis*(2-*methoxyphenyl*)-*1*, *9*-*diphenylnona*-*1*, *8*-*dien*-*5*-*one* (**3fa**) ¹H NMR (400 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*3*, *7-bis*(*4-fluorophenyl*)-*1*, *9-diphenylnona-1*, *8-dien-5-one* (**3ga**) ¹H NMR (400 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*3*, *7-bis*(*4-chlorophenyl*)-*1*, *9-diphenylnona-1*, *8-dien-5-one* (**3ha**) ¹H NMR (600 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*3*, *7-bis*(2-chlorophenyl)-*1*, *9-diphenylnona-1*, *8-dien-5-one* (**3ia**) ¹H NMR (600 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*3*, *7-bis*(*4-bromophenyl*)-*1*, *9-diphenylnona-1*, *8-dien-5-one* (**3ja**) ¹H NMR (400 MHz, CDCl₃)

(1E,3S,7S,8E)-1,9-diphenyl-3,7-bis(3-(trifluoromethyl)phenyl)nona-1,8-dien-5-one (3ka)

¹H NMR (600 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*3*, *7-bis*(2-bromo-5-methoxyphenyl)-*1*, *9-diphenylnona-1*, *8-dien-5-one* (**3la**)

(*1E*, *3S*, *7S*, *8E*)-*3*, *7-bis*(*2*, *4-dichlorophenyl*)-*1*, *9-diphenylnona-1*, *8-dien-5-one* (**3ma**) ¹H NMR (400 MHz, CDCl₃)

(1E,3S,7S,8E)-3,7-di(naphthalen-2-yl)-1,9-diphenylnona-1,8-dien-5-one (3na) ¹H NMR (600 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*3*, *7-di*(*naphthalen-1-yl*)-*1*, *9-diphenylnona-1*, *8-dien-5-one* (**3oa**) ¹H NMR (400 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*3*, *7*-*di*(*furan*-*2*-*yl*)-*1*, *9*-*diphenylnona*-*1*, *8*-*dien*-*5*-*one* (**3pa**) ¹H NMR (600 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*1*, *9*-*diphenyl*-*3*, *7*-*di*(*thiophen*-*2*-*yl*)*nona*-*1*, *8*-*dien*-*5*-*one* (**3qa**) ¹H NMR (400 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*3*-(*4*-*methoxyphenyl*)-*1*, *7*, *9*-*triphenylnona*-*1*, *8*-*dien*-*5*-*one* (**3ra**) ¹H NMR (600 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*1*, *3*, 9-triphenyl-7-(4-(trifluoromethyl)phenyl)nona-1, 8-dien-5-one (**3sa**) ¹H NMR (400 MHz, CDCl₃)

(*1E*, *3S*, *7S*, *8E*)-*3-phenethyl-1*, *7*, *9-triphenylnona-1*, *8-dien-5-one* (**3ta**) ¹H NMR (400 MHz, CDCl₃)

(3S,7S,E)-1,3-diphenyl-7-((E)-styryl)dec-1-en-5-one (**3ua**)

(*1E*, *3S*, *7S*, *8E*)-*3*, *7-diphenyl-1*, *9-di-p-tolylnona-1*, *8-dien-5-one* (**3ab**) ¹H NMR (600 MHz, CDCl₃)

S59

(*1E*, *3S*, *7S*, *8E*)-*1*, *9*-*bis*(*4*-*chlorophenyl*)-*3*, *7*-*diphenylnona*-*1*, *8*-*dien*-*5*-*one* **(3ad)** ¹H NMR (600 MHz, CDCl₃)

(3lb) ¹H NMR (600 MHz, CDCl₃) 000.0 — 2.931 2.925 2.918 2.914 2.914 5. 0E+08 4. 5E+08 4.0E+08 3. 5E+08 3.0E+08 2.5E+08 2. 0E+08 1. 5E+08 1. 0E+08 5. 0E+07 0.0E+00 **F00.2** 4. 5 6.06_T 4.00₋I 6.00-7.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 6.5 5.5 5.0 f1 (ppm) 0.0 -0.5 -1.0 4.0 3.0 2.5 1.0 0.5 7.0 6.0 3.5 2.0 1.5 ¹³C{¹H} NMR (150 MHz, CDCl₃) (n-hexane: 14.1, 22.7, 31.6.) 143.31 137.26 134.30 133.86 131.08 131.08 1129.25 115.09 115.09 113.37 - 159.23 77.37 77.16 76.95 55.56 48.06 42.67 - 21.30 1.10E+09 1.00E+09 9.00E+08 8.00E+08 7.00E+08 6.00E+08 5.00E+08 4.00E+08 3.00E+08 2. 00E+08 1.00E+08 0.00E+00

(1E,3S,7S,8E)-3,7-bis(2-bromo-5-methoxyphenyl)-1,9-di-p-tolylnona-1,8-dien-5-one

80 70

60 50 40 30 20 10

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

-1.00E+08

-10

0

(2-Hydroxyphenyl)((1R,2R)-5-methyl-1,2,3,6-tetrahydro-[1,1'-biphenyl]-2-

(*1R*,5*R*)-*1*,5-*di*(*benzofuran*-2-*yl*)-*1*,5-*bis*(2-*bromo*-5-*methoxyphenyl*)*pentan*-3-*one* (**3lf**) ¹H NMR (400 MHz, CDCl₃)

(*R*,*E*)-1,5-bis(2-bromo-5-methoxyphenyl)-5-(thiophen-2-yl)pent-1-en-3-one (**4lg**) ¹H NMR (400 MHz, CDCl₃)

(*R*,*E*)-5-(*benzo*[*b*]*thiophen*-2-*y*l)-1,5-*bis*(2-*bromo*-5-*methoxyphenyl*)*pent*-1-*en*-3-*one* (4lh)

90 80

70 60

50 40

30 20 10

-10

0

180 170 160 150 140 130 120 110 100 f1 (ppm)

210 200 190

S66

(1S,5S)-1,5-bis(benzo[b]thiophen-2-yl)-1,5-bis(2-bromo-5-methoxyphenyl)pentan-3-one (3lh')

¹H NMR (400 MHz, CDCl₃)

11. HPLC traces of optically active compounds

Compound 3aa

Compound 3ba

Compound 3ca

Compound 3da

Compound 3ea

Compound 3fa

Compound 3ga

Compound 3ha

Compound 3ia

Compound 3ja

Compound 3ka

Compound 3la

Compound 3ma

Compound 3na

Compound 3oa

Compound 3pa

Compound 3qa

Compound 3aa'(using (*S*)-3,3'-(3,5-(CF₃)₂-C₆H₃)₂-BINOL)

				PERSONAL PROPERTY.		naameen an artige alle and an artige alle and a state of the second second second second second second second s	NET YOURS AND NOT FROM IS
Chung	anto sunna						
900	natogram 了 project ZP 1 #160 [手动利	只分]	zp	-4-5		UV_VIS_1 W	/VL:254 nm
900	natogram 7 project ZP 1 #160 [手动利	只分]	zρ	-4-5		UV_VIS_1 W	/VL:254 nm
900 800	natogram] project ZP 1 #160 [手动利	只分]	zp	-4-5	1 ³ - 26.343	UV_VIS_1 W	/VL:254 nm
900 800 700	natogram 到 project ZP 1 #160 [手动利	贝分]	zp	-4-5	^{3 - 26,343}	UV_VIS_1 W	/VL:254 nm
900 800- 700-	natogram 到 project ZP 1 #160 (手动利	只分]	Ζρ	-4-5	13 - 26.343	UV_VIS_1 W	/VL:254 nm
900 800 700 600	natogram 了project ZP 1 #160 [子动参	贝分]	Ζρ	4-5	3 - 26.343	UV_VIS_1 W	//L:254 nm
900 800 700 600 500 400	natogram 了project ZP 1 #160 [手动表	贝分]	zp	-4-5	3 - 26.343	UV_VIS_1 W	//L:254 nm
900 900 700 600 500 400 300	natogram 到 project ZP 1 #160 [手动利	只分]	Ζρ	-4-5	13 - 26.343	UV_VIS_1 W	//L:254 nm
900 800 700 600 500 400 300	natogram 到 project ZP 1 #160 (手动利	只分]	Ζρ	4-5	13 - 26.343	UV_VIS_1 W	//L:254 nm
900 900 700 600 500 400 200	natogram 了project ZP 1 #160 (子动参	贝分]	Ζρ	-4-5	3 - 26.343	UV_VIS_1 W	//L:254 nm
Chror 900 800 700 600 500 400 300 200 100	natogram 到 project ZP 1 #160 [手动利	只分]	zρ	4-5	13 - 26.343	UV_VIS_1 W	//L:254 nm
Chron 900 800 700 600 500 400 300 100	natogram 到 project ZP 1 #160 [手动利	只分]	 	4-5	13 - 26.343	UV_VIS_1 W	//L:254 nm
Chron 900 800 700 600 500 400 300 200 100 100 0	natogram 到 project ZP 1 #160 (手动利 0	贝分】 	zp 	420	25.0 30.0	UV_VIS_1 W	VL:254 nm
Chror 900 800 700 600 500 400 300 200 100 100 100 0 100 0 100 0 100 0 100 0 1000000	natogram project ZP 1 #160 (手动利 0 5.0 ration Results Peak Name	只分]	zp 	420 	25.0 30.0	UV_VIS_1 W	VL:254 nm
Chron 900 800 700 600 500 400 300 200 100 100 100 100 11	natogram project ZP 1 #160 (手动参 5.0 ration Results Peak Name	只分] 一 10.0 Retention Time min 15.407	zp 	420 Height MAU 0 008	25.0 30.0 Relative Area % 0.00	UV_VIS_1 W	VL:254 nm VL:254 nm 40.0 Amount n.a. n a
Chron 900 800 700 600 500 400 300 200 100 0 -50 0.0 Integ 30	natogram project ZP 1 #160 (手动利 0 5.0 ration Results Peak Name	只分] 10.0 Retention Time min 15.407 18.420 26.343	2p 2p 11-15.407 15.0 20 Area mAU*min 0.008 15.266 450 557	420 420 0 Height 38.010 784.207	25.0 30.0 Relative Area % 0.00 3.28 96 72	UV_VIS_1 W UV_VIS_1 W 35.0 Relative Height % 0.00 4.62 95.38	VL:254 nm /VL:254 nm 40.0 Amount n.a. n.a. n.a. n.a. n.a.

Compound 3ra

Compound 3sa

Compound 3ta

Compound 3ua

Compound 3ab

Compound 4ac

Compound 3ad

Compound 3lb

Compound 3le

Compound 3lf

Chromatogram 2 project ZP #107 [手动积分] UV_VIS_1 WVL:254 nm zp-2-57-RAC 600-2 - 9.173 500 400 300-1 - 7.962 200-3 - 10.222 100-0--50-4.0 8.0 12.0 14.0 16.0 18.0 2.0 6.0 10.0 20.0 0.0 Integration Results No. Peak Name Retention Time Area Height **Relative Area** Relative Height Amount min mAU*min mAU % % n.a. 1 7.962 44.566 232.501 22.14 25.55 n.a. 23 9.173 112.643 513.048 55.96 56.37 n.a. 10.222 44.096 164.580 21.90 18.08 n.a. Total: 201.305 910.130 100.00 100.00

Compound 4lg

Compound 4lh

Chromatogram

Compound 4ai

Compound 3aa'

Compound 3ea'

Compound 3ja'

Compound 3ka'

Compound 3la'

Compound 3ma'

Compound 3ra'

Compound 3ta'

Compound 3lb'

Compound 3le'

Compound 3lf'

Compound 3lh'

Compound 3ea (scale-up version)

Compound 5

Compound 6

