Shape Engineering of Polystyrene Particles from Spherical to

Raspberry-like to Hollow Flower-like via One-Step Soap-free

Emulsion Polymerization of Styrene in Ethanol-water Mixtures

Xuechen Xiang, Zhe Chen, Dongfang Ren, Jiaqiong Xu, Xiaofeng Li, Zixin Ye, Ning Chen, Qiming

Chen*, Shiyu Ma*

Research Center of Water Resources and Interface Science,

School of Chemistry and Molecular Engineering, East China Normal University, No.500,

Dongchuan Rd., Shanghai 200241, P.R. China

E-mail: qmchen@chem.ecnu.edu.cn, syma@chem.ecnu.edu.cn

Contents

S.1 TEM images of PS particles prepared with $R=1/15.03/17.86$ ($V_{\rm M}$: $V_{\rm I}=1:0.15$) at 250	0
rpm.	2
S.2 DLS results for the as-prepared PS particles.	2
S.3 TEM images of PS particles prepared with $V_{\rm M}$: $V_{\rm I}$ =1:9 in different system.	2
S.4 TEM images of PS particles prepared with $V_{\rm M}$: $V_{\rm I}$ =1:15 in different system.	3
S.5 DLS results for oil droplets in the system of $V_{\rm M}$: $V_{\rm E}$ =1:13 at different aging times.	3
S.6 DLS results for oil droplets in the system of $V_{\rm M}$: $V_{\rm E}$ =1:15 at different aging times.	4
S.7 DLS results of the time corresponding to the small peak appeared in systems with	

different ratios of $V_{\rm M}$ to $V_{\rm I}$: (a) $V_{\rm M}$: $V_{\rm I}$ =1:9; (b) $V_{\rm M}$: $V_{\rm I}$ =1:13; (c) $V_{\rm M}$: $V_{\rm I}$ =1:15.

4

Fig. S1.⁺ TEM of PS particles prepared with R = 1/15.03/17.86 ($V_{\rm M}: V_{\rm I} = 1:0.15$) at 250 rpm.

Fig. S2.† DLS results for the as-prepared PS particles.

Fig. S3.[†] TEM images of the PS particles prepared with $V_{\rm M}$: $V_{\rm I}$ =1:9 in different systems: (a) styrene/water/methanol ternary system; (b) styrene/water/ isopropanol ternary system; (c) styrene/water/ tert-butanol ternary system.

Fig. S4.[†] TEM images of the PS particles prepared with $V_{\rm M}$: $V_{\rm I}$ =1:15 in different systems: (a) styrene/water/methanol ternary system; (b) styrene/water/ isopropanol ternary system; (c) styrene/water/ tert-butanol ternary system.

Fig. S5.[†] DLS results for oil droplets in the system with $V_{\rm M}$: $V_{\rm E}$ =1:13 at different aging times.

Fig. S6.† DLS results for oil droplets in the system with $V_{\rm M}$: $V_{\rm E}$ =1:15 at different aging times.

Fig. S7.[†] DLS results of the time corresponding to the small peak appeared in systems with different ratios of $V_{\rm M}$ to $V_{\rm I}$: (a) $V_{\rm M}$: $V_{\rm I}$ =1:9; (b) $V_{\rm M}$: $V_{\rm I}$ =1:13; (c) $V_{\rm M}$: $V_{\rm I}$ =1:15.