Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting information

MIC determination. MICs against replicating M. tuberculosis were determined by the microplate Alamar blue assay (MABA). PBTZ169 (synthesized by our lab), RIF and INH were included as positive controls. M. tuberculosis H37Rv (ATCC27294) and clinical isolate strains were grown to late log phase (70 to 100 Klett units) in Difco Middlebrook 7H9 Broth (catalog no. 271310) supplemented with 0.2% (vol/vol) glycerol, 0.05% Tween 80, and 10% (vol/vol) albumin-dextrosecatalase (BBL Middlebrook ADC Enrichment, catalog no. 212352) (7H9-ADCTG). Cultures were centrifuged, washed twice, and then suspended in phosphate phosphate-buffered saline. Suspensions were then passed through an 8 µm-pore-size filter to remove clumps, and aliquots were frozen at -80 °C. Two fold dilutions of test compounds and positive controls were prepared in 7H9-ADC-TG in a volume of 100 µl in 96-well, black, clear-bottom microplates (BD Biosciences, Franklin Lakes, NJ). M. tuberculosis (100 μ l containing 2 × 10⁵ CFU) was added, yielding a final testing volume of 200 µl. The plates were incubated at 37°C; on day 7 of incubation, 12.5 μl of 20% Tween 80 and 20 μl of Alamar blue were added to all wells. After incubation at 37 °C for 16 to 24 h, the fluorescence was read at an excitation of 530 nm and an emission of 590 nm. The MIC was defined as the lowest concentration effecting a reduction in fluorescence of ≥90% relative to the mean of replicate bacterium-only controls.

Aqueous solubility determination. Solubility was measured at pH 2.0 by using an HPLC-UV method. Test compounds were initially dissolved in 0.01 M HCl (approximately pH 2.0, 1 mL). The mixture was stirred for 12 h at room temperature and then filtered. The saturated solutions were transferred to other vials for analysis by HPLC-UV. Each sample was performed in triplicate. Aqueous concentration was determined by comparison of the peak area of the saturated solution with a standard curve plotted peak area versus known concentrations, which were prepared by solutions of test compound in ACN at 1.0, 0.1, 0.01, 0.001 mg/mL.

All samples were performed on an Agilent 1260 HPLC-UV system. Conditions (solvent A = methanol, solvent B = 0.1% TFA + H_2O): Zorbax SB-C18 column (250 mm × 4.6 mm, 5 µm, PN: 883975-902). Injection volumn: 10 µL. Flow: 0.5 mL/min. Gradient elution: 0.00 min, 40% A; 3 min, 50% A; 15 min, 100% A; 16 min, 40% A; 25 min 40% A. UV at 254 nm.

Cytotoxicity determination. Compounds were examined for toxicity (CC_{50}) in a mammalian Vero cell line at concentrations from 1000 to 4 µg/ml. The Vero cells were maintained in culture medium (Minimum Essential Medium with Earle's salt, supplemented with 10% fetal bovine serum) at 37 °C under 5% CO_2 . Cells were seeded in 96-well plates at the plating density of 1×10^4 cells per well and allowed to recover for 24 h. Culture medium was replaced by assay medium containing the compound to be tested or drug-free. After 72 h of exposure, cells were harvested and cell viability was assessed by MTT assay. The CC_{50} values were calculated by Bliss analyses.

General Chemical Methods. All commercially available solvents and reagents were used without further purification. All moisture sensitive reactions were carried out under Argon atmosphere in commercially available anhydrous solvents. ^{1}H NMR spectra were determined on a Varian Mercury-400 or Bruker 500 M spectrometer in MeOD, CDCl₃, or DMSO- d_6 using tetramethylsilane as an internal standard. Electrospray ionization (ESI) mass spectra was obtained on an Agilent 1260-6420 Mass spectrum instruments. The reagents were all of analytical grade or chemically pure. TLC was performed on silica gel plates (Merck, ART5554 60F254).

Purity was determined by HPLC, and all target compounds were confirmed to have >95% purity.

Standard Drug. Rifampicin (RFP) and isoniazid (INH) were purchased from Sigma. PBTZ169 was synthesized according to the published procedure (EMBO Mol. Med.2014, 6 (3), 372–83.).

Purity determination. All samples were performed on an Agilent 1260 HPLC-UV system. Conditions (solvent A = methanol, solvent B = 0.1% TFA + H_2O): Zorbax SB-C18 column (250 mm × 4.6 mm, 5 μ m, PN: 883975-902). Injection volumn: 10 μ L. Flow: 0.5 mL/min. Gradient elution: 0.00 min, 40% A; 3 min, 50% A; 15 min, 100% A; 16 min, 40% A; 25 min 40% A. UV at 254 nm.

General synthesis procedure for synthesis of compounds 1-34. To a stirring solution of **A** (0.3 mmol) in MeOH (5 mL) was added the corresponding aldehyde (0.4 mmol) and NaCNBH₃ (0.5 mmol) at room temperature. The mixture was adjusted to pH 6-7, stirred

overnight at room temperature, and quenched by 1 M NaOH solution (5 mL). The mixture was diluted by H_2O (15 mL), and extracted by DCM (10 mL \times 3). The combined organic layer was washed by brine, dried over anhydrous $MgSO_4$, filtered, and concentrated. The residue was purified over silica gel column (DCM : MeOH = 20 : 1) to yield oils **B1-B34**.

To a stirred solution of **B1-B34** (0.2 mmol) in DCM (5 mL) was added TFA (1 mL) at room temperature. The mixture was stirred for 2 hours and concentrated to afford the crude product **B1-34** which was used directly in the next step without further purification.

To a stirred solution of above crude **B1-34** in anhydrous MeOH (10 mL) was added BTZ core compound **D** (0.2 mmol) and Et₃N (0.6 mmol) at room temperature. The mixture was stirred overnight at 40 °C, and concentrated. The residue was purified by silica gel column (DCM: MeOH = 20:1) to yield the yellow solids **1-34**. (The data and NMR copies of compounds **1-34** were listed in the supporting information.)

2-(5-(cyclohexylmethyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (1). According to above general procedure, employing cyclohexanecarbaldehyde afforded compound 1 as a yellow solid. 1 H NMR (500 MHz, CDCl₃) δ 9.21 (s, 1H), 8.81 (s, 1H), 4.23 (s, 1H), 4.02-3.96 (m, 2H), 3.66 (s, 1H), 3.14-3.02 (brs, 2H), 2.72-2.54 (brs, 4H), 2.29 (s, 2H), 1.79-1.71 (m, 6H), 1.26-1.17(m, 3H), 0.91(s, 2H); 13 C NMR (125 MHz, CDCl₃) δ 165.97, 159.88, 143.59, 134.62, 133.76 (q, J = 3.46 Hz), 129.59(q, J = 34.41 Hz), 126.87, 126.51, 125.90(q, J = 3.34 Hz), 122.54 (q, J = 274.1 Hz), 62.13, 60.23, 56.37, 53.44, 41.80, 39.94, 36.81, 31.78, 26.72, 26.05; ESI-MS: 483 (M + H)+. HRMS-ESI (m/z): Calcd. For $C_{22}H_{26}F_3N_4O_3S$ (M+H)+: 483.1672; Found: 483.1675.

$\hbox{$2$-(5-(4-fluorobenzyl) hexahydropyrrolo} \hbox{$[3,4-c]$ pyrrol-$2(1H)-yl)-$8-nitro-$6-lines (2-fluorobenzyl)$ and $2-fluorobenzyl. The statement of the state$

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (2). According to above general procedure, employing 4-fluorobenzaldehyde afforded compound 2 as a yellow solid. mp: $178-180 \,^{\circ}\text{C}$; ^{1}H NMR ($500 \, \text{MHz}$, CDCl₃) δ 9.21 (s, 1H), 8.82(s, 1H), $7.31 \, \text{(s, 2H)}$, $7.05-7.04 \, \text{(s, 2H)}$, $4.23 \, \text{(s, 1H)}$, $4.04-3.96 \, \text{(m, 2H)}$, $3.78-3.75 \, \text{(m, 1H)}$, $3.65 \, \text{(brs, 2H)}$, $3.18-3.04 \, \text{(brs, 2H)}$, $2.73-2.61 \, \text{(brs, 3H)}$, $1.64 \, \text{(s, 1H)}$, $1.30-1.27 \, \text{(m, 3H)}$; ^{13}C NMR(125 MHz, CDCl₃) δ 165.97, 143.61, 134.53, 133.79 (q, J=3.42 Hz), 130.02 (q, J=35.30 Hz), 126.87, $125.93 \, \text{(q, J} = 3.56 \, \text{Hz)}$, $123.78 \, \text{(q, J} = 272.01 \, \text{Hz)}$, 115.42, 115.22, 59.60, 58.51, 58.35, 56.17,

53.22, 41.81, 39.99; ESI-MS: 495 (M + H)⁺; HRMS-ESI (m/z): Calcd. For C₂₂H₁₉F₄N₄O₃S (M+H)⁺: 495.1109; Found: 495.1106.

2-(5-(4-chlorobenzyl)hexahydropyrrolo[3,4-c|pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (3). According to above general procedure, employing 4-chlorobenzaldehyde afforded compound 3 as a yellow solid. mp: 228-230 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.21(s, 1H), 8.81(s, 1H), 7.30 (s, 1H), 7.21-7.15 (m, 3H), 4.25-4.20 (brs, 1H), 4.03-3.95 (brs, 2H), 3.66 (brs, 3H), 3.17-3.04(brs, 2H), 2.74-2.64 (brs, 3H), 2.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.97, 159.92, 143.60, 134.60, 133.78(q, J = 3.42 Hz), 129.33 (q, J = 34.20 Hz), 128.64, 126.86, 125.90 (q, J = 3.41Hz), 122.40 (q, J = 270.12 Hz), 121.08, 59.57, 58.80, 56.20, 53.46, 53.21, 41.84, 40.01, 21.13; ESI-MS: 511 (M + H)+; HRMS-ESI (m/z): Calcd. For C₂₂H₁₉ClF₃N₄O₃S (M+H)+: 511.0813; Found: 511.0817.

2-(5-(4-bromobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (4). According to above general procedure, employing 4-bromobenzaldehyde afforded compound 4 as a yellow solid. mp: 237-239 °C; 1 H NMR (500 MHz, CDCl₃) δ 9.20 (s, 1H), 8.81(s, 1H), 7.48 (s, 2H), 7.30-7.23 (brs, 2H), 4.22 (s, 1H), 4.01 (brs, 2H), 3.76-3.65 (brs, 3H), 3.18-3.05 (brs, 2H), 2.75-2.61 (brs, 2H), 1.64 (brs, 1H); 13 C NMR (125 MHz, CDCl₃) δ 165.15, 159.52, 144.61, 138.93, 132.14, 131.55, 130.95, 130.12, 128.11 (q, J = 33.92 Hz), 126.71, 126.57, 123.45 (q, J = 253.41 Hz),120.25, 59.98, 59.86, 58.09, 56.35, 53.52, 41.74; ESI-MS: 555 (M + H)⁺; HRMS-ESI (m/z): Calcd. For $C_{22}H_{19}BrF_3N_4O_3S$ (M+H)⁺: 555.0308; Found: 555.0310.

$\hbox{$2$-(5-(4-cyanobenzyl) hexahydropyrrolo} \hbox{$[3,4-c]$ pyrrol-$2(1H)-yl)-$8-nitro-$6-lemma $$-(5-(4-cyanobenzyl))$ and $$-(5-(4-cyanobenzyl))$ are substituted in the substituted in t$

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (5). According to above general procedure, employing 4-formylbenzonitrile afforded compound **5** as a yellow solid. mp: 232-234 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.20 (s, 1H), 8.81 (s, 1H), 7.65 (s, 2H), 7.45 (s, 1H), 7.30 (s, 1H), 4.24 (s, 1H), 4.05-3.96 (m, 2H), 3.71- 3.67 (m, 3H), 3.19-3.05 (m, 2H), 2.75-2.63 (m, 2H); ¹³C NMR(125 MHz, CDCl3) δ 165.96, 159.99, 144.18, 143.60, 134.47, 133.78, 133.75 (q, J = 3.60 Hz), 132.93, 129.70 (q, J = 35.43 Hz), 129.04, 125.97 (q, J = 3.60 Hz), 122.35 (q, J = 273.50 Hz), 120.25, 118.76, 118.33, 111.17, 59.89, 58.71, 58.47,

53.47, 53.33, 41.84, 40.04; ESI-MS: 502 (M + H)⁺; HRMS-ESI (m/z): Calcd. For $C_{23}H_{19}F_3N_5O_3S$ (M+H)⁺: 502.1115; Found: 502.1114.

8-nitro-2-(5-(4-nitrobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (6). According to above general procedure, employing 4-nitrobenzaldehyde afforded compound **6** as a yellow solid. mp: 230-232 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.21 (s, 1H), 8.82 (s, 1H), 8.22-8.20 (m, 2H), 7.52-7.51 (m, 2H), 4.28-4.23 (m, 1H), 4.06-4.03 (m, 2H), 3.97-3.96 (m, 3H), 3.20-3.07 (m, 2H), 2.77-2.65 (m, 4H); ¹³C NMR(125 MHz, CDCl₃) δ 165.95, 160.01, 147.29, 146.29, 143.60, 134.46, 133.77 (q, J = 3.34 Hz), 129.25 (q, J = 35.40 Hz), 126.77, 126.47, 126.00, 125.96, 122.35 (q, J = 270.12 Hz), 59.94, 58.44, 53.35, 41.86, 40.05; ESI-MS: 522 (M + H)⁺; HRMS-ESI (m/z): Calcd. For C₂₂H₁₉F₃N₅O₅S (M+H)⁺: 522.1054; Found: 522.1057.

8-nitro-6-(trifluoromethyl)-2-(5-(4-(trifluoromethyl)benzyl) hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-4H-benzo[e][1,3]thiazin-4-one (7). According to above general procedure, employing 4-trifluorobenzaldehyde afforded compound 7 as a yellow solid. mp: 215-217 °C; 1 H NMR (500 MHz, CDCl₃) δ 8.88-8.87 (m, 2H), 7.68-7.66 (m, 2H), 7.55-7.54 (m, 2H), 4.05-3.97 (m, 2H), 3.75-3.61 (m, 4H), 3.34-3.31 (m, 1H), 3.10 (s, 1H), 2.97 (s, 1H), 2.72-2.65 (m, 2H); 13 C NMR (125 MHz, CDCl₃) δ 165.14, 159.52, 144.59, 144.47, 135.18, 132.13, 132.11 (q, J = 3.70 Hz), 129.38, 127.87 (q, J = 31.82 Hz), 126.70, 126.55, 126.52, 126.16, 125.54 (q, J = 3.36 Hz), 123.96 (q, J = 275.64 Hz), 60.04, 59.91, 58.29, 56.48, 53.51, 49.06, 41.77; ESI-MS: 545 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{23}H_{19}F_6N_4O_3S$ (M+H)+: 545.1077; Found: 545.1081.

2-(5-(4-methoxybenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (8). According to above general procedure, employing 4-methoxybenzaldehyde afforded compound 8 as a yellow solid. mp: 192-194 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.21 (s, 1H), 8.81 (s, 1H), 7.24-7.23 (m, 2H), 6.89-6.87 (m, 2H), 4.22-4.20 (m, 1H), 4.02-3.94 (m, 2H), 3.84 (s, 3H), 3.77-3.75 (m, 2H), 3.66-3.61 (m, 2H), 3.15-3.02 (m, 2H), 2.72-2.61 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 165.97, 159.87, 158.82, 143.59, 134.62, 133.76 (q, J = 3.40 Hz), 129.07 (q, J = 35.13 Hz), 126.87, 125.91 (q, J = 3.58 Hz), 122.47 (q, J = 270.82 Hz), 114.14, 113.76 ,

59.68, 59.57, 58.47, 56.30, 55.28, 53.36, 41.84, 40.01; ESI-MS: 507 (M + H)+; HRMS-ESI (m/z): Calcd. For C₂₃H₂₂F₃N₄O₄S (M+H)+: 507.1308; Found: 507.1305.

$2\hbox{-}(5\hbox{-}(4\hbox{-}(tert\hbox{-}butyl)benzyl)hexahydropyrrolo[3,4\hbox{-}c]pyrrol\hbox{-}2(1H)\hbox{-}yl)\hbox{-}8\hbox{-}nitro\hbox{-}6\hbox{-}2(1H)\hbox{-}2($

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (9). According to above general procedure, employing 4-tert-butylbenzaldehyde afforded compound 9 as a yellow solid. mp: 81-83 °C; 1 H NMR (500 MHz, DMSO) δ 8.88-8.87 (m, 2H), 7.32-7.31 (m, 2H), 7.22-7.21 (m, 2H), 4.01-3.95 (m, 2H), 3.76-3.73 (m, 1H), 3.63-3.56 (m, 3H), 3.34 (s, 2H), 3.08-2.96 (brs, 2H), 2.69-2.62 (m, 2H), 1.27 (s, 9H); 13 C NMR (125 MHz, DMSO) δ 165.11, 159.49, 149.56, 144.58, 136.34, 135.18, 132.10 (q, J = 3.47 Hz), 128.45, 127.77 (q, J = 34.40 Hz), 126.53 (q, J = 3.40 Hz), 125.36, 123.15 (q, J = 272.95 Hz), 60.15, 59.99, 58.61, 56.40, 53.56, 41.75, 34.59, 31.63; ESI-MS: 533 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{26}H_{28}F_{3}N_{4}O_{3}S$ (M+H)+: 533.1829; Found: 533.1833.

2-(5-(4-methylbenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (10). According to above general procedure, employing 4-methylbenzaldehyde afforded compound 10 as a yellow solid. mp: 223-225 °C; 1 H NMR (500 MHz, CDCl₃) δ 9.21 (s, 1H), 8.81 (s, 1H), 7.22-7.17 (m, 4H), 4.61 (s, 1H), 4.00-3.98 (m, 2H), 3.67 (brs, 3H), 3.18-3.05 (m, 2H), 2.75 (brs, 4H), 2.37 (s, 3H); 13 C NMR (125 MHz, CDCl₃) δ 165.97, 159.98, 143.60, 134.57, 133.78 (q, J = 3.41 Hz), 129.46 (q, J = 35.52 Hz), 129.18, 128.70, 128.59, 126.85, 126.50, 126.15, 125.91 (q, J = 3.61 Hz), 122.54 (q, J = 273.08 Hz), 59.44, 58.77, 56.10, 46.31, 41.81, 39.98, 21.13; ESI-MS: 491 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{23}H_{22}F_3N_4O_3S$ (M+H)+: 491.1359; Found: 491.1360.

8-nitro-2-(5-(4-(trifluoromethoxy)benzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-6-(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (11). According to above general procedure, employing 4-(trifluoromethoxy)benzaldehyde afforded compound 11 as a yellow solid. mp: 188-189 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.21 (s, 1H), 8.81 (s, 1H), 7.35-7.20 (m, 4H), 4.24 (s, 1H), 4.02-3.96 (m, 2H), 3.66 (brs, 3H), 3.17-3.04 (m, 1H), 2.75-2.61 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 165.95, 160.33, 143.60, 134.42, 133.78 (q, J = 3.74 Hz), 127.80(q, J = 35.40 Hz), 126.77, 125.98, 124.28, 122.40 (q, J = 273.50 Hz),

58.50, 58.28, 53.46, 41.78, 39.96; ESI-MS: $561 (M + H)^+$; HRMS-ESI (m/z): Calcd. For $C_{23}H_{19}F_6N_4O_4S (M+H)^+$: 561.1026; Found: 561.1028.

2-(5-benzylhexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (12). According to above general procedure, employing benzaldehyde afforded compound **12** as a yellow solid. ¹H NMR (500 MHz, DMSO) δ 8.88-8.87 (m, 2H), 7.30-7.24 (m, 5H), 4.03-3.96 (m, 2H), 3.74-3.72 (m, 1H), 3.60 (brs, 3H), 3.34 (brs, 1H), 3.09 (brs, 1H), 2.96 (brs, 1H), 2.69-2.62 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 165.11, 159.48, 144.56, 139.39, 135.18, 132.11 (q, J = 3.60 Hz), 128.74, 128.65, 127.47 (q, J = 33.34 Hz), 127.27, 126.68, 126.52 (q, J = 3.46 Hz), 123.20 (q, J = 271.54 Hz), 60.07, 59.95, 58.94, 56.48, 56.38, 53.54, 41.75; ESI-MS: 477 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{20}F_3N_4O_3S$ (M+H)+: 477.1203; Found: 477.1200.

2-(5-(3-fluorobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (13). According to above general procedure, employing 3-fluorobenzaldehyde afforded compound 13 as a yellow solid. mp: 176-178 °C; 1 H NMR (500 MHz, DMSO) δ 8.88-8.86 (m, 2H), 7.36-7.34 (m, 1H), 7.16-7.04 (m, 3H), 4.03-3.96 (m, 2H), 3.76-3.74 (m, 2H), 3.62 (s, 3H), 3.34 (s, 1H), 3.09 (brs, 1H), 2.97 (brs, 1H), 2.71-2.63 (m, 2H); 13 C NMR (125 MHz, DMSO) δ 165.11, 163.90, 161.48, 159.49, 144.56, 142.61, 142.54, 135.17, 132.11 (q, J = 3.53 Hz), 130.58, 130.50, 130.10, 127.79 (q, J = 34.29 Hz), 126.69, 126.53 (q, J = 3.36 Hz), 124.66, 124.64, 123.24 (q, J = 272.89 Hz), 115.30, 115.08, 114.14, 113.93, 60.03, 59.89, 58.20, 56.32, 53.51, 41.75; ESI-MS: 495 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{19}F_4N_4O_3S$ (M+H)+: 495.1109; Found: 495.1111.

2-(5-(3-chlorobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (14). According to above general procedure, employing 3-chlorobenzaldehyde afforded compound 14 as a yellow solid. mp: 177-180 °C; ¹H NMR (500 MHz, DMSO) δ 8.87 (s, 2H), 7.34-7.21 (m, 4H), 3.99-3.97 (m,2H), 3.77-3.75 (m,1H), 3.61 (brs, 3H), 3.34 (brs, 2H), 3.08 (brs, 1H), 2.96 (brs, 1H), 2.68-2.62 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 165.11, 159.47, 144.56, 142.14, 135.16, 133.37, 132.12, 132.09, 130.54, 128.41, 127.76 (q, J = 34.66 Hz), 126.70, 126.52(q, J =

3.54 Hz), 123.23 (q, J = 273.27 Hz), 60.04, 59.90, 58.07, 56.29, 53.51; ESI-MS: 511 (M + H)⁺; HRMS-ESI (m/z): Calcd. For $C_{22}H_{19}ClF_3N_4O_3S(M+H)^+$: 511.0813; Found: 511.0815.

2-(5-(3-bromobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (15). According to above general procedure, employing 3-bromobenzaldehyde afforded compound 15 as a yellow solid. mp: 172-174 °C; ¹H NMR (500 MHz, DMSO) δ 8.88-8.87 (m, 2H), 7.48-7.42 (m, 2H), 7.32-7.28 (m, 2H), 4..01-3.95 (m, 2H), 3.78-3.75 (m, 1H), 3.63-3.60 (m, 3H), 3.34 (s, 1H), 3.09 (brs, 1H), 2.96 (brs, 1H), 2.69-2.62 (m, 2H); ESI-MS: 555 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{19}BrF_3N_4O_3S$ (M+H)+: 555.0308; Found: 555.0306.

3-((5-(8-nitro-4-oxo-6-(trifluoromethyl)-4H-benzo[e][1,3]thiazin-2-

yl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)methyl)benzonitrile (**16**). According to above general procedure, employing 3-formylbenzonitrile afforded compound **16** as a yellow solid. 1 H NMR (500 MHz, DMSO) δ 8.88-8.87 (m, 2H), 7.74-7.66 (m, 3H), 7.55-7.52 (m, 1H), 4.00-3.96 (m, 2H), 3.77-3.75 (m, 1H), 3.66-3.62 (m, 3H), 3.34 (s, 1H), 3.09 (brs, 1H), 2.97 (brs, 1H), 2.71-2.64 (m, 2H); 13 C NMR (125 MHz, DMSO) δ 165.11, 159.47, 144.56, 141.26, 135.17, 133.67, 132.13, 131.19, 129.95, 127.79 (q, J = 35.18 Hz), 126.68, 126.53 (q, J = 3.61 Hz), 124.48 (q, J = 270.99 Hz), 119.32, 111.68, 60.01, 59.82, 57.81, 56.28, 53.47, 41.76; ESI-MS: 502 (M + H)+ HRMS-ESI (m/z): Calcd. For $C_{23}H_{19}F_4N_5O_3S$ (M+H)+: 502.1155; Found: 502.1151.

8-nitro-2-(5-(3-nitrobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (17). According to above general procedure, employing 3-nitrobenzaldehyde afforded compound 17 as a yellow solid. mp: 199-200 °C; ¹H NMR (500 MHz, DMSO) δ 8.87-8.86(m, 2H), 8.13-8.09(m, 2H), 7.77-7.76(m, 1H), 7.63-7.59(m, 1H), 4.01-3.95(m, 2H), 3.79-3.74(m, 3H), 3.64-3.62(m, 1H),3.09(brs, 1H),2.97(brs, 1H),2.72-2.65(m, 2H); ¹³C NMR(125 MHz, DMSO) δ 165.13, 159.49, 148.30, 144.57, 142.00, 135.42, 135.17, 132.12(q, J=3.52Hz), 130.22, 130.11, 127.95, 127.24 (q, J = 35.21 Hz), 126.54 (q, J = 3.47 Hz), 124.49, 122.02 (q, J = 270.12 Hz), 60.02, 59.87, 57.69, 56.29, 53.50, 41.77; ESI-MS: 522 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{19}F_3N_5O_5S$ (M+H)+: 522.1054; Found: 522.1051.

8-nitro-6-(trifluoromethyl)-2-(5-(3-(trifluoromethyl)benzyl)hexahydropyrrolo [3,4-c] pyrrol-2(1H)-yl)-4H-benzo[e][1,3]thiazin-4-one (18). According to above general procedure, employing 3-(trifluoromethyl)benzaldehyde afforded compound **18** as a yellow solid. mp: 135-136 °C; 1 H NMR (500 MHz, DMSO) δ 8.88-8.87 (m, 2H), 7.62-7.56 (m, 4H), 4.01-3.97 (m, 3H), 3.79-3.62 (m, 5H), 3.34 (s, 1H), 3.10 (brs, 1H), 2.97 (brs, 1H), 2.70-2.63 (m, 2H); ESI-MS: 545 (M + H)+; HRMS-ESI (m/z): Calcd. For C₂₃H₁₉F₆N₄O₃S (M+H)+: 545.1077; Found: 545.1080.

2-(5-(3-methoxybenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (19). According to above general procedure, employing 3-methoxybenzaldehyde afforded compound 19 as a yellow solid. mp: 101-102 °C; ¹H NMR(500 MHz, CDCl₃) δ 9.18 (s, 2H), 8.80 (s, 1H), 6.97-6.86 (m, 4H), 4.19-3.88 (m, 9H), 3.28-2.84 (m, 6H); ESI-MS: 507 (M + H)⁺; HRMS-ESI (m/z): Calcd. For $C_{23}H_{21}F_3N_4O_4S$ (M+H)⁺: 507.1308; Found: 507.1305.

2-(5-(2-fluorobenzyl)hexahydropyrrolo[3,4-c|pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (20). According to above general procedure, employing 2-fluorobenzaldehyde afforded compound 20 as a yellow solid. mp: 154-156 °C; ¹H NMR (500 MHz, DMSO) $\delta 8.88-8.86$ (m, 2H),7.43-7.40 (m, 1H), 7.32-7.31 (m, 1H), 7.18-7.14 (m, 2H), 4.02 (m, 2H), 3.73-3.59 (m, 5H), 3.34 (s, 3H), 3.08 (brs, 1H), 2.96 (brs, 1H), 2.71-2.64 (m, 4H); ¹³C NMR (125 MHz, DMSO) δ 165.10, 162.09, 159.67, 159.50, 144.56, 135.17, 132.10 (q, J = 3.53 Hz), 131.58, 131.53, 130.10, 129.42, 129.34, 127.93 (q, J = 34.53 Hz), 127.25, 126.53 (q, J = 3.53 Hz), 125.65, 125.50, 124.70 (q, J = 3.25 Hz), 123.24 (q, J = 272.51 Hz), 115.66, 115.44, 59.86, 59.72, 56.33, 53.48, 51.31, 41.74; ESI-MS: 495 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{19}F_4N_4O_3S$ (M+H)+: 495.1109; Found: 495.1110.

2-(5-(3,4-difluorobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (21). According to above general procedure, employing 3,4-difluorobenzaldehyde afforded compound 21 as a yellow solid. mp: 151-153 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.20 (s, 1H), 8.81 (s, 1H), 7.31 (brs, 1H), 6.88-6.84 (m, 2H), 4.23 (brs, 1H), 4.03-3.94 (m, 2H), 3.69 (brs, 3H),3.15 (brs, 1H), 3.03 (brs, 1H), 2.74 (brs, 2H), 2.67 (brs, 2H); ¹³C NMR (125 MHz, DMSO) δ 165.11, 161.80 (q,

J = 247.5 Hz), 160.85 (q, J = 250.6 Hz), 159.51, 144.58, 135.17, 132.80 (d, J = 3.3 Hz), 132.11 (q, J = 3.7 Hz), 127.77 (q, J = 36.0 Hz), 126.68, 126.53 (q, J = 3.7 Hz), 123.13 (q, J = 272.7 Hz), 122.05 (d, J = 3.5 Hz), 121.90 (d, J = 3.5 Hz), 111.82 (d, J = 3.8 Hz), 111.61 (d, J = 3.9 Hz), 104.05(t, J = 26.3 Hz), 59.66 (d, J = 14.7 Hz), 56.32, 53.46, 50.86, 41.72; ESI-MS: 513 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{18}F_5N_4O_3S$ (M+H)+: 513.1014; Found: 513.1017.

2-(5-(3,4-dichlorobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (22). According to above general procedure, employing 3,4-dichlorobenzaldehyde afforded compound 22 as a yellow solid. mp: 113-115 °C; ¹H NMR (500 MHz, DMSO) δ 8.89 (s, 1H), 8.87 (s, 1H), 7.58 (s, 1H), 7.50 (d, J= 8.2Hz, 1H), 7.40 (d, J=8.2Hz, 1H), 4.03-4.00 (m, 2H), 3.75-3.72 (m, 1H), 3.69 (s, 2H), 3.63-3.60 (m, 1H), 3.10 (brs, 1H), 2.97 (brs, 1H), 2.72 (d, J= 8.4 Hz, 1H), 2.69 (d, J= 8.4 Hz, 1H), 2.60-2.56 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 165.13, 159.51, 144.58, 135.90, 135.18, 134.16, 132.52, 132.13(q, J= 3.7 Hz), 129.05, 127.95, 127.74, 127.61, 127.26, 126.69, 126.54 (q, J= 3.7 Hz), 124.49, 121.78, 59.90, 56.28, 55.10, 53.49, 41.77; ESI-MS: 545 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{18}Cl_2F_3N_4O_3S$ (M+H)+: 545.0423; Found: 545.0425.

2-(5-(3-chloro-4-fluorobenzyl)hexahydropyrrolo[3,4-c|pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (23). According to above general procedure, employing 3-chloro-4-fluorobenzaldehyde afforded compound 23 as a yellow solid. mp: 73-75 °C; 1 H NMR (500 MHz, DMSO) δ 8.85 (d, J = 7.11 Hz, 2H), 7.4 (d, J = 6.77 Hz, 1H), 7.35-7.31 (m, 2H), 3.99-3.93 (m, 2H), 3.74 (d, J = 12.78 Hz, 1H), 3.61-3.58 (m, 4H), 3.06 (brs, 1H), 2.94 (brs, 1H), 2.68-2.66 (m, 1H), 2.62-2.61 (m, 1H), 2.53 (brs, 1H); 13 C NMR (125 MHz, DMSO) δ 165.12, 159.49, 156.622 (d, J = 246.52Hz), 144.57, 137.38, 135.16, 132.23 (q, J = 3.79 Hz), 130.58, 129.31 (d, J = 7.05Hz), 127.79 (q, J = 34.30 Hz), 126.70, 126.55 (q, J = 3.55 Hz), 123.13 (q, J = 272.73 Hz), 119.56 (d, J = 17.68 Hz), 117.08 (d, J = 20.80 Hz), 59.83, (d, J = 14.98 Hz), 57.34, 56.25, 53.45, 41.72; ESI-MS: 529 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{18}CIF_4N_4O_3S$ (M+H)+: 529.0719; Found: 529.0716.

2-(5-(4-chloro-3-fluorobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6- (trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (24). According to above general procedure, employing 4-chloro-3-fluorobenzaldehyde afforded compound **24** as a yellow solid. mp: 204-206 °C; ¹H NMR (500 MHz, DMSO) δ 9.16 (s, 1H), 8.77 (s, 1H), 7.30 (t, J = 7.81 Hz, 1H), 7.08 (d, J = 9.73 Hz, 1H), 7.00 (d, J = 7.85 Hz, 1H), 4.22-4.17 (m, 1H), 3.98 (t, J = 9.90 Hz, 1H), 3.91-3.89 (m, 1H), 3.60-3.54 (m, 3H), 3.12 (brs, 1H), 2.99 (brs, 1H), 2.69 (brs, 2H), 2.58-2.56 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 166.09, 160.10, 159.45, 156.97, 143.72, 134.62, 133.90 (q, J = 3.35 Hz), 130.63, 129.78 (q, J = 35.51 Hz), 126.95, 126.05 (q, 3.65 Hz), 124.81, 122.54 (q, J = 273.48 Hz), 116.64 (d, J = 21.46 Hz), 59.87 (d, J = 14.46 Hz), 58.24, 56.29, 53.39, 41.96, 40.14; ESI-MS: 529 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{18}ClF_4N_4O_3S$ (M+H)+: 529.0719; Found: 529.0721.

2-(5-(2-chloro-4-fluorobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6- (trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (25). According to above general procedure, employing 2-chloro-4-fluorobenzaldehyde afforded compound **25** as a yellow solid. mp: 149-151 °C; ¹H NMR (500 MHz, DMSO) δ 8.85 (s,1H), 8.83 (s, 1H), 7.49 (t, J = 7.10 Hz, 1H), 7.36 (d, J = 8.57 Hz, 1H), 7.17 (t, J = 8.05 Hz, 1H), 4.14-3.94 (m, 2H), 3.71 (d, J = 12.75 Hz, 1H), 3.66 (s, 1H), 3.58 (d, J = 10.19 Hz, 1H), 3.07 (brs, 1H), 2.95 (brs, 1H), 2.71 (d, J = 8.69 Hz, 1H), 2.65 (d, J = 8.69 Hz, 1H), 2.57 (brs, 2H); ¹³C NMR (125 MHz, DMSO) δ 164.64, 160.80 (d, J = 246.23 Hz), 159.03, 144.10, 134.70, 133.44 (d, J = 10.57 Hz), 132.57 (d, J = 3.33 Hz), 131.80, 131.72, 131.64 (q, J = 3.71 Hz), 127.31 (q, J = 34.65 Hz), 126.21, 126.07 (q, J = 3.50 Hz), 122.66 (q, J = 272.59 Hz), 116.36 (d, J = 24.63 Hz), 114.20 (d, J = 20.61 Hz), 59.39 (d, J = 11.95 Hz), 55.83, 54.55, 53.01, 41.30; ESI-MS: 529 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{18}CIF_4N_4O_3S$ (M+H)+; 529.0719; Found: 529.0717.

$2\hbox{-}(5\hbox{-}(2,4\hbox{-}difluor obenzyl) hexa hydropyrrolo [3,4\hbox{-}c] pyrrol-2(1H)\hbox{-}yl)\hbox{-}8\hbox{-}nitro-6\hbox{-}2(1H)\hbox{-}2(1$

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (26). According to above general procedure, employing 2,4-difluorobenzaldehyde afforded compound 26 as a yellow solid. mp: 144-146 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.20 (s, 1H), 8.81 (s, 1H), 7.31 (brs, 1H), 6.88-6.84 (m, 2H), 4.23 (brs, 1H), 4.03-3.94 (m, 2H), 3.69 (brs, 3H),3.15 (brs, 1H), 3.03 (brs,1H), 2.74 (brs, 2H), 2.67 (brs,2H); ¹³C NMR (125 MHz, DMSO) δ 165.11, 161.80 (q, J = 247.5 Hz), 160.85 (q, J = 250.6 Hz), 159.51, 144.58, 135.17, 132.80 (d, J = 3.3 Hz),

132.11 (q, J = 3.7 Hz), 127.77 (q, J = 36.0 Hz), 126.68, 126.53 (q, J = 3.7 Hz), 123.13 (q, J = 272.7 Hz), 122.05 (d, J = 3.5 Hz), 121.90 (d, J = 3.5 Hz), 111.82 (d, J = 3.8 Hz), 111.61 (d, J = 3.9 Hz), 104.05(t, J = 26.3 Hz), 59.66 (d, J = 14.7 Hz), 56.32, 53.46, 50.86, 41.72; ESI-MS: 513 (M + H)⁺; HRMS-ESI (m/z): Calcd. For $C_{22}H_{19}F_5N_4O_3S$ (M+H)⁺: 513.1014; Found: 513.1016.

2-(5-(2,4-dichlorobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (27). According to above general procedure, employing 2,4-dichlorobenzaldehyde afforded compound 27 as a yellow solid. mp: 106-108 °C; ¹H NMR (500 MHz, DMSO) δ 8.89 (s, 1H), 8.87 (s, 1H), 7.58 (s, 1H), 7.50 (d, J = 8.2Hz, 1H), 7.40 (d, J = 8.2Hz, 1H), 4.03-4.00 (m, 2H), 3.75-3.72 (m, 1H), 3.69 (s, 2H), 3.63-3.60 (m, 1H), 3.10 (brs, 1H), 2.97 (brs, 1H), 2.72 (d, J = 8.4 Hz, 1H), 2.69 (d, J = 8.4 Hz, 1H), 2.60-2.56 (m, 2H); 13 C NMR (125 MHz, DMSO) δ 165.13, 159.51, 144.58, 135.90, 135.18, 134.16, 132.52, 132.13(q, J = 3.7 Hz), 129.05, 127.95, 127.74, 127.61, 127.26, 126.69, 126.54 (q, J = 3.7 Hz), 124.49, 121.78, 59.90, 56.28, 55.10, 53.49, 41.77; ESI-MS: 545 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{19}F_4N_4O_3S$ (M+H)+: 545.0423; Found: 545.0422.

2-(5-(2-bromo-4-fluorobenzyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6- (trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (28). According to above general procedure, employing 2-bromo-4-fluorobenzaldehyde afforded compound **28** as a yellow solid. mp: 150-151 °C; ¹H NMR (500 MHz, DMSO) δ 8.88 (s, 1H), 8.87 (s, 1H), 7.55-7-49 (m, 2H), 7.25-7.24 (m, 1H), 4.02-3.98 (m, 2H), 3.75-3.61 (m, 4H), 3.10 (brs, 1H), 2.98 (brs, 1H), 2.76-2.68 (m, 2H), 2.60-2.59 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 165.12, 161.17 (d, J = 247.45 Hz), 159.49, 144.57, 135.18, 134.68 (d, J = 3.26 Hz), 132.12 (d, J = 8.29 Hz), 127.78 (q, J = 34.50 Hz), 127.26, 127.20, 126.68, 126.56, 123.90 (d, J = 9.64 Hz), 123.13 (q, J = 272.48 Hz), 119.91 (d, J = 24.48 Hz), 115.10, 59.84, 57.47, 56.48, 56.32, 53.51, 41.78; ESI-MS: 573 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{22}H_{19}F_4N_4O_3S$ (M+H)+; 573.0214; Found: 573.0216.

8-nitro-2-(5-(pyridin-2-ylmethyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-6-(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (29). According to above general procedure, employing picolinaldehyde afforded compound 29 as a yellow solid. mp: 18174 °C; ¹H NMR (500 MHz, DMSO) δ 8.88 (s, 1H), 8.87 (s, 1H), 8.50 (s, 1H), 7.76 (brs, 1H), 7.44-7.42(m, 1H), 7.28 (s, 1H), 4.05-3.98 (m, 2H), 3.79-3.63 (m, 4H), 3.13 (brs, 1H), 3.00 (brs, 1H), 2.80-2.57 (m, 4H); ¹³C NMR (125 MHz, DMSO) δ 165.97, 160.18, 149.30, 143.59, 137.00, 134.50, 133.78, 133.75, 133.72, 129.68 (q, J = 35.54 Hz), 126.78, 125.95 (q, J = 3.72 Hz), 125.89, 123.41, 122.76, 122.41 (q, J = 272.14 Hz), 60.27, 59.48, 55.72, 52.79, 41.85, 40.05; ESI-MS: 478 (M + H)+; HRMS-ESI (m/z): Calcd. For C₂₁H₁₉F₄N₅O₃S (M+H)+: 478.1155; Found: 478.1157.

8-nitro-2-(5-(pyridin-3-ylmethyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-6- (trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (30). According to above general procedure, employing nicotinaldehyde afforded compound **30** as a yellow solid. mp: 124-130 °C; ¹H NMR (500 MHz, DMSO) δ 9.14 (s, 1H), 8.76 (s, 1H), 8.62-8.53 (m, 3H), 7.70 (brs, 1H), 4.17 (brs, 1.5H), 3.97-3.93 (m, 2.5H), 3.75-3.65 (m, 4H), 3.17 (brs, 1H), 3.04 (brs, 1H), 2.76 (brs, 3H); ESI-MS: 478 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{21}H_{19}F_4N_5O_3S$ (M+H)+: 478.1155; Found: 478.1153.

8-nitro-2-(5-(pyridin-4-ylmethyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-6- (trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (31). According to above general procedure, employing isonicotinaldehyde afforded compound **31** as a yellow solid. mp: 83-90 °C; ¹H NMR (500 MHz, DMSO) δ 8.88 (d, J=6.0Hz, 2H), 8.51 (d,J=3.6Hz, 2H), 7.34 (d, J=3.8Hz, 2H), 4.06-3.98 (m, 2H), 3.76-3.65 (m, 4H), 3.12 (brs, 1H), 3.02 (brs, 1H), 2.75-2.53 (m, 2H); ¹³C NMR (125 MHz, DMSO) δ 165.10, 159.50, 150.40, 149.97, 148.54, 144.55, 135.17, 132.12 (q, J = 3.61 Hz), 127.79 (q, *J* = 34.71 Hz), 126.66, 126.54 (q, J = 3.56 Hz), 123.80, 123.13 (q, *J* = 272.56 Hz), 121.69, 60.06, 59.91, 57.62, 56.32, 53.47, 41.80; ESI-MS: 478 (M + H)+; HRMS-ESI (m/z): Calcd. For C₂₁H₁₉F₄N₅O₃S (M+H)+: 478.1155; Found: 478.1158.

2-(5-(naphthalen-2-ylmethyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6- (trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (32). According to above general procedure, employing 2-naphthaldehyde afforded compound **32** as a yellow solid. mp: 126-128 °C; ¹H NMR (500 MHz, DMSO) δ 8.87 (s, 2H), 7.86-7.83 (m, 3H), 7.28 (s, 1H), 7.48-7.47 (s, 3H), 4.02-3.95 (m, 2H), 3.77-3.75 (m, 3H), 3.63-3.61 (m, 1H), 3.09 (brs, 1H), 2.97 (brs, 1H), 2.72-2.65 (m, 2H), 2.59-2.56 (m, 2H); ¹³C NMR (125 MHz, DMSO)

δ 165.12, 159.49, 144.56, 137.17, 135.18, 133.36, 132.67, 132.10 (q, J = 3.5 Hz), 130.11, 128.15, 127.94 (q, J = 5.3 Hz), 127.59, 127.38, 127.20, 126.96, 126.70, 126.52 (q, J = 3.6 Hz), 126.44, 123.14 (q, J = 273.2 Hz), 121.78, 119.07, 60.13, 59.07, 56.35, 53.55, 41.78; ESI-MS: 527 (M + H)⁺; HRMS-ESI (m/z): Calcd. For C₂₆H₂₂F₃N₄O₃S (M+H)⁺: 527.1359; Found: 527.1361.

2-(5-(naphthalen-1-ylmethyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6- (trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (33). According to above general procedure, employing 1-naphthaldehyde afforded compound **33** as a yellow solid. mp: 111-113 °C; ¹H NMR (500 MHz, DMSO) δ 8.87 (s, 1H), 8.85 (s, 1H), 8.265 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.81 (d, J = 7.4 Hz, 1H), 7.45-7.42 (m, 2H), 7.38-7.31 (m, 2H), 4.05-386 (m, 4H), 3.77 (d, J = 13.0Hz. 1H), 3.54 (d, J = 11.1 Hz, 1H), 3.05 (brs, 1H), 3.94 (brs, 1H), 2.68 (d, J = 8.9 Hz, 2H), 2.60-2.55 (m, 2H); 13 C NMR (125 MHz, DMSO) δ 165.06, 159.32, 144.51, 135.29, 135.13, 133.80, 132.18, 132.08 (q, J = 3.7 Hz), 128.59, 128.09, 127.76 (q, J = 34.5 Hz), 126.87, 126.69, 126.52 (q, J = 3.6 Hz), 125.94 (q, J = 5.8 Hz), 125.75, 124.94, 123.14 (q, J = 272.6 Hz), 60.25 (d, J = 22.4 Hz), 57.29, 56.34, 53.60, 41.72; ESI-MS: 527 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{26}H_{22}F_{3}N_{4}O_{3}S$ (M+H)+; 527.1359; Found: 527.1362.

2-(5-((5-methoxy-1H-indol-3-yl))methyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6-(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (34). According to above general procedure, employing 5-methoxy-1H-indole-3-carbaldehyde afforded compound **34** as a yellow solid. mp: 225-228 °C; ¹H NMR (500 MHz, DMSO) δ 10.69 (s, 1H), 8.86 (s, 2H), 7.19 (d, J = 8.74 Hz, 1H), 7.15 (s, 1H), 7.06 (s, 1H), 6.66 (d, J = 8.57 Hz, 1H), 3.94 (q, J = 9.54 Hz, 2H), 3.74-3.70 (m, 3H), 3.57 (s, 4H), 3.04 (brs, 1H), 2.91 (brs, 1H), 2.72 (d, J = 8.84 Hz, 1H), 2.67 (d, J = 8.84 Hz, 1H), 2.45 (brs, 2H); ESI-MS: 546 (M + H)⁺; HRMS-ESI (m/z): Calcd. For C₂₅H₂₃F₃N₅O₄S (M+H)⁺: 546.1417; Found: 546.1420.

Synthesis of compound 35. To a stirred solution of A (42 mg, 0.2 mmol) in anhydrous MeOH (10 mL) was added BTZ core compound **D** (64 mg, 0.2 mmol) and Et₃N (0.6 mmol) at room temperature. The mixture was stirred overnight at 40 °C, and concentrated. The residue was purified by silica gel column (DCM : MeOH = 20 : 1) to yield the yellow solids **35** (53 mg, 54% yield), mp: 204-205 °C; ¹H NMR (125 MHz, DMSO) δ 8.88 (s, 1H), 8.87

(s, 1H), 3.98 (brs, 2H), 3.97-3.57 (m, 4H), 3.34-3.29 (m, 1H), 3.25-3.22 (m, 1H), 3.14 (brs, 1H), 3.03 (brs, 1H); 1.43 (s, 9H); ESI-MS: 487 (M + H) $^+$; HRMS-ESI (m/z): Calcd. For $C_{20}H_{21}F_3N_4O_5S$ (M+H) $^+$: 487.1258; Found: 487.1261.

Synthesis of compound 36. To a stirred solution of **35** (97 mg, 0.2 mmol) in DCM (5 mL) was added TFA (1 mL) at room temperature. The mixture was stirred for 2 hours and concentrated. The residue was diluted by DCM, and washed by NaHCO₃ solution (1 M), and saturated saline, dried over anhydrous MgSO₄, filtered and concentrated. The residue was purified over silica gel column (DCM : MeOH = 20 : 1) to compound **36** as a yellow solid (43 mg, 56% yield), mp: 219-221 °C; ¹H NMR (500 MHz, DMSO) δ 8.90 (s, 1H), 8.89 (s, 1H), 4.00-3.96 (m, 2H), 3.86 (d, J = 10.7 Hz, 1H), 3.77 (d, J = 8.50 Hz, 1H), 3.50-3.46 (m, 2H), 3.33 (d, J = 9.00 Hz, 3H), 3.25-3.20 (m, 2H); ESI-MS: 387 (M + H)⁺; HRMS-ESI (m/z): Calcd. For C₁₅H₁₃F₃N₄O₃S (M+H)⁺: 387.0733; Found: 387.0735.

General synthesis procedure of compounds 37-43. A mixture of compound A (0.3 mmol) and corresponding ketones (0.4 mmol) in $Ti(OPr)_4$ was stirred at 70 °C for 8 hours and cooled to room temperature. MeOH (5 mL) and NaCNBH₃ (1.6 mmol) was added to the mixture, and stirred for 5 hours at 40 °C. The mixture was quenched by 1 N NaOH (10 mL), filtered by celite, and washed by MeOH. The MeOH was evaporated under vacuo. The residue was diluted by H_2O , and extracted by Et_2O . The combined organic layer was washed by brine, dried over anhydrous MgSO₄, filtered, and concentrated. The residue was purified over silica gel column (DCM : MeOH = 30 : 1) to yield oils **B37-B43** (yield, 30-55%).

To a stirred solution of **B37-B43** in DCM (5 mL) was added TFA (1 mL) at room temperature. The mixture was stirred for 2 hours and concentrated to afford the crude product **C37-C43** which was used directly in the next step without further purification. To a stirred solution of above crude **C37-C43** in anhydrous MeOH (10 mL) was added BTZ core compound **D** (0.3 mmol) and Et₃N (0.6 mmol) at room temperature. The mixture was stirred overnight at 40 °C, and concentrated. The residue was purified by column chromatography over silica gel (DCM : MeOH = 20 : 1) to yield the yellow solids, which were further treated by n-hexane to give **37-43**. (The data and NMR copies of compounds **37-43** were listed in the supporting information.)

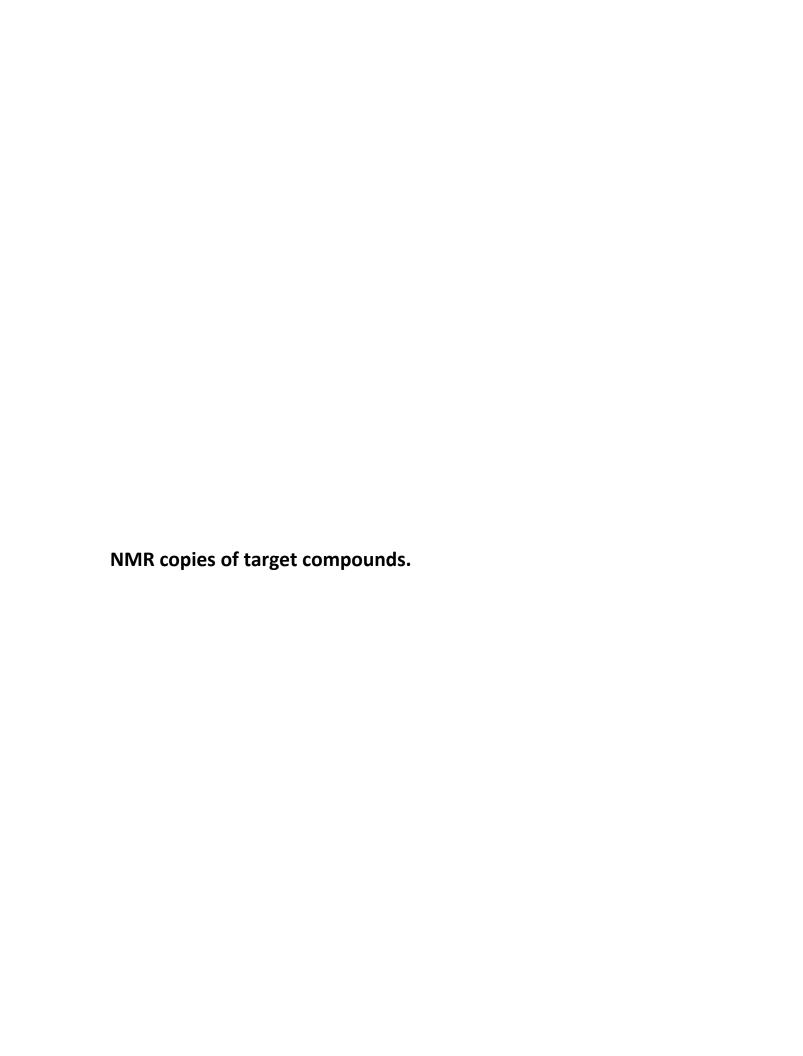
8-nitro-6-(trifluoromethyl)-2-(5-(4-(trifluoromethyl)phenyl) hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-4H-benzo[e][1,3]thiazin-4-one (37). According to above general procedure, employing 1-(4-(trifluoromethyl)phenyl)ethan-1-one afforded compound **37** as a yellow solid, mp: 169-170 °C; 1H NMR (500 Mz, CDCl3) δ 9.16 (s,1H), 8.77 (s, 1H), 7.55-7.54 (m, 2H), 7.41-7.39 (m, 2H), 4.24-4.14 (m, 1H), 4.02-3.92 (m, 1.5H), 3.82-3.78 (m, 0.5 H), 3.73-3.66 (m, 0.5 H), 3.53-3.49 (m, 0.5 H), 3.31 (t, J = 6.5 Hz, 1H), 3.12 (brs, 0.5 H), 3.06 (brs, 0.5H), 2.99 (brs, 0.5 H), 2.92 (brs, 0.5 H), 2.87 (d, J = 9.5 Hz, 1H), 2.60-2.53 (m, 1H), 2.49-2.42 (m, 2H), 1.35 (d, J = 6.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 166.08, 159.98, 149.28 (d, J = 16.83 Hz), 143.71, 134.66, 133.88, 129.69 (q, J = 35.2 Hz), 129.56(q, J = 32.1 Hz), 127.29, 126.94, 126.02 (q, J = 3.0 Hz), 125.64 (q, J = 30 Hz), 123.91, 122.44 (q, J = 271.0 Hz), 64.24, 58.84, 58.35 (d, J = 8.10 Hz), 56.53 (d, J = 33.49 Hz), 53.59 (d, J = 22.59 Hz), 41.76, 39.90, 23.23; ESI-MS: 559 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{24}H_{21}F_{6}N_{4}O_{3}S$ (M+H)+; 559.1233; Found: 559.1236.

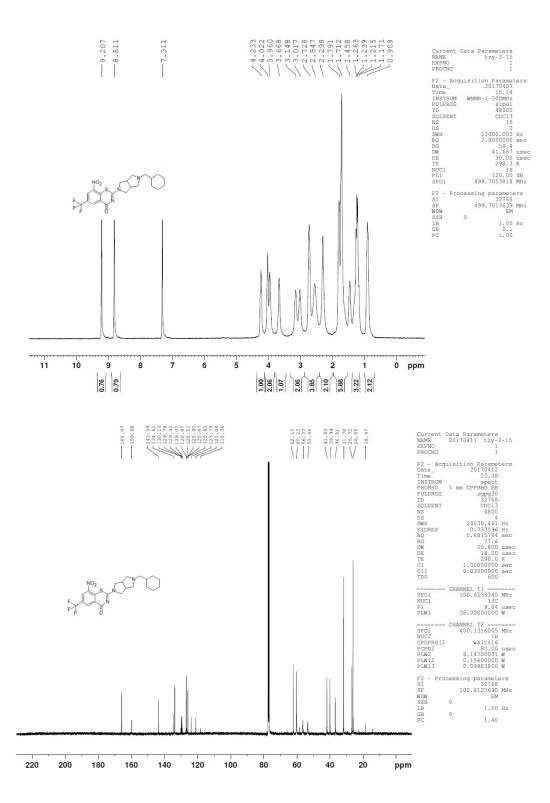
8-nitro-2-(5-(4-(trifluoromethoxy)phenyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-6-(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (38). According to above general procedure, employing 1-(4-(trifluoromethoxy)phenyl)ethan-1-one afforded compound **38** as a yellow solid. mp: 150-151 °C; 1 H NMR (500 Mz, CDCl₃) δ 9.18 (s,1H), 8.78 (s, 1H), 7.30 (brs, 2H), 7.15 (brs, 2H), 4.24-4.15 (m, 1H), 4.02-3.94 (m, 1.5H), 3.82-3.79 (m, 0.5 H), 3.68-3.66 (m, 0.5 H), 3.52 (brs, 0.5 H), 3.26 (brs, 1H), 3.12 (brs, 0.5 H), 3.06 (brs, 0.5H), 2.99 (brs, 0.5 H), 2.93 (brs, 0.5 H), 2.85 (d, J = 9.5 Hz, 1H), 2.58-2.54 (m, 1H), 2.48-2.45 (m, 2H), 1.33 (d, J = 4.2 Hz, 3H); 13 C NMR (100 MHz, CDCl₃) δ 166.09, 159.99, 148.29, 143.97, 143.84, 143.73, 134.69, 133.93, 129.78 (q, J = 35.0 Hz), 128.25, 126.99, 126.04 (q, J = 3.0 Hz), 122.50 (q, J = 255.3 Hz), 121.17, 120.60 (q, J = 255.3 Hz), 63.89, 58.63, 56.60, 53.64, 41.78, 39.95, 23.34; ESI-MS: 575 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{24}H_{21}F_{6}N_{4}O_{4}S$ (M+H)+; 575.1182; Found: 575.1185.

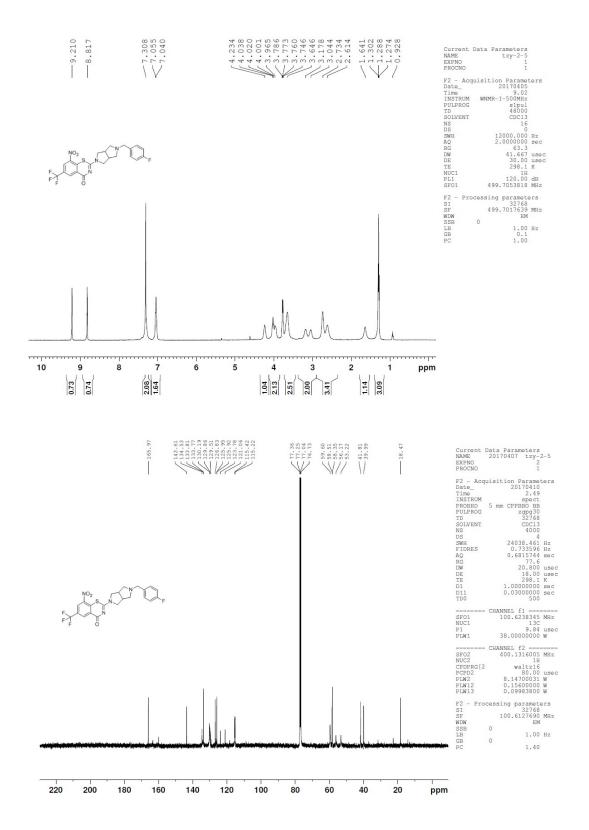
2-(5-(3,4-difluorophenyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6- (trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (39). According to above general procedure, employing 1-(3,4-difluorophenyl)ethan-1-one afforded compound **39** as a yellow solid. mp: 75-80 °C; ¹H NMR (500 Mz, CDCl₃) δ 9.17 (s, 1H), 8.78 (s, 1H), 8.77-7.06 (m, 2H), 6.99 (brs, 1H), 4.22-4.16 (m, 1H), 4.02-3.92 (m, 1.5H), 3.82-3.80 (d,

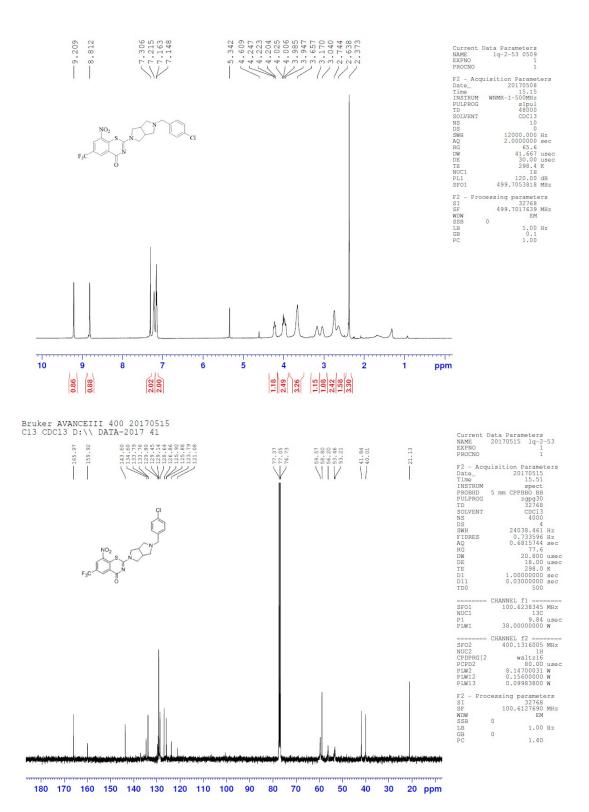
J=11.78Hz, 0.5H), 3.74 (s, 0.5H), 3.73 (s, 0.5H), 3.71 (s, 0.5H), 3.70 (s, 0.5H), 3.66-3.65 (d, J=7.64Hz, 0.5H), 3.53-3.52 (d, J=7.48Hz, 0.5H), 3.22 (brs, 1H), 3.11 (brs, 0.5H), 3.06 (brs, 1H), 2.98 (brs, 1H), 2.93 (brs, 1H), 2.83-2.82 (d, J=8.67Hz, 1H), 2.58-2.54 (m, 1H), 2.46 (brs, 1H), 1.32 (brs, 3H); 13 C NMR (100 MHz, CDCl₃) δ 143.77, 133.93, 126.05, 122.71, 117.37, 63.61, 58.82, 58.63, 58.17, 56.64, 53.64, 53.52, 41.74, 39.94, 23.20, 18.59; ESI-MS: 527 (M + H)⁺; HRMS-ESI (m/z): Calcd. For $C_{23}H_{20}F_5N_4O_3S$ (M+H)⁺: 527.1171; Found: 527.1173.

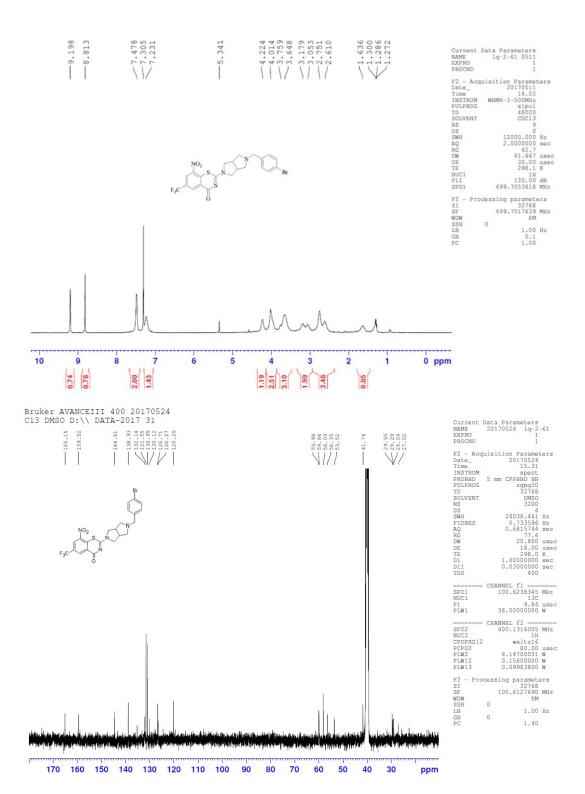
2-(5-(4-chloro-3-fluorophenyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6- (trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (40). According to above general procedure, employing 1-(4-chloro-3-fluorophenyl)ethan-1-one afforded compound 40 as a yellow solid. mp:138-139 °C; 1 H NMR (500 Mz, CDCl₃): δ 9.18 (s,1H), 8.78 (s, 1H), 7.31 (t, J = 8.0 Hz, 1H), 7.09 (t, J = 7.5 Hz,1H), 7.02 (d, J = 8.0 Hz, 1H), 4.23-4.16 (m, 1H), 4.02-3.92 (m, 1.5H), 3.82-3.80 (m, 0.5 H), 3.66-3.65 (m, 0.5 H), 3.53-3.52 (m, 0.5 H), 3.24 (brs, 1H), 3.12 (brs, 0.5 H), 3.06 (brs, 0.5H), 2.98 (brs, 0.5 H), 2.95 (brs, 0.5 H), 2.83 (brs, 1H), 2.60-2.45 (m, 3H), 1.32 (d, J = 5.5 Hz, 3H); 13 C NMR (100 MHz, CDCl₃) δ 166.13, 160.04, 159.56, 157.09, 146.47, 146.41, 146.26, 146.21, 143.73, 134.66, 133.92, 130.74, 129.97 (q, J = 70.75Hz), 129.61 (q, J = 70.75Hz), 126.97, 126.62, 126.03 (q, J = 3.50Hz), 123.90 (q, J = 275.61Hz), 123.29 (q, J = 273.07Hz), 119.36, 118.48, 115.17, 114.93, 63.65, 58.85, 58.75, 58.28, 58.16, 56.65, 56.33, 53.63, 53.51, 51.04, 41.73, 39.92, 29.84, 23.16; ESI-MS: 543 (M + H)+; HRMS-ESI (m/z): Calcd. For C₂₃H₁₉ClF₄N₄O₃S (M+H)+: 543.0875; Found: 543.0877.

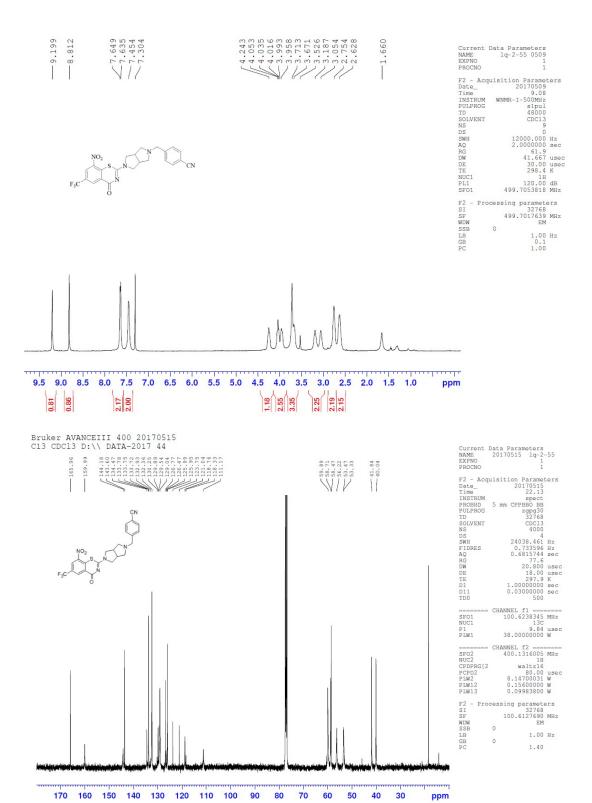

2-(5-(3-chloro-4-fluorophenyl)hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-8-nitro-6- (trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (41). According to above general procedure, employing 1-(3-chloro-4-fluorophenyl)ethan-1-one afforded compound **41** as a yellow solid. mp: 168-169 °C; ¹H NMR (500 Mz, CDCl₃): δ 9.17 (s,1H), 8.78 (s, 1H), 7.31 (t, J = 5.9 Hz, 1H), 7.14 (brs, 1H), 7.08-7.05 (m, 1H), 4.21-4.15 (m, 1H), 4.01-3.91 (m, 1.5H), 3.82-3.80 (m, 0.5 H), 3.66-3.64 (m, 0.5 H), 3.53 (brs, 0.5 H), 3.22 (brs, 1H), 3.11 (brs, 0.5 H), 3.06 (brs, 0.5H), 2.98 (brs, 0.5 H), 2.93 (brs, 0.5 H), 2.81 (d, J = 6.5 Hz, 1H), 2.59-2.51 (m, 1H), 2.48-2.46 (m, 2H), 1.32 (brs, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.87, 134.04, 129.15, 126.16, 63.59, 58.74, 53.63, 40.06, 18.69; ESI-MS: 543 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{23}H_{19}ClF_4N_4O_3S$ (M+H)+: 543.0875; Found: 543.0877.

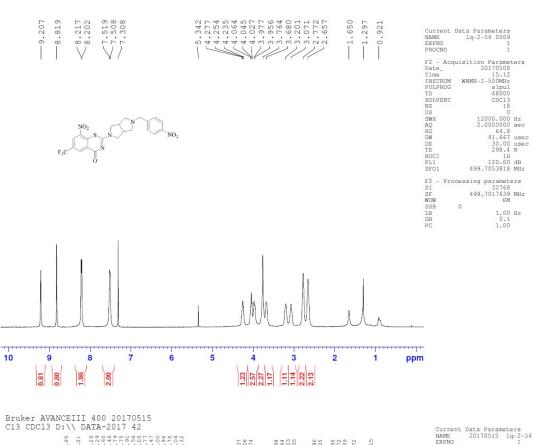

2-(5-(3,5-difluorophenyl)hexahydropyrrolo[3,4-c|pyrrol-2(1H)-yl)-8-nitro-6-

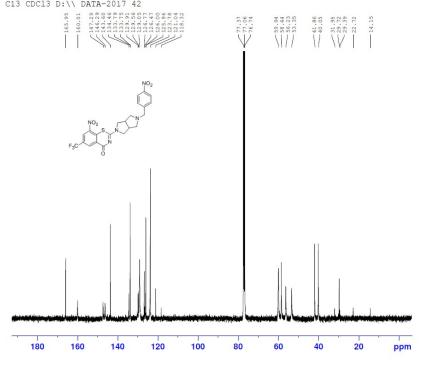

(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one (42). According to above general procedure, employing 1-(3,5-difluorophenyl)ethan-1-one afforded compound 42 as a yellow solid. mp: 168-169 °C; ¹H NMR (500 Mz, CDCl₃): δ 9.16 (s,1H), 8.79 (s, 1H), 7.38 (brs, 1H), 6.84 (t, = 8.6 Hz,1H), 6.75 (t, = 10.0 Hz,1H), 4.22-4.14 (m, 1H), 4.02-3.95 (m, 1.5H), 3.82-3.79 (m, 0.5 H), 3.71-3.64 (m, 1.5 H), 3.53-3.49 (m, 0.5 H), 3.11 (brs, 0.5 H), 3.05 (brs, 0.5H), 2.98 (brs, 0.5 H), 2.92 (brs, 0.5 H), 2.87-2.82 (m, 1H), 2.60-2.44 (m, 3H), 1.32 (brs, 3H); 13 C NMR (150 MHz, CDCl₃) δ 166.0, 160.0, 143.7, 129.7 (q, J = 36.0 Hz), 129.33 (t, J = 7.5 Hz), 127.00, 126.0 (q, J = 3.0 Hz), 122.5 (q, J = 271.5 Hz), 111.7 (d, J = 22.5 Hz), 103.7 (t, J = 27.0 Hz), 60.51, 58.33, 58.22, 56.68, 56.46, 55.31, 53.80, 53.52, 41.70, 39.91, 22.06, 21.17, 14.32; ESI-MS: 527 (M + H)+; HRMS-ESI (m/z): Calcd. For $C_{23}H_{20}F_5N_4O_3S$ (M+H)+: 527.1171; Found: 527.1173.

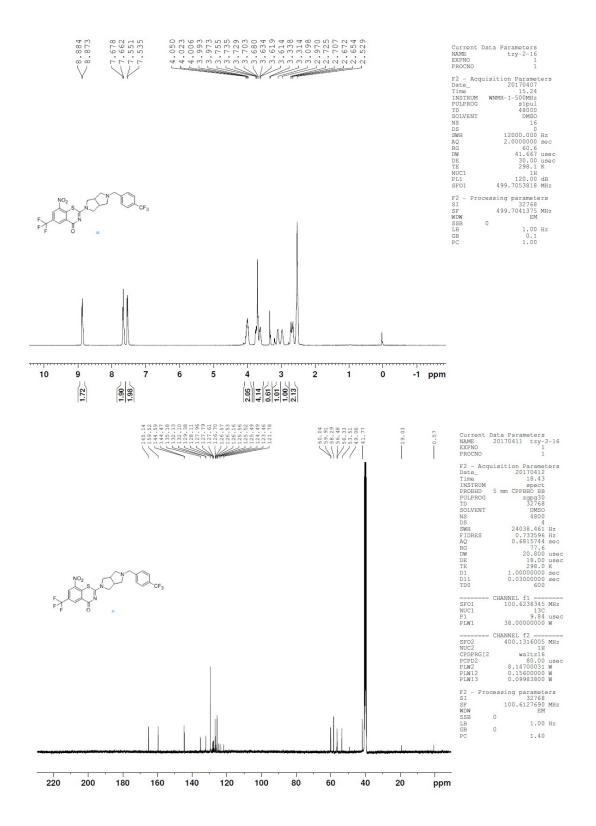

8-nitro-6-(trifluoromethyl)-2-(5-(3,4,5-trifluorophenyl)hexahydropyrrolo[3,4-

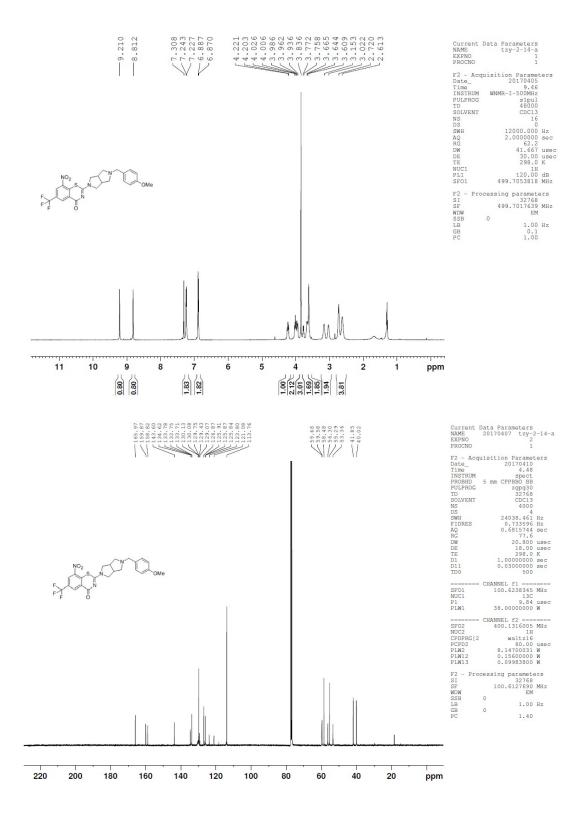

c|pyrrol-2(1H)-yl)-4H-benzo[e][1,3]thiazin-4-one (43). According to above general procedure, employing 1-(3,4,5-trifluorophenyl)ethan-1-one afforded compound **43** as a yellow solid. mp: 158-161 °C; ¹H NMR (500 Mz, CDCl₃): δ 9.16 (s,1H), 8.77 (s, 1H), 6.92 (brs, 2H), 4.22-4.15 (m, 1H), 4.02-3.92 (m, 1.5H), 3.84-3.80 (m, 0.5 H), 3.67-3.63 (m, 0.5 H), 3.55-3.53 (m, 0.5 H), 3.20 (brs, 1H), 3.13 (brs, 0.5H), 3.08 (brs, 0.5 H), 2.99 (brs, 1H), 2.82 (brs, 1H), 2.59-2.48 (m, 3H), 1.31 (brs, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.07, 160.11, 151.40 (ddd, $J_I = 3.6$ Hz, $J_I = 9.9$ Hz, $J_I = 248.8$ Hz), 143.75, 134.60, 133.89, 129.81 (q, J = 34.5 Hz), 126.97, 126.03 (q, J = 3.0 Hz), 122.50 (q, J = 276.0 Hz), 110.73 (d, J = 16.5 Hz), 63.59, 60.52, 58.39 (d, J = 106.19 Hz), 56.35, 53.51, 41.72, 39.90, 23.12, 22.98, 21.17, 14.33; ESI-MS: 545 (M + H)+; HRMS-ESI (m/z): Calcd. For C₂₃H₁₉F₆N₄O₃S (M+H)+; 545.1077; Found: 545.1080.

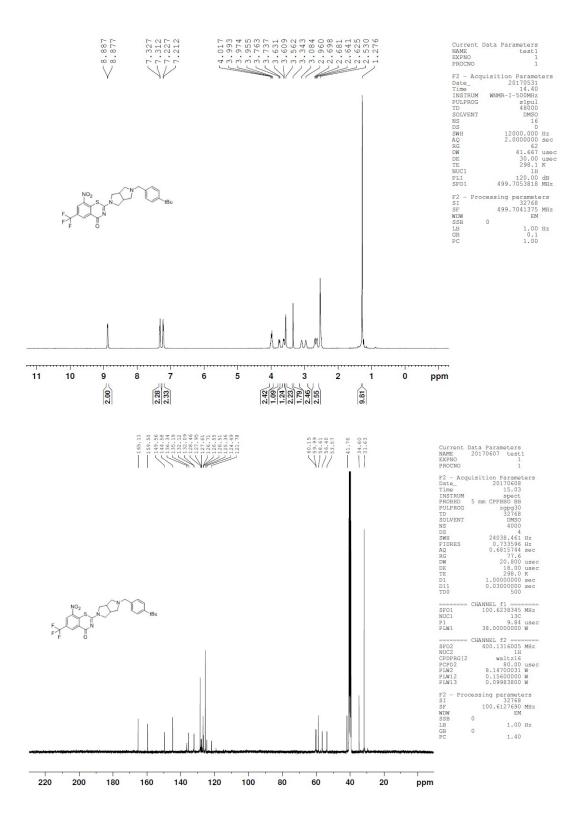


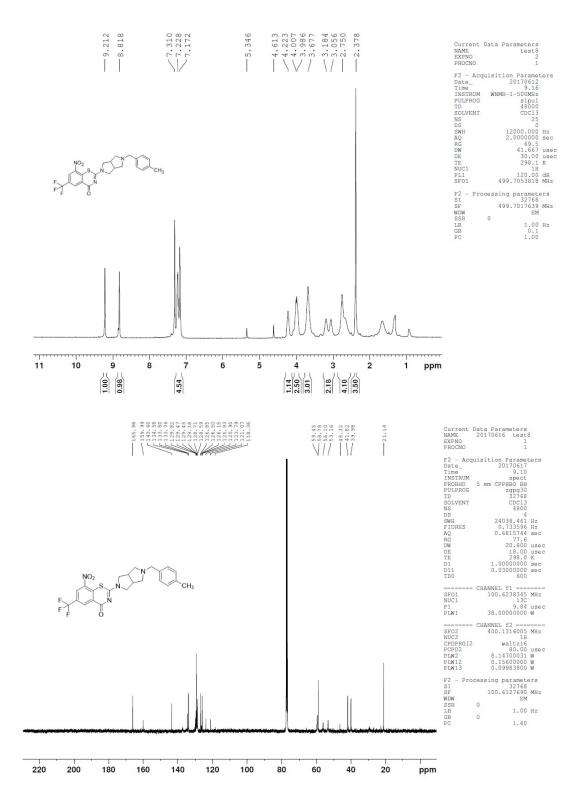


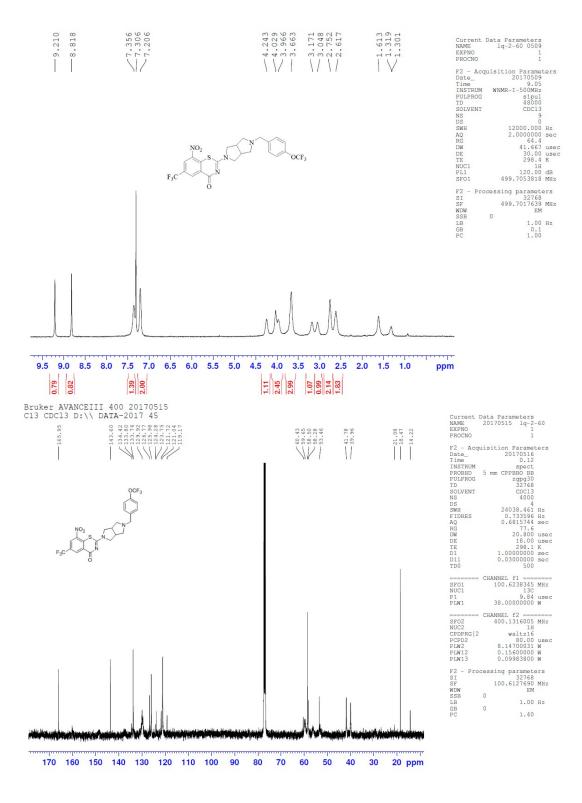


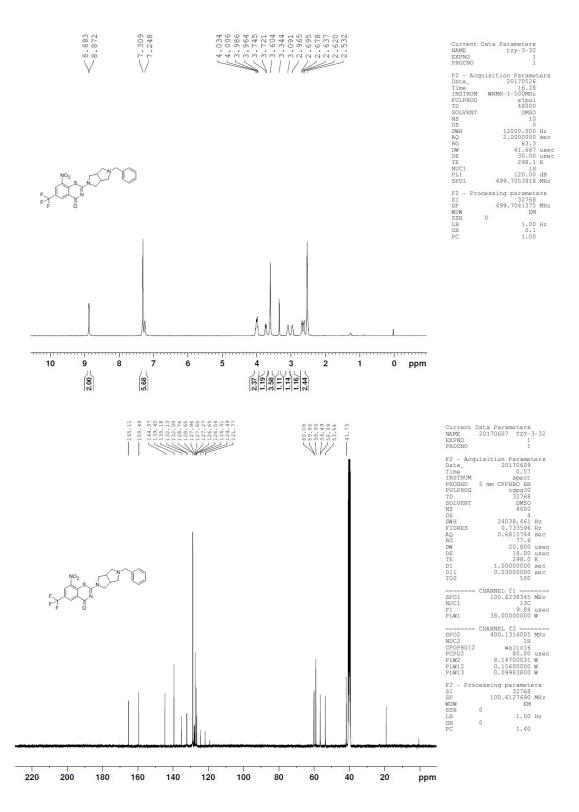


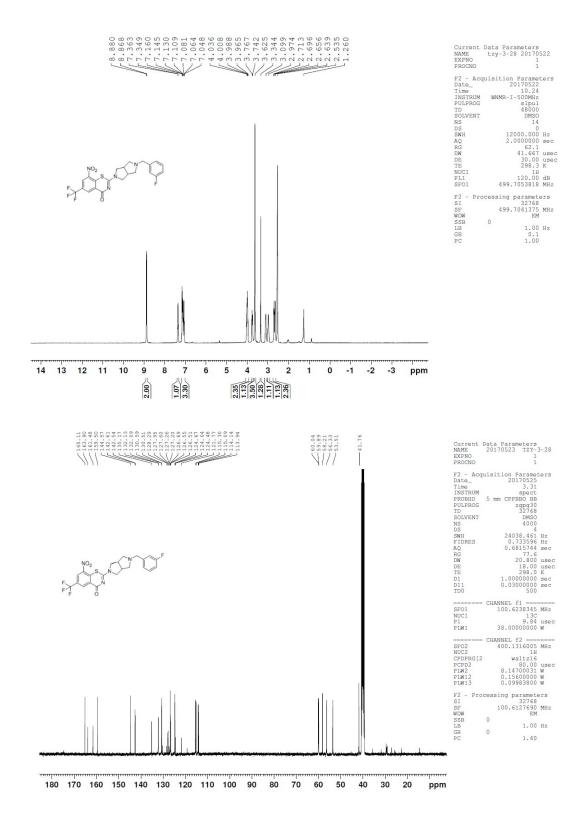


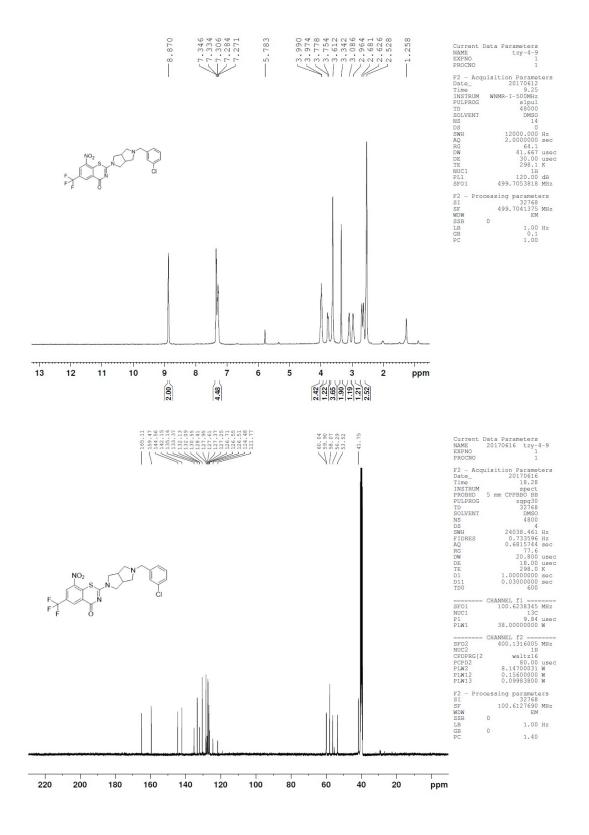


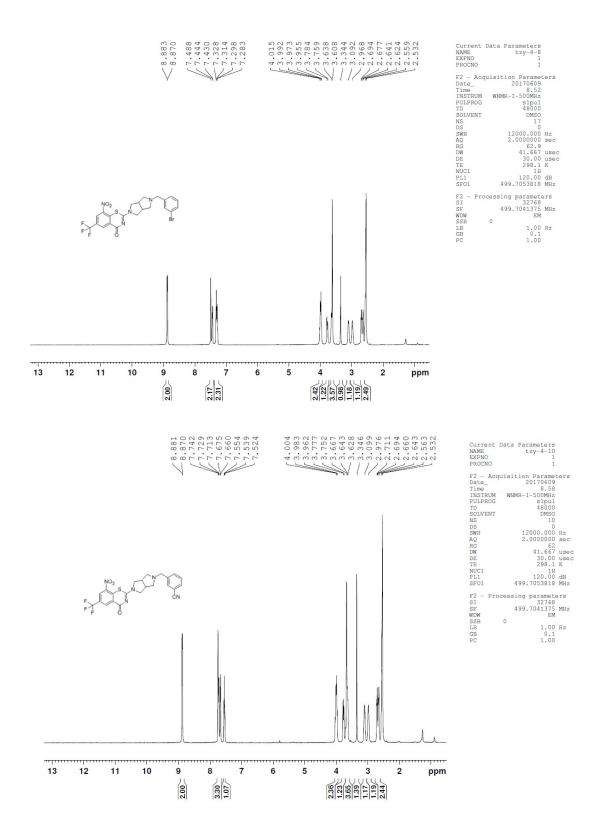


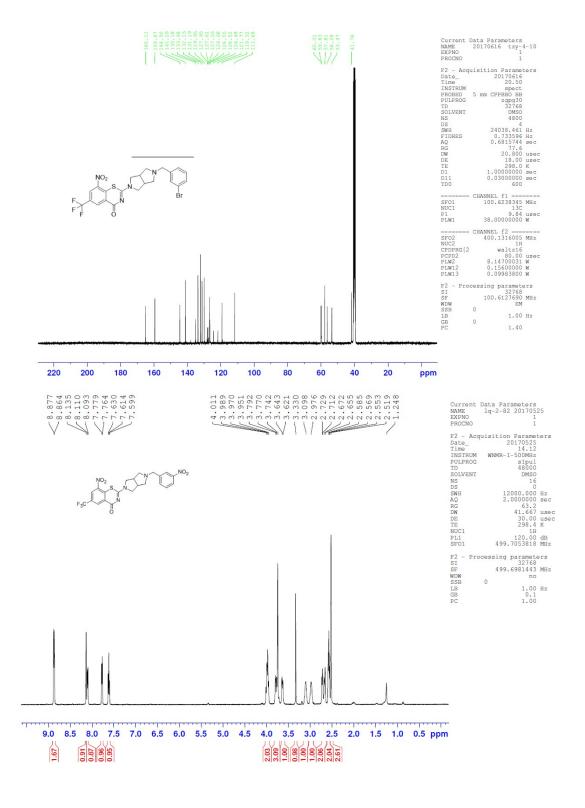

PROCNO	1
F2 - Acq	isition Parameters
Date	20170515
Time	20.13
INSTRUM	spect
	5 mm CPPBBO BB
PULPROG	zapa30
TD	32768
SOLVENT	CDC13
NS	4000
DS	4000
SWH	24038.461 Hz
FIDRES	0.733596 Hz
AQ	0.6815744 sec
RG	77.6
DW	20.800 usec
DE	18.00 usec
TE	298.0 K
D1	1.00000000 sec
D11	0.03000000 sec
TD0	500
	CHANNEL f1 ======
SFO1	100.6238345 MHz
NUC1	13C
P1	9.84 usec
PLW1	38.00000000 W
LIMI	30.0000000 W
	CHANNEL f2 ======
SFO2	400.1316005 MHz
NUC2	1H
CPDPRG[2	waltz16
PCPD2	80.00 usec
PLW2	8.14700031 W
PLW12	0.15600000 W
PLW13	0.09983800 W
F2 - Proc	cessing parameters
SI	32768
SF	100.6127690 MHz
WDW	EM
	0
LB	1.00 Hz
GB	0 1.00 HZ
PC	1.40
FU	1.40

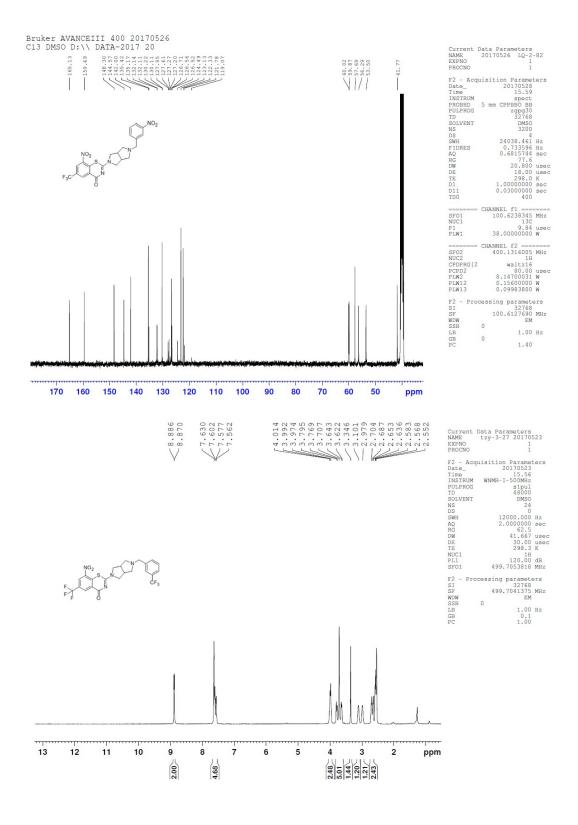


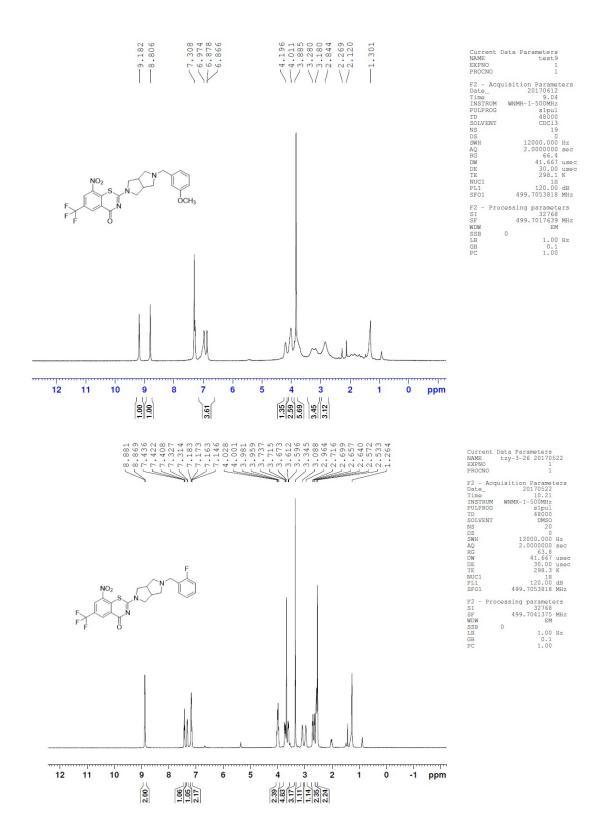


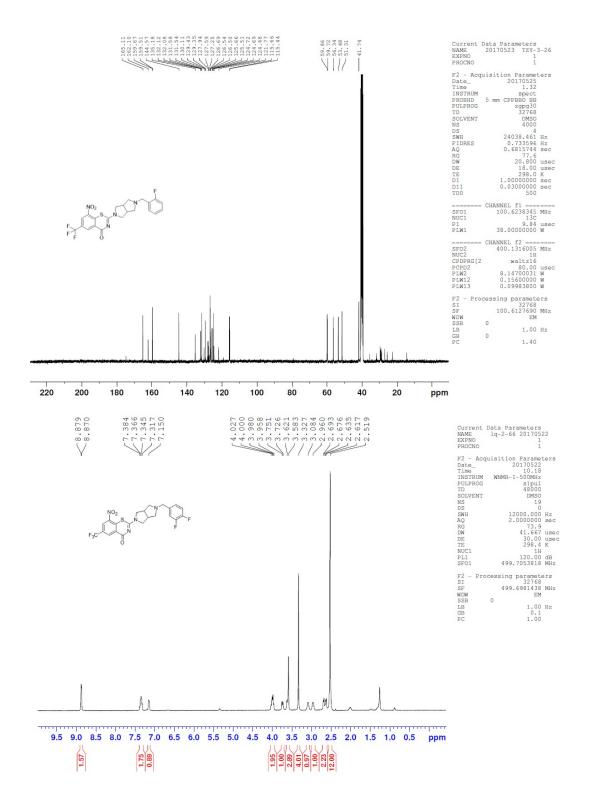


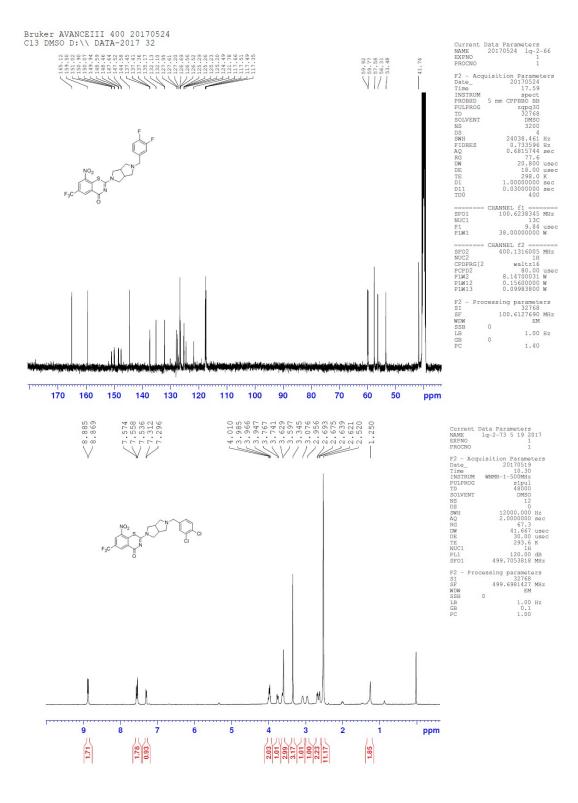


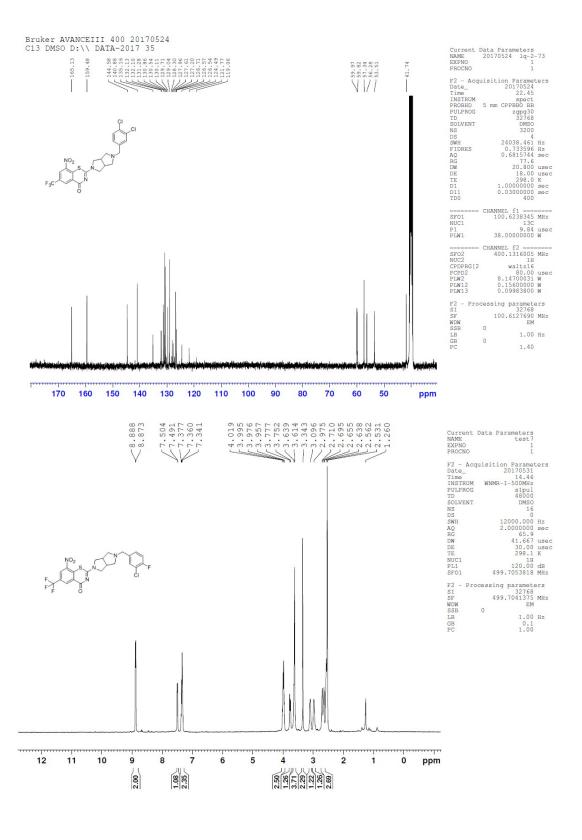


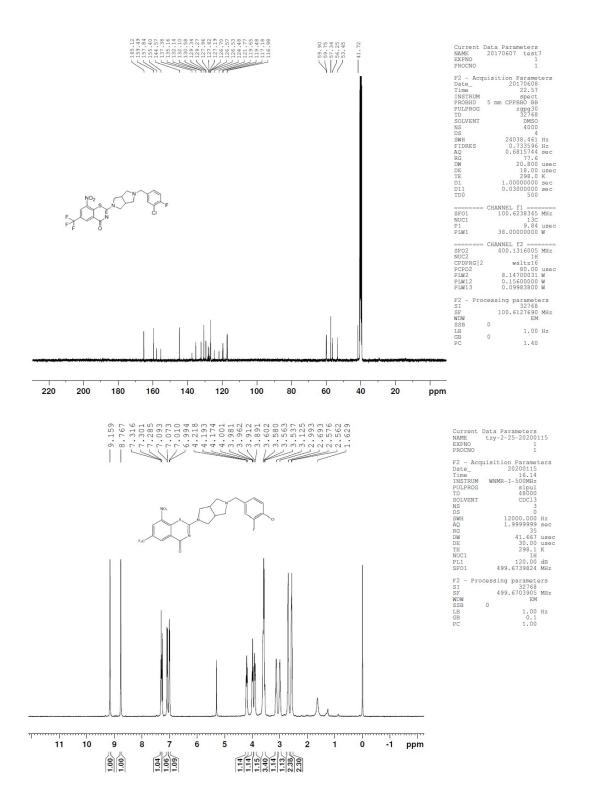


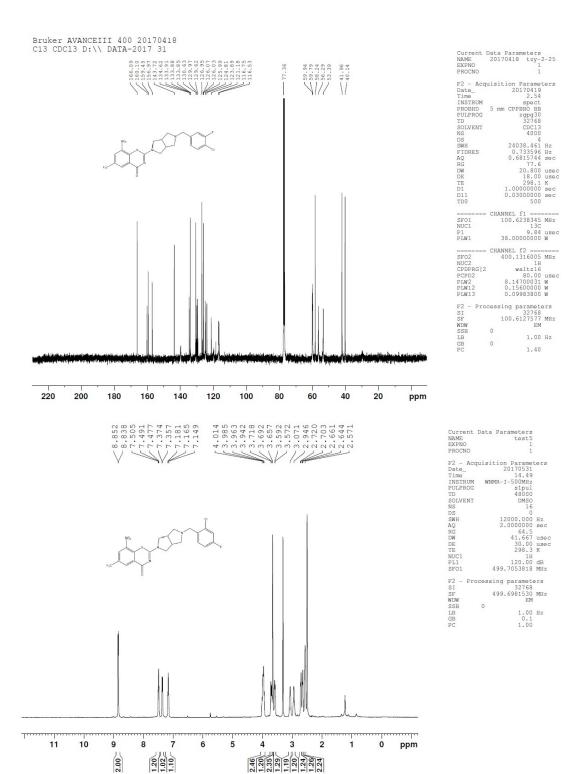


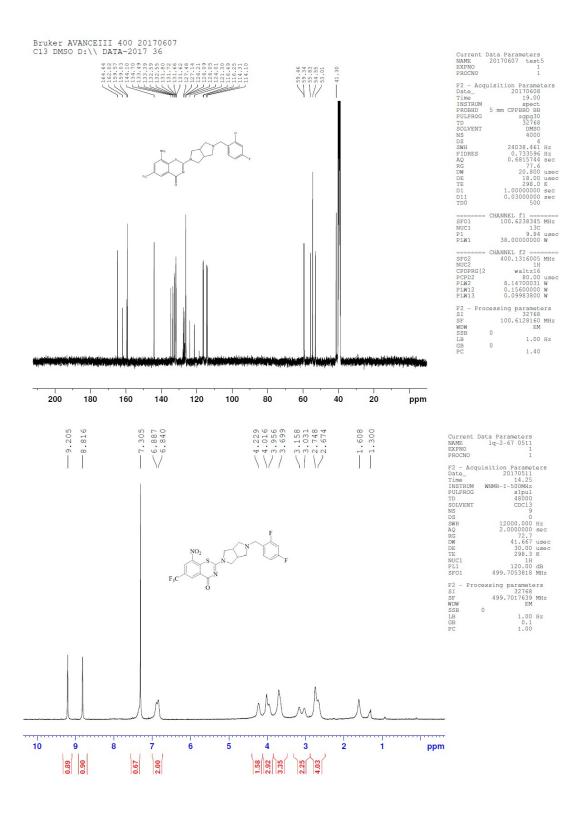


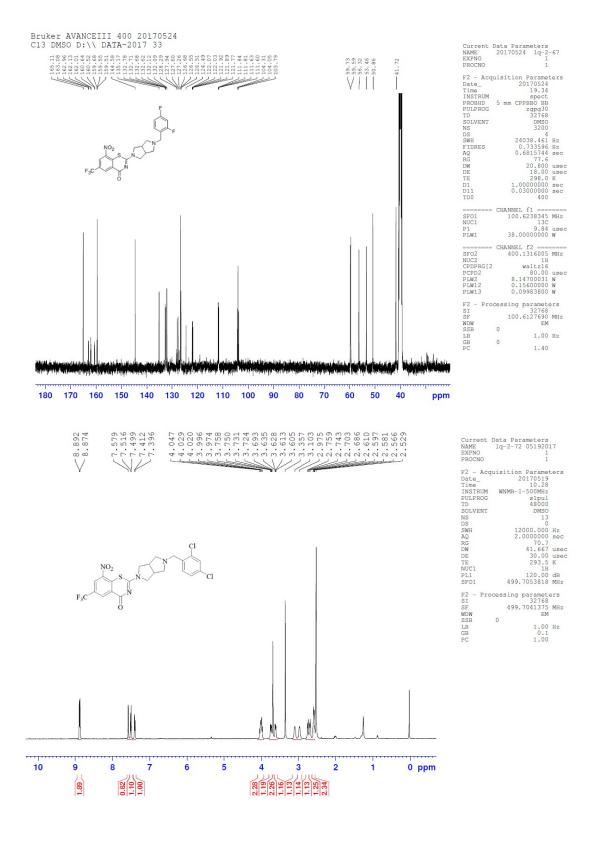


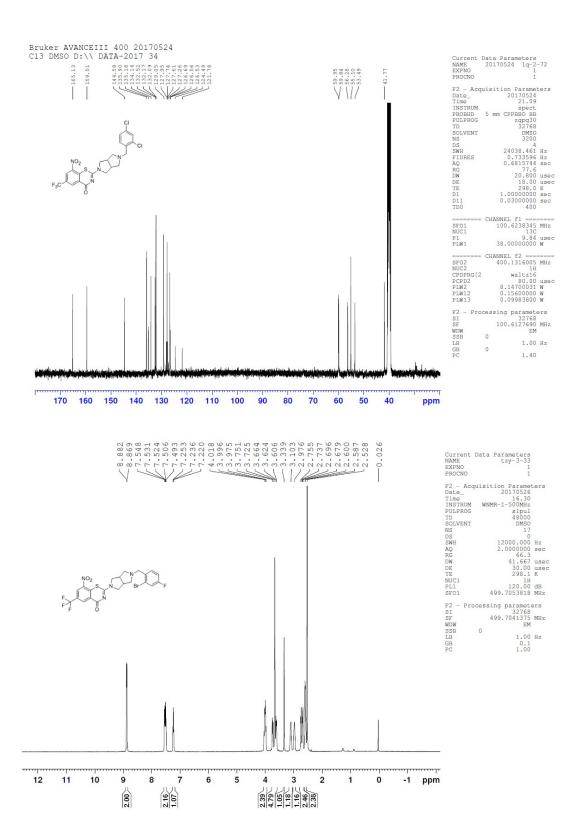


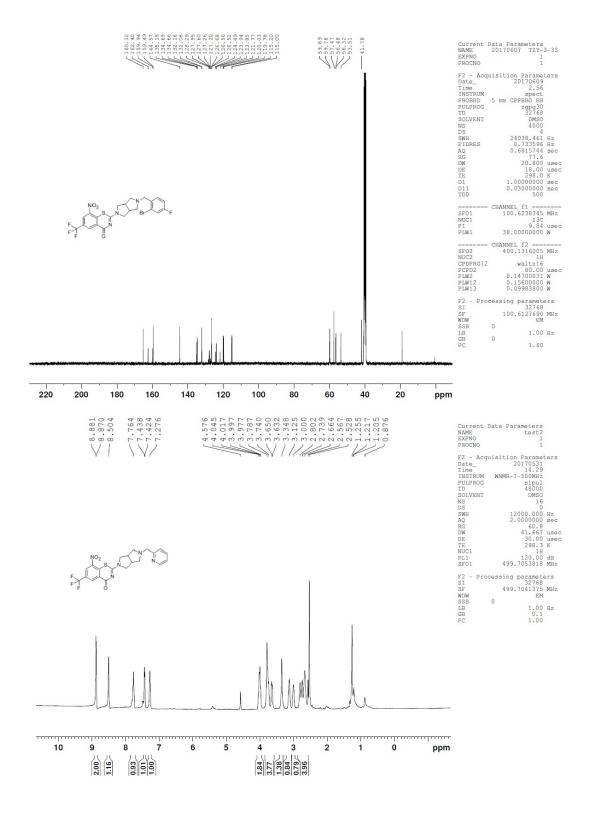


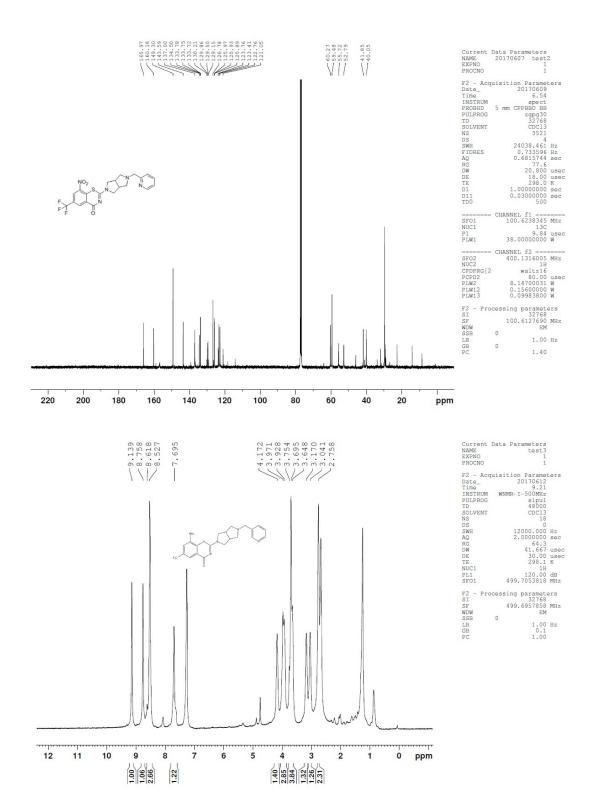


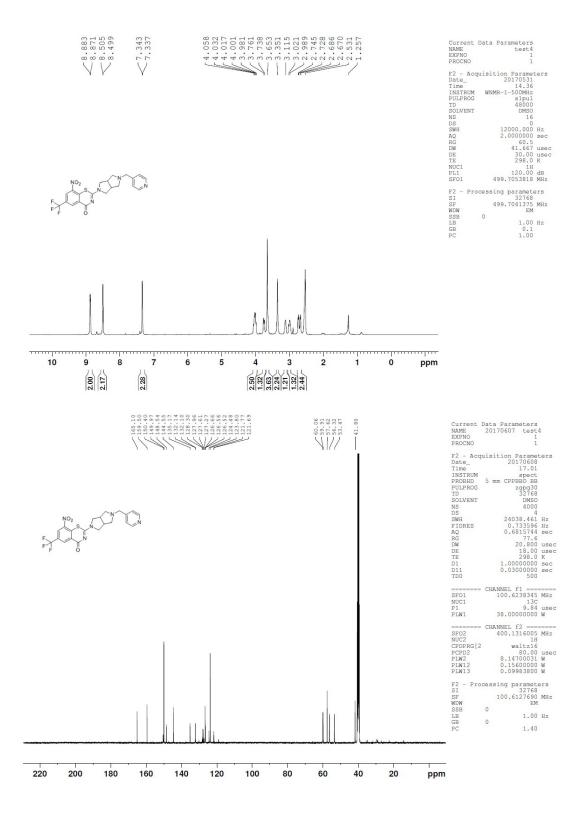


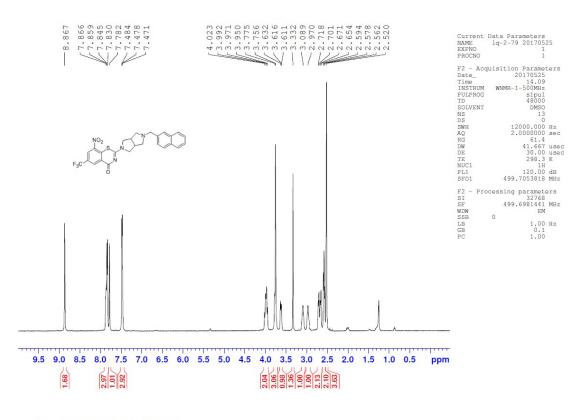


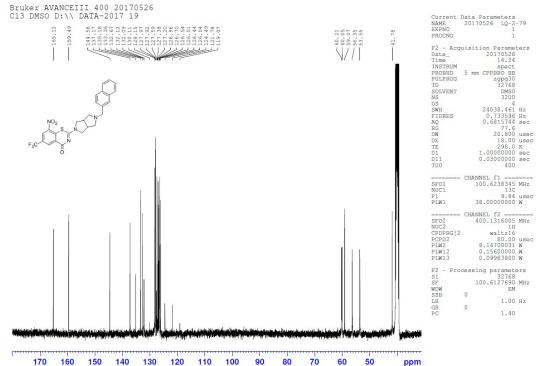


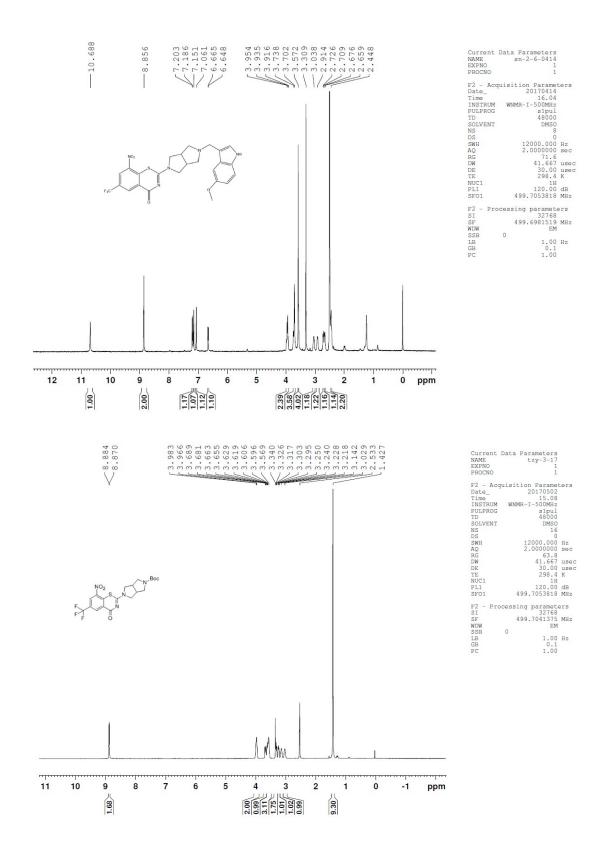


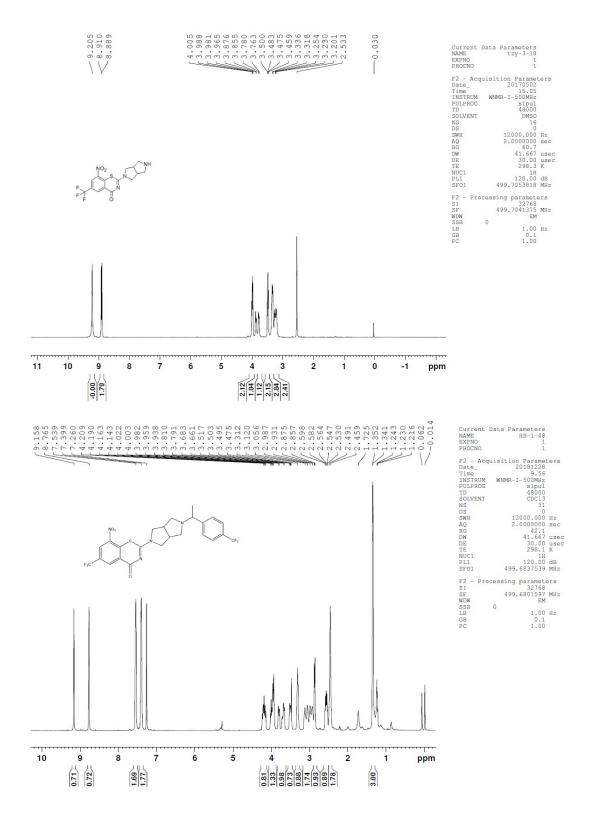


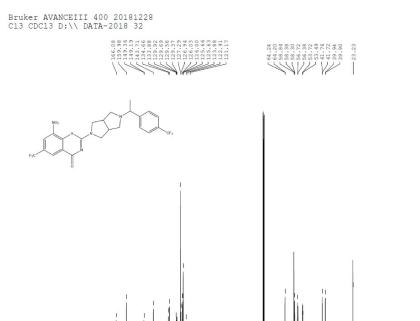


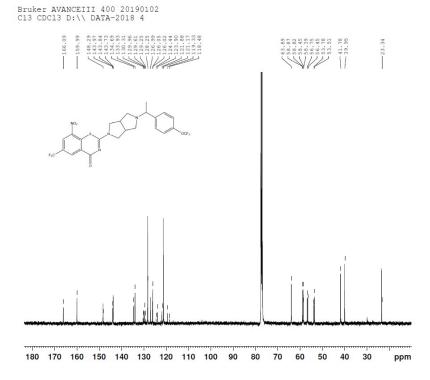


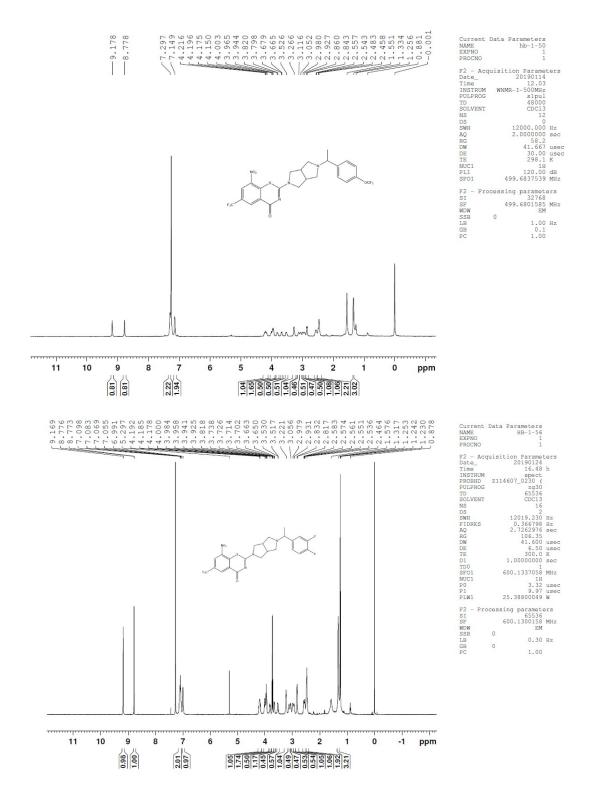


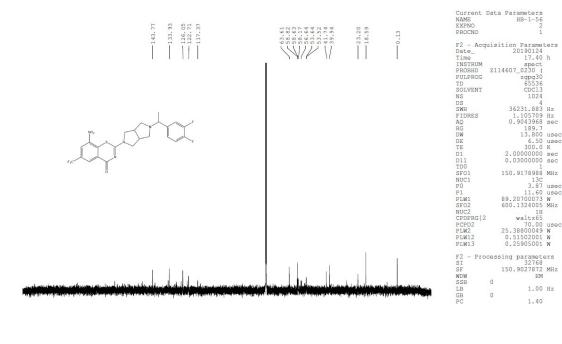






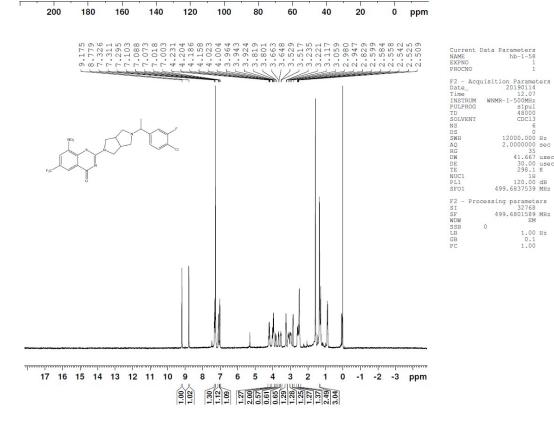





ppm

Current ! NAME	201812					-48
EXPNO					1	
PROCNO					1	
F2 - Acq	uisitio					ters
Date_		20				
Time					39	
INSTRUM					ct	
PROBHD	5 mm (
PULPROG					130	
TD					68	
SOLVENT			C		13	
NS				13	32	
DS	102				4	
SWH	4	240	38	.4	61	Hz
FIDRES		0.	13	35	96	Hz
AQ	().6			44	sec
RG			00	11	. 6	used
DW						used
DE TE					.0	
D1		00				sec
D11						sec
TD0	0.	.03	00		00	Sec
	CHANNE	7.7.	f1			
SFO1	100	0.6	23	83	45	MHz
NUC1				1	3C	
P1				9.	84	used
PLW1	38.	00	00	00	000	W
SFO2	400).1	31	60		MHz
NUC2					1H	
CPDPRG[2		W			16	
PCPD2			- 8	0.	00	used
PLW2	8.	14	70	00	31	W
PLW12	0.					
PLW13	0.	14	13	10	01	W
F2 - Pro	cessing	p	ar	an	et 68	ers
SF	100					MHz
WDW	100	. 0	12	/ 5	EM	MHZ
	0				2,14	
LB	0			,	nn	Hz
	0				00	112
	-				40	

	2019	01	02		ŀ	ıb		
EXPNO							1	
PROCNO							1	
F2 - Acq	uisit	io	n	P	aı	a	me	ters
Date_			20				02	
Time							34	
INSTRUM							ct	
PROBHD	5 mm	C						
PULPROG				Z	gr	og	30	
TD							68	
SOLVENT							13	
NS					4	0	00	
DS							4	
SWH								Hz
FIDRES							96	
AQ		0	. 6	8	15	7	44	Sec
RG					-	17	. 6	
DW								used
DE					18	3.	00	used
TE								K
D1		1.	00	0	00	0	00	sec
D11		0.	03	30				sec
TD0						5	00	
	CHAN	NE	L	f	1	E	-	
SF01	1	00	. 6	52	38			MHz
NUC1						1	30	
P1	100							used
PLW1	3	8.	00	00	00	00	00	W
	CHAN	NE	L	f	2	=	==	
SFO2	4	00	. 1	. 3	16			MHz
NUC2							11	
CPDPRG[2			V				16	
PCPD2								used
PLW2								W
PLW12 PLW13								W
PLWI3		υ.	14	1	31	···	01	· W
F2 - Pro	cessi	ng	Ē					
SI		0.0					68	
SF	1	00	. 6	1	2			MHz
WDW							EM	
	0							
LB	0				1		UU	Hz
GB PC	0							
					- 1		40	



1024 4 36231.883 Hz 1.105709 Hz 0.9043968 sec 189.7 13.800 usec 6.50 usec 300.0 K 2.00000000 sec 0.03000000 sec

0.03000000 sec 150.9178988 MHz 13C 3.87 Usec 11.60 Usec 89.20700073 W 600.1324005 MHz Waltz.65 70.00 Usec 25.38800049 W 0.51502001 W 0.25905001 W

0 1200.000 Hz 2.0000000 sec 35 41.667 usec 30.00 usec 298.1 K 1H 120.00 dB 499.6837539 MHz

220

200

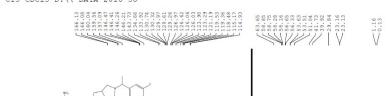
180

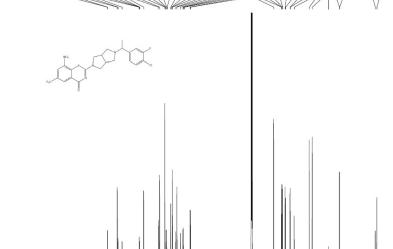
160

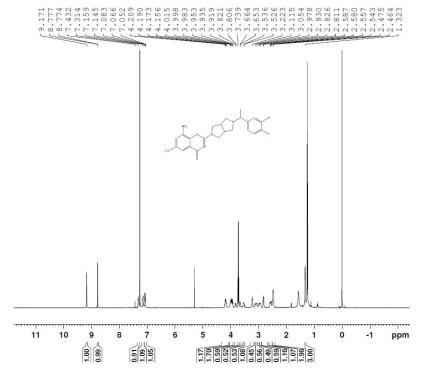
140

120

100


80


60


40

20

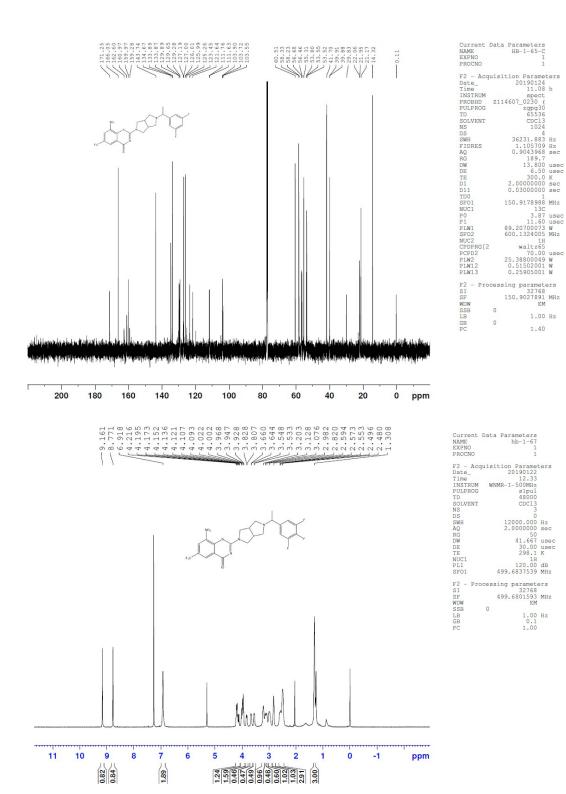
ppm

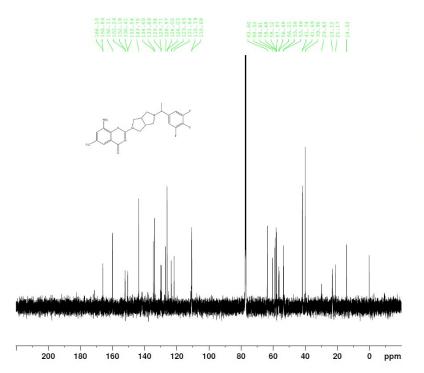
	Data Para		
NAME EXPNO	HB-1-68-	ZC-3-C	1-4-F
PROCNO		1	
PROCNO		1	
	quisition		ters
Date_	20	190124	
Time		17.45	h
INSTRUM		spect	
PROBHD	Z114607		
PULPROG		zg30	
TD		65536	
SOLVENT		CDC13	
NS		16	
DS		2	
SWH		19.230	
FIDRES		366798	
AQ	2.	1262976	
RG		121.15	
DW		41.600	
DE			usec
TE		299.9	
D1	1.00	000000	sec
TD0		1	
SF01	600.1	337058	
NUC1		1H	
PO			usec
P1			usec
PLW1	25.38	800049	W
F2 - Pr	ocessing p	paramet	ers
SI		65536	
SF	600.1	300159	MHz
WDW		EM	
SSB	0		
LB		0.30	Hz
GB	0		
PC		1.00	

PROCNO 1
F2 - Acquisition Parameters
Date 20190112
Time 0.14
INSTRUM
PROBHD 5 mm CPPBBO BB
PULPROG 202030
TD 32.763
TD 4000
SOLVENT CLC13
SSI 400
SSWH 24038.461 Hz
FIDRES 0.733596 Hz
AQ 0.6815.744 sec
RG 77.6
DW 20.800 usec
DE 18.00 usec
DE 18.00 usec
DE 18.00 usec
DE 0.30300000 sec
TD 0.30000000 sec
TD 0.30000000 sec

4000
4
24038.461 Hz
0.733596 Hz
0.6815744 sec
77.6
20.800 usec
18.00 usec
298.0 K
1.00000000 sec
0.03000000 sec

-- CHANNEL f1 ------100.6238345 MHz 13C 9.84 usec 38.00000000 W


CHANNEL f2 =======
400.1316005 MHz
1H
12 waltz16
80.00 usec
8.14770031 W
0.22080000 W
0.14131001 W


F2 - Processing parameters
SI 32768
SF 100.6127574 MHz
MDW EM EM
SSB 0 1.00 Hz
GB 0 1.40

SFO1 NUC1 P1 PLW1

SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13

Current	Data	Par	ai	TIP	te	rs	
NAME							5-triF
EXPNO						1	
PROCNO						1	
11100110						-	
F2 - Ac	quisi	tion	1 1	Pa	ra	me	ers
Date_	4			19	01	24	
Time				1	2.	04	h
INSTRUM						ct	
PROBHD	Z11	4607	7 1	02	30	(
PULPROG				zq	po	30	
TD				6	55	36	
SOLVENT				C	DC	13	
NS					10	24	
DS						4	
SWH		36	52	31	. 8	83	Hz
FIDRES							Hz
AQ		0.	9	04	39	68	sec
RG				1	89	. 7	
DW				13	. 8	00	usec
DE					6.	50	usec
TE				3	00	. 0	K
D1		2.0	00	00	00	00	sec
D11		0.0	131	00	00	00	sec
TDO						1	
SF01		150.	9	17	89	88	MHz
NUC1					1	3C	
PO					3.	87	usec
P1				1	1.	60	usec
PLW1		89.2					
SFO2		600.	1	32	40	105	MHz
NUC2						1H	
CPDPRG[2					65	
PCPD2							usec
PLW2		25.3	88	80	00	49	W
PLW12		0.5	51	50	20	01	W
PLW13		0.2	25	90	50	01	W
E0 D-							
F2 - Pr	ocess	ing	p,				512
SI		150	0			68	MHz
WDW		130.	9	UZ.		EM	
SSB	0					EM	
LB	U				1	00	Hz
GB	0				1.	00	nz
PC PC	U				1	40	