A Nitrogen-Doped Porous Carbon from Biomass with Superior Catalytic Performance for

Acetylene Hydrochlorination

Zhaobing Shen,^{a, b} Yue Liu,^b Yejun Han,^b Yejun Qin,^a Jinhua Li, ^a Ping Xing,^a Biao Jiang^{* a, b}

- a. Shanghai Green Chemical Engineering Research Centre, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345 Lingling Road, Shanghai, P. R. China.
- b. Green Chemical Engineering Research Centre, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Zhangjiang Hi-Tech Park, Pudong Shanghai, P. R. China

E-mail: jiangb@sioc.ac.cn

Reference	Catalyst	т(°С)	GHSV ^a	$X_{\rm acetylene}{}^{\rm b}$	S _{VCM} c	S _{BET} d(m ²	Ne	STY ^f (g _{VCM} h ⁻	STY/(S _{BET} g _N) ^g (g _{VCM}
			(h-1)	(%)	(%)	g-1)	(wt %)	¹ mL ⁻¹)	h ⁻¹ mL ⁻¹ m ⁻² g ⁻¹)
1	B,N-G	150	36	80	98	Ν	10.9	0.08	Ν
2	g-C3N4@AC	180	50	65	98	874	8.6	0.09	1.19E-03
3	PANI-doped carbon	180	36	72	98	592	1.9	0.07	6.32E-03
4	MOF-doped carbon	180	50	80	98	1665	1.6	0.11	4.12E-03
5	N-OMC	180	50	34	98	613	3.9	0.05	1.95E-03
6	AC-n-U500	180	30	75	98	1082	4	0.06	1.43E-03
7	S, N doped carbon	180	50	80	98	49.1	7.9	0.11	2.83E-02
8	TPPB@SAC	180	50	83	98	Ν	Ν	0.11	Ν
9	Si@N-C	200	30	80	98	281	7.1	0.07	3.30E-03
10	p-BN	200	40	72	96	Ν	Ν	0.08	Ν
11	TPPB@SAC	200	30	92	98	873	Ν	0.08	Ν
12	PAN-derived catalyst	200	30	75	98	12	18.5	0.06	2.78E-02
13	g-C3N4	200	30	90	98	47.9	29.4	0.07	5.26E-03
14	N-MC-G	220	30	80	98	582	4.2	0.07	2.69E-03
15	ZIF-8/SAC	220	30	80	98	1058	1.1	0.07	5.66E-03
16	NPC	220	1.7 ^h	85	98	443	2.5	Ν	Ν
17	Defective N-doped carbon	220	36	80	98	295	2.4	0.08	1.12E-02
18	ND@G	220	30	85	98	382	Ν	0.07	Ν
19	NR@CAC	220	30	96	98	703	3.4	0.08	3.31E-03
20	D-AC-M	220	30	60	98	1191	1.9	0.05	2.18E-03
21	NC-2	220	50	97	98	301	9.7	0.13	4.56E-03
22	PSAC-N	250	30	90	98	936	4.9	0.07	1.62E-03
23	13X zeolite	320	60	85	98	501		0.14	Ν
This work	SBMC	180	50	80	98	1038	6.9	0.11	1.53E-03
	SBMC	200	50	87	98	1038	6.9	0.12	1.67E-03
	SBMC	220	50	95	98	1038	6.9	0.13	1.82E-03

^a C_2H_2 GHSV; ^b conversion of acetylene; ^c selectivity for VCM; ^d the specific area of catalysts; ^e nitrogen atom content on the catalysts by XPS; ^f the space-time yield of VCM; ^g the value of STY was normalized by the surface area and nitrogen contents; ^g the GHSV is 1.7 mL g⁻¹ h⁻¹.

Table S1. Comparation of catalytic performance among the previous works and SBMC

							— Tab
Reference	Catalyst	т(℃)	X _A a (%)	X _A ^b (%)	t ^c (h)	deactivation rate ^d (%)	
1	B,N-G	150	95	80	2	7.500	
2	g-C3N4@AC	180	75	65	7	1.429	
3	PANI-doped carbon	180	76	72	9	0.444	
4	MOF-doped carbon	180	60	46	50	0.280	
5	N-OMC	180	35	30	20	0.250	
6	AC-n-U500	180	22	21	20	0.050	
7	S, N doped carbon	180	82	78	9	0.444	
8	TPPB@SAC	180	84	81	40	0.075	
9	Si@N-C	200	82	80	100	0.020	
10	p-BN	200	100	95	1000	0.005	
11	TPPB@SAC	220	97	94	300	0.010	
12	PAN-derived catalyst	280	88	82	200	0.030	
13	g-C3N4	220	94	92	40	0.050	
14	N-MC-G	220	80	80	100	0.000	
15	ZIF-8/SAC	220	81	76	150	0.033	
16	NPC	260	96	85	20	0.550	
17	Defective N-doped carbon	220	96	75	14	1.500	
18	ND@G	220	82	80	200	0.010	
19	NR@CAC	220	95	92	200	0.015	
20	D-AC-M	220	60	60	90	0.000	
21	NC-2	220	98	88	50	0.200	
22	PSAC-N	250	70	58	160	0.075	
23	13X zeolite	320	95	77	6	3.000	
This work	SBMC	200	99	96	110	0.027	

^a the initial conversion of acetylene; ^b the final conversion of acetylene; ^c reaction time; ^d the deactivation rate of the catalysts.

Comparation of catalytic stability among the previous works and SBMC