Supplementary Materials

for

Bifunctional phase-transfer catalysts for synthesis of 2oxazolidinones from isocyanates and epoxides

Dong-Xiao Cui,^{a,b,†} Yue-Dan Li,^{a,†} Ping Huang,^a Zhuang Tian,^a Yan-Yan Jia^{b,*} and Ping-An Wang^{a,*}

^a Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, P. R. China

^b Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Changle West Road 15, Xi'an 710032, P. R. China

⁺ Co-first authors. These two authors have the same contribution to this work.

*Correspondence: ping_an1718@outlook.com, Tel.: +86-29-84776807

Contents

General	S2
Typical procedures for the synthesis of 2-oxazolidinones	S2
¹ H and ¹³ C NMR Spectra of 2-oxazolidinones	S6
HRMS of 2-oxazolidinones	S19

General

¹H NMR and ¹³C NMR spectra were measured in CDCl₃, solution on a Bruker AV-400 spectrometer using TMS as an internal reference. Coupling constant (*J*) values are given in Hz. Multiplicities are designated by the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; br, broad; m, multiplet. High-resolution mass spectra (HRMS) were performed on a *Bruker* microTOF-Q II Mass Spectrometer with ES ionization (ESI). All commercially available reagents were used as received. Thin-layer chromatography on silica (with GF₂₅₄) was used to monitor all reactions. Products were purified by flash column chromatography on silica gel purchased from Qingdao Haiyang Chemical Co., Ltd. The preparation and characterization data of all bifunctional phase-transfer catalysts (Bif-PTCs) were found in our previous report.¹

Typical procedure for the synthesis of 2-isoxazolidinones 3

0.20 mmol of epoxide **1**, 2.7 mg of **Bif-PTC-1** (2.5 mol%), and 0.21 mmol of isocyanate **2** in 2.0 mL PhCl was stirred for 12 h at 100 °C under inert atmosphere. The solvent was evaporated under reduced pressure and the residue was purified by a flash column chromatography (petroleum ether : ethyl acetate = 2 : 1 to 1 : 3) to yield corresponding 2-oxazolidinones **3**.

References

- 1. Y. Li, D. Cui, J. Zhu, P. Huang, Z. Tian, Y. Jia, P. Wang, Green Chem. 21 (2019) 5231–5237 .
- 2. Y. Toda, S. Gomyou, S. Tanaka, Y. Komiyama, A. Kikuchi, H. Suga, Org. Lett. 19 (2017) 5786–5789.
- 3. J.E. Herweh, T.A. Foglia, D. Swern, J. Org. Chem. 33 (1968) 4029–4033.
- 4. M. Zhou, X. Zheng, Y. Wang, D. Yuan, Y. Yao, ChemCatChem. 11 (2019) 5783-5787.

White solid,^{2 1}H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.5 Hz, 2H), 7.42-7.29 (m, 4H), 7.03 (t, *J* = 7.2 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 5.01 (d, *J* = 3.6 Hz, 1H), 4.25 (d, *J* = 4.0 Hz, 2H), 4.20 (t, *J* = 8.8 Hz, 1H), 4.12-4.04 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.94, 154.24, 136.74, 129.68, 129.45, 129.14, 121.86, 119.42, 114.60, 70.39, 67.80, 47.34; HRMS (ESI) *m/z* calcd. for C₁₆H₁₅CINO₃⁺ [M+H]⁺: 304.0735, found 304.0741.

White solid,^{3 1}H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.1 Hz, 2H), 7.34-7.30 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.05-6.99 (m, 1H), 6.93 (d, *J* = 7.9 Hz, 2H), 4.99 (s, 1H), 4.31-4.14 (m, 3H), 4.10-4.03 (m, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.04, 154.51, 135.61, 133.95, 129.65, 121.75, 118.46, 114.62, 70.34, 67.95, 47.63, 20.76; HRMS (ESI) *m/z* calcd. for C₁₇H₁₈NO₃⁺ [M+H]⁺: 284.1281, found 284.1279.

White solid,⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 1H), 7.51 (d, *J* = 1.4 Hz, 3H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.03 (t, *J* = 7.3 Hz, 1H), 6.93 (d, *J* = 8.3 Hz, 2H), 5.01 (dd, *J* = 8.8, 4.7 Hz, 1H), 4.25 (d, *J* = 4.4 Hz, 2H), 4.19 (t, *J* = 8.8 Hz, 1H), 4.10-4.04 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.93, 154.18, 137.21, 129.69, 121.87, 119.73, 117.05, 114.60, 70.40, 67.80, 47.26; HRMS (ESI) *m/z* calcd. for C₁₆H₁₅BrNO₃⁺ [M+H]⁺: 348.0230, found 348.0236.

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.7 Hz, 2H), 7.37 (d, *J* = 8.7 Hz, 2H), 7.23-7.09 (m, 2H), 6.93 (t, *J* = 7.1 Hz, 1H), 6.82 (d, *J* = 7.9 Hz, 1H), 5.03 (d, *J* = 3.9 Hz, 1H), 4.36-4.15 (m, 3H), 4.13-4.07 (m, 1H), 2.12 (s, 3H); HRMS (ESI) *m/z* calcd. for C₁₇H₁₆CINNaO₃⁺ [M+Na]⁺: 340.0711, found 340.0709.

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.5 Hz, 2H), 7.20 (dd, *J* = 15.0, 7.3 Hz, 4H), 6.95 (d, *J* = 6.7 Hz, 1H), 6.83 (d, *J* = 7.6 Hz, 1H), 4.97 (s, 1H), 4.20 (dd, *J* = 14.6, 10.4 Hz, 3H), 4.06 (s, 1H), 2.38 (s, 3H), 2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) containing isomers, δ 156.16, 154.69, 148.97, 139.27, 135.72, 133.82, 131.24, 130.95 and 130.86, 129.97 and 129.88, 129.63 and 129.43, 128.15, 127.03, 126.89, 121.39, 118.44, 113.20, 111.04, 70.54, 68.42 and 68.26, 47.44, 21.21 and 20.76, 16.06; HRMS (ESI) *m/z* calcd. for C₁₈H₂₀NO₃⁺ [M+H]⁺: 298.1438, found 298.1440.

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 4H), 7.23-7.11 (m, 2H), 6.94 (d, *J* = 7.3 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 5.03 (d, *J* = 4.0 Hz, 1H), 4.24 (dd, *J* = 22.5, 6.3 Hz, 3H), 4.12-4.07 (m, 1H), 2.13 (s, 3H); HRMS (ESI) *m/z* calcd. for C₁₇H₁₆BrNNaO₃⁺ [M+Na]⁺: 384.0206, found 384.0200.

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.60 (d, *J* = 8.9 Hz, 2H), 7.50 (dd, *J* = 7.6, 4.6 Hz, 2H), 7.39 (m, 4H), 6.85 (d, *J* = 7.6 Hz, 1H), 5.16 (m, 1H), 4.44 (m, 2H), 4.32 (t, *J* = 8.9 Hz, 1H), 4.20 (dd, *J* = 8.8, 5.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.35, 153.61, 136.75, 134.50, 129.46, 129.17, 127.58, 126.70, 125.62, 125.60, 125.28, 121.50, 119.45, 104.94, 70.51, 68.31, 47.37; HRMS (ESI) *m/z* calcd. for C₂₀H₁₇ClNO₃⁺ [M+H]⁺: 354.0891, found 354.0893.

Light yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 8.37-6.27 (m, 11H), 5.32 (s, 1H), 4.29 (d, *J* = 5.1 Hz, 1H), 4.09 (d, *J* = 8.6 Hz, 1H), 3.96 (d, *J* = 8.5 Hz, 1H), 3.63-3.35 (m, 1H), 2.33 (s, 3H).

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.3 Hz, 1H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.66-7.45 (m, 5H), 7.39 (t, *J* = 7.9 Hz, 2H), 7.29 (s, 1H), 6.85 (d, *J* = 7.5 Hz, 1H), 5.16 (dd, *J* = 8.8, 4.3 Hz, 1H), 4.44 (m, 2H), 4.31 (t, *J* = 8.9 Hz, 1H), 4.19 (dd, *J* = 8.8, 5.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.31, 153.60, 137.26, 134.50, 132.10, 127.58, 126.70, 125.63, 125.61, 125.27, 121.49, 119.75, 117.05, 104.95, 70.52, 68.31, 47.26; HRMS (ESI) *m/z* calcd. for C₂₀H₁₇BrNO₃⁺ [M+H]⁺: 398.0386, found 398.0380.

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 6.2 Hz, 2H), 7.29 (s, 7H), 4.76 (s, 1H), 4.58 (s, 2H), 4.02 (s, 1H), 3.87 (s, 1H), 3.70 (d, *J* = 3.1 Hz, 2H).

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, *J* = 29.5, 9.0 Hz, 6H), 7.20 (dd, *J* = 20.2, 11.9 Hz, 3H), 4.79 (s, 1H), 4.64 (d, *J* = 2.4 Hz, 2H), 4.07 (s, 1H), 3.93 (s, 1H), 3.74 (d, *J* = 4.7 Hz, 2H), 2.35 (s, 3H).

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.41 (m, 4H), 7.40 – 7.31 (m, 4H), 7.28 (s, 1H), 4.80 (s, 1H), 4.64 (s, 2H), 4.05 (d, *J* = 6.3 Hz, 1H), 3.92 (d, *J* = 7.9 Hz, 1H), 3.75 (s, 2H).

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.1 Hz, 2H), 7.56 (d, *J* = 6.6 Hz, 1H), 7.42 (s, 4H), 7.18 (d, *J* = 7.3 Hz, 2H), 4.97 (s, 1H), 4.57 (dd, *J* = 27.9, 11.7 Hz, 2H), 4.18 (t, *J* = 8.7 Hz, 1H), 3.91 (d, *J* = 6.0 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.11, 154.43, 135.51, 134.01, 133.47, 129.76, 129.64, 129.18, 128.52, 118.52, 70.17, 64.85, 47.35, 20.73; HRMS (ESI) *m/z* calcd. for C₁₈H₁₈NO₄⁺ [M+H]⁺: 312.1230, found 312.1232.

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.8 Hz, 2H), 7.37 (d, *J* = 8.8 Hz, 2H), 6.98 (m, 4H), 5.00 (dd, *J* = 13.4, 5.2 Hz, 1H), 4.36-4.24 (m, 2H), 4.24-4.12 (m, 2H), 3.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.33, 150.16, 147.61, 136.86, 129.32, 129.07, 123.09, 121.03, 119.47, 115.99, 112.41, 70.67, 70.00, 55.83, 47.37; HRMS (ESI) *m/z* calcd. for C₁₇H₁₇CINO₄⁺ [M+H]⁺: 334.0841, found 334.0840.

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.40 (m, 4H), 7.09-6.85 (m, 4H), 5.05-4.97 (m, 1H), 4.34-4.23 (m, 2H), 4.23-4.12 (m, 2H), 3.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.27, 150.17, 147.61, 137.37, 132.01, 123.10, 121.03, 119.78, 116.93, 116.00, 112.40, 70.67, 70.00, 55.83, 47.30; HRMS (ESI) *m/z* calcd. for C₁₇H₁₇BrNO₄⁺ [M+H]⁺: 378.0335, found 378.0330.

light yellow solid, ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.44 Hz, 2H), 7.61 (t, *J* = 8.48 Hz, 1H), 7.49 (q, J = 7.72 Hz, 2H), 6.99-6.82 (m, 2H), 6.71 (br, 1H), 5.42-5.29 (m, 1H), 4.64-4.61 (m, 2H), 4.14-4.08 (m, 1H), 3.90 (s, 4H), 3.85-3.83 (m, 1H), 3.04 (s, 4H); HRMS (ESI) *m/z* calcd. for C₂₁H₂₃CIFN₂O₅⁺ [M·HCl+H]⁺: 437.1274, found 437.1271.

NMR copies of 2-oxazolidinoes

S6

HRMS copies of 2-oxazolidinoes

