Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting information

RSC Advances -

Surface Double Coating of $LiNi_aCo_bAl_{1-a-b}O_2$ (a > 0.85) Cathode with TiO_x and Li_2CO_3 to Apply a Water-Based Hybrid Polymer Binder to Li-Ion Batteries' Preparation

Tatsuya Watanabe^a, Kouji Hirai^a, Fuma Ando^a, Shoudai Kurosumi^b, Shinsaku Ugawa^b, Hojin Lee^b, Yuta Irii^c, Fumihiko Maki^c, Takao Gunji^a, Jianfei Wu^d, Takao Ohsaka^c, Futoshi Matsumoto^a

^a Department of Materials and Life Chemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
^b JSR Corporation, 100 Kawajiri-cho, Yokkaichi, Mie 510-8552, Japan
^c Nihon Kagaku Sangyo Co., Ltd., 1-28-13 Nakane, Soka, Saitama 340-0005, Japan
^d Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101 Qingdao, China
^e Research Institute for Engineering, Kanagawa University,

3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan

2

Experimental

Equipments and measurement conditions of TEM, STEM, STEM-EELS and STEM-EDX.

A 200 kV transmission electron microscope (TEM and/or STEM, JEM-2100F, JEOL) equipped with two aberration correctors (CEOS GmbH) for the image- and probeforming lens systems and an X-ray energy-dispersive spectrometer (EDX, JED-2300T, JEOL) were used for compositional analysis of the particle surfaces. Both aberration correctors were optimized to realize the point-to-point resolutions of TEM and scanning transmission electron microscopy (STEM) as 1.3 and 1.1 Å, respectively. The distribution of Li, O, C, Ni and Ti atoms on the coated- NCA samples was evaluated by Cs-corrected STEM analysis with an electron energy-loss spectroscopy (EELS, Gatan, GIF Quantum). In order to find out their distributions, Li-K edge was simultaneously obtained, and O-K, C-K, Ni-L, and Ti-L edges were also obtained at the same area. We mapped the Li distribution by Li K-edge. Linear background subtraction was made in order to get the Ni and Ti L-edges.

Thermogravimetry (TG) experiment

Moisture contents of the cathode electrodes were measured with differential thermoanalyzer (ThermoPlus EVO TG 8120, Rigaku). Tested samples of 44-47 mg were obtained from pristine and TiO_x/Li_2CO_3 -coated NCA cathodes by scratching the cathode surfaces. The scratched powders were heated at the temperature elevation rate of 10 °Cmin⁻¹ under argon atmosphere. The weight % of water in the cathode was calculated from the difference in weight in the temperature region from 100 to 200°C.

10 µm

Fig. S1 SEM images of NCA particles prior to water treatment. (A) pristine (un-coated) NCA, (C-3) TiO_x -coated NCA, (E-1) Li_2CO_3 -coated NCA and (G-1) TiO_x/Li_2CO_3 -coated NCA.

Sample C-1					
200 pm BF	200 nm Co K	2	00 nm	Ni K	
		Atomi	c ratios		
	1	Area	Ti	Ni	Co
	1 223	1	15.03	75.93	9.03
		2	6.43	84.02	9.56
		3	1.46	88.64	9.90
200 nm Ti K	200 nm				

	🗆 200 nm	Ni K	
Atomic ra	tios		
Area	Ti	Ni	Co
1	6.22	81.69	12.09
2	5.08	83.48	11.43
3	1.69	88.22	10.09

Sample C-4					
200 nm BF	200 nm Ni K		200 nm	Co K	
		Atomic ra	atios		
	<u>, 1</u> <u>, 2</u> <u>, 3</u>	Area	Ti	Ni	Со
		1	35.16	57.63	7.21
		2	12.40	78.34	9.27
		3	3.45	86.58	9.97
200 nm Ti K	200 nm				

Fig. S2 TEM-EDX mapping of TiO_x -coated NCA samples C-1~C-5.

Fig. S3 Atomic ratios of Ti to Ni in TiO_x-coated NCA samples C-1~C-5 estimated from the XRF experiments.

Fig. S4 SEM-EDX images of TiO_x -coated NCA samples C-3 and C-4.

Fig. S5 Plots of discharge capacity retention *vs.* C-rate obtained with the cathodes prepared from (●) the slurry consisting of pristine NCA, PVdF and AB, (●, ●, ●, ●, ●, ●) the water-based slurries consisting of TiO_x-coated NCA (samples C-1~C-5), TRD202A, CMC and AB at 25°C. In the calculation of the discharge capacity retention, the discharge capacity obtained at 0.1 C with each cathode was considered as 100% of capacity retention. Samples C-1: ●, C-2: ●, C-3: ●, C-4: ●, and C-5: ●.

Fig. S6 SEM images of NCA particles on cathodes after 30 charging/discharging cycles at the charging/discharging rate of 0.1 C at 25 °C. The cathodes were prepared with (A) the NMP slurry consisting of pristine NCA (A), PVdF and AB, (C-3) the water-based slurry consisting of TiO_x-coated NCA, TRD202A, CMC and AB, (E-1) the water-based slurry consisting of Li₂CO₃-coated NCA (the slurry was kept for 1 h under CO₂ atmosphere), TRD202A, CMC and AB, and (G-2) the water-based slurry consisting of TiO_x/Li₂CO₃-coated NCA (the slurry was kept for 7 days under CO₂ atmosphere), TRD202A, CMC and AB.

Fig. S7 The results of TG measurements of the sample powders obtained from the cathodes composed of (a) pristine NCA (A), PVdF and AB and (c) TiO_x/Li_2CO_3 -coated NCA (G-2), TRD202A, CMC and AB, and (b) TiO_x/Li_2CO_3 -coated NCA (G-2) particles prepared.

Fig. S8 Charge/discharge voltage-capacity curves observed at the 10^{th} cycle and 0.1 C with the cathodes prepared with pristine (A), $\text{TiO}_x/\text{Li}_2\text{CO}_3$ (G-2)-, $\text{TiO}_x(\text{C-3})$ - and Li_2CO_3 (E-1)-coated NCA particles.

Fig. S9 (a) Discharge voltage-discharge capacity curves observed at 5 C in the rate performance test of **Fig. 13** with the cathodes prepared with pristine (A), TiO_x/Li_2CO_3 (G-2)-, $TiO_x(C-3)$ - and Li_2CO_3 (E-1)-coated NCA cathodes. (b) Enlarged discharge voltage-discharge capacity curves to show the DC-IR drop.