Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Rapid and Selective recognition of *Vibrio parahaemolyticus* assisted by perfluorinated alkoxysilane modified molecularly imprinted polymer film

Kaiyue Fu,a,b,# Huiwen Zhang, a,# Yuanyuan Guo, a Juan Li, a,* Heran Nie,c Xiuling Song,a Kun Xu,a Juan Wang,a and Chao Zhao a,*

^a School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China

^b Hebi Center for Disease Control and Prevention, Hebi, Henan, 458030, PR China

^cDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, PR China

[#] Contributed equally.

^{*} Correspondence: li_juan@jlu.edu.cn (J.L.); czhao0529@jlu.edu.cn (C.Z.)

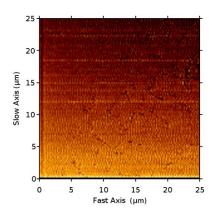


Fig. S1. AFM image of imprinted PDMS film.

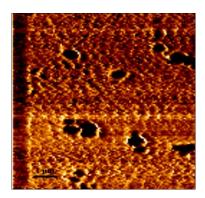


Fig. S2. AFM image of POTS-modified imprinted PDMS film.

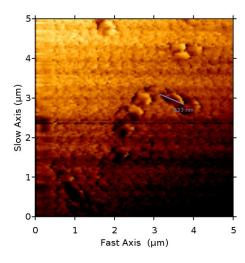


Fig. S3. AFM image of POTS-modified imprinted PDMS film captured *V. parahaemolyticus*.

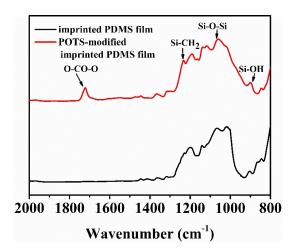


Fig. S4. ATR-IR characterization of imprinted PDMS film and POTS-modified imprinted PDMS film.

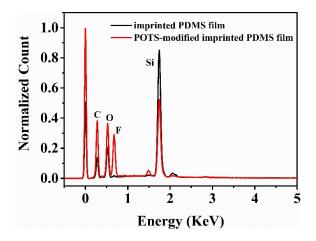


Fig. S5. SEM-EDS characterization of imprinted PDMS film and POTS-modified imprinted PDMS film.