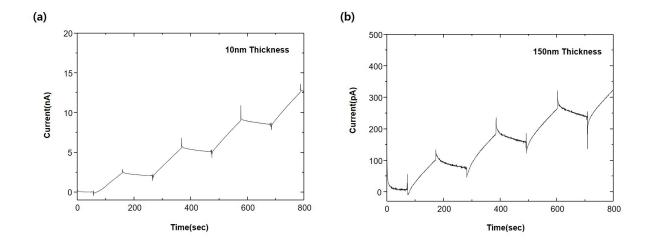
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Conversion of WO₃ thin film into self-crosslinked nanorods for large scale ultra-violet detector

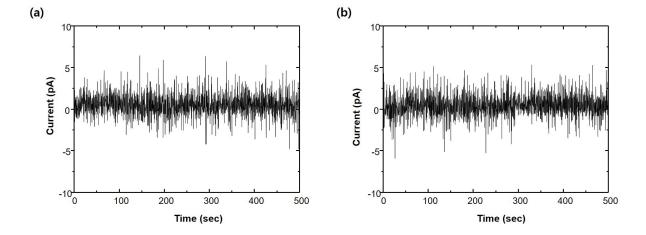
Youngho Kim^{a,b#}, Sang Hoon Lee^{c#}, Seyoung Jeong^b, Bum Jun Kim^d, Jae-Young Choi^{c,d*}, and Hak Ki Yu^{a,b*}

^aDepartment of Materials Science and Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea

^bDepartment of Materials Science and Engineering, Ajou University, Suwon 16499, South Korea


^cSchool of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea

^dSKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea


#These authors contributed equally to this work

	10nm	25nm	50nm
700°C annealing	500nm		
900°C annealing			
1000°C annealing			

Supplementary Information S1 The SEM image of WO₃ surface according to annealing time and thickness of thin film.

Supplementary Information S2 Photocurrent response of UV-C ray (261 nm) irradiation of Amorphous thin film WO₃ (a) of thickness 10nm and (b) of thickness 15nm.

Supplementary Information S3 Photocurrent response of UV-A ray (365 nm) irradiation of self-crosslinked WO₃ (a) without Ag nano particle and (b) with Ag nano particle.