## Electrochemical immunosensor based on AuBP@Pt nanostructure and AuPd-PDA nanozyme for ultrasensitive detection of APOE4

Yibiao Liu\*, Guangli He, Huili Liu, Hang Yin, fengli Gao, Jian Chen\*, Shouren Zhang, Baocheng Yang

Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.

\*Address correspondence: E-mail: <u>liuyibiao12345@126.com</u>;

jianchen@infm.hhstu.edu.cn;



**Figure S1.** CV curves of GCE/AuBP@Pt and GCE/AuPd-PDA electrodes in Arsaturated PBS (0.1 M, pH 7.4) buffer containing 2 mM H<sub>2</sub>O<sub>2</sub>.

## The FTIR characterization of AuPd-PDA-Ab<sub>2</sub>.

The characteristic peaks of AuPd-PDA are at 1508 cm<sup>-1</sup> (scissoring vibration of N-H), 1353 cm<sup>-1</sup> (bending vibration of O-H), and 1284 cm<sup>-1</sup> (stretching vibration of phenolic C-O).

After the Ab<sub>2</sub> conjugation, the amide I (1648 cm<sup>-1</sup>, C=O stretching) and amide II (1537 cm<sup>-1</sup>, overlap of N-H bending and C-N stretching) bands of the Ab<sub>2</sub> are observed, which indicates that the human APOE4 detection antibody is successfully attached on the AuPd-PDA.



Figure S2. The FT-IR spectrum of AuPd-PDA (a) and AuPd-PDA-Ab<sub>2</sub> (b).



Figure S3. The characterization of Au BPs by extinction spectrum.



**Figure S4.** Optimization of AuBP@Pt volume when the concentration is constant. error bar = RSD (n = 5).



**Figure S5.** Optimization of  $H_2O_2$  concentration. Error bar = RSD (n = 5).



**Figure S6.** The stability study of the electrochemical immunosensor based on AuBP@Pt nanostructures and AuPd-PDA nanozyme. Error bar = RSD (n = 5)



**Figure S7.** The characterization of surface-modification on GCE/Au/AuBP@Pt electrode: EIS of the GCE/Au/AuBP@Pt electrode (a) modified with Ab<sub>1</sub> (b), Ab<sub>1</sub> + BSA (c), Ab<sub>1</sub> + BSA + APOE4 (d) Ab<sub>1</sub> + BSA + APOE4 + Ab<sub>2</sub> label (e). The EIS was carried out in 5 mM [Fe(CN)6]<sup>3-</sup>/[Fe(CN)6]<sup>4-</sup> at scan rates of 50 mV·s<sup>-1</sup>.

| Methods                                              | Linear range<br>(ng/mL) | LOD<br>(ng/mL) | Target | Reference |
|------------------------------------------------------|-------------------------|----------------|--------|-----------|
| Magneto-immunoassay                                  | 10~200                  | 12.5           | APOE   | 1         |
| Nanobiosensorbasedonporousmagneticmicrospheres (PMM) | 0.1~12.5                | 0.08           | APOE   | 2         |
| Electrochemical sandwich sensor                      | 1~10000                 | 0.3            | APOE4  | 3         |
| colorimetric immunosensor<br>based on nanobody       | 0.001-10                | 0.00042        | APOE   | 4         |
| Electrochemical immunosensor                         | 0.05-2000               | 0.015          | APOE4  | This work |

Table S1. Comparison between different methods for APOE or APOE4 detection.

Table S2. Determination of human APOE4 protein in goat serum.

| Added APOE4<br>concentration<br>(ng/mL) | Average<br>ΔI (μA, n=5) | Measured<br>concentration<br>(ng/mL) | RSD<br>(%,<br>n=5) | Recovery<br>(%, n=5) |
|-----------------------------------------|-------------------------|--------------------------------------|--------------------|----------------------|
| 1                                       | 36.83                   | 0.97                                 | 3.47               | 97.00                |
| 10                                      | 55.62                   | 10.48                                | 5.46               | 104.80               |
| 100                                     | 73.66                   | 102.78                               | 5.31               | 102.78               |

## References

- 1. M. Medina-Sánchez, S. Miserere, E. Morales-Narváez and A. Merkoçi, Biosensors and Bioelectronics, 2014, **54**, 279-284.
- A. de la Escosura-Muñiz, Z. Plichta, D. Horák and A. Merkoçi, *Biosensors and Bioelectronics*, 2015, 67, 162-169.
- 3. Y. Liu, L.-P. Xu, S. Wang, W. Yang, Y. Wen and X. Zhang, *Biosensors and Bioelectronics*, 2015, **71**, 396-400.
- 4. X. Ren, J. Yan, D. Wu, Q. Wei and Y. Wan, ACS Sensors, 2017, **2**, 1267-1271.