Biomimetic synthesis of galantamine via laccase/TEMPO mediated oxidative coupling

Claudio Zippilli,^a Lorenzo Botta,^a Bruno Mattia Bizzarri,^a Maria Camilla Baratto,^b Rebecca Pogni,^b Raffaele Saladino^{a*}

^aDepartment of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100, Viterbo, Italy ^bDepartment of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy

Supplementary Information

1D and 2D NMR spectra (table S1) EPR spectra S2-25 (S14) S26-27

1D and 2D NMR spectra

¹H-NMR of 4-bromo-5-({[2-(4-hydroxyphenyl)ethyl]amino}methyl)-2-methoxyphenol (III)

S2

 $^{13}\mbox{C-NMR of 4-bromo-5-({[2-(4-hydroxyphenyl)ethyl]amino}methyl)-2-methoxyphenol (III)}$

DEPT-135 of 4-bromo-5-({[2-(4-hydroxyphenyl)ethyl]amino}methyl)-2-methoxyphenol (III)

DEPT-135 of 4-bromo-5-({[2-(4-hydroxyphenyl)ethyl]amino}methyl)-2-methoxyphenol (4)

¹H-NMR of 2-acetyl-9-bromo-7-methoxy-1,2,3,4-tetrahydro-4'H-spiro[2-benzazepine-5,1'-cyclohexa[2,5]diene]-4',6(5aH)-dione (5)

¹³C-NMR of 2-acetyl-9-bromo-7-methoxy-1,2,3,4-tetrahydro-4'H-spiro[2-benzazepine-5,1'-cyclohexa[2,5]diene]-4',6(5aH)-dione (5)

DEPT-135 of 2-acetyl-9-bromo-7-methoxy-1,2,3,4-tetrahydro-4'H-spiro[2-benzazepine-5,1'-cyclohexa[2,5]diene]-4',6(5aH)-dione (5)

2D-COSY of 2-acetyl-9-bromo-7-methoxy-1,2,3,4-tetrahydro-4'H-spiro[2-benzazepine-5,1'-cyclohexa[2,5]diene]-4',6(5aH)-dione (5)

2D-COSY, 400 MHz, CDCl₃

2D-NOESY of 2-acetyl-9-bromo-7-methoxy-1,2,3,4-tetrahydro-4'H-spiro[2-benzazepine-5,1'-cyclohexa[2,5]diene]-4',6(5aH)-dione (5)

2D-HSQC of 2-acetyl-9-bromo-7-methoxy-1,2,3,4-tetrahydro-4'H-spiro[2-benzazepine-5,1'-cyclohexa[2,5]diene]-4',6(5aH)-dione (5)

5

2D-HSQC, 400 MHz, CDCl₃

Table S1: representative ¹H-NMR, ¹³C-NMR (HSQC), DEPT-135, ¹H-¹H COSY and ¹H-¹H NOESY data for compound 5.

POSITION ^[a]	Ν° ^[b] ¹Η δ (J in Hz) ^[c]	¹³ C δ ^[d;e]	COSY ^[f]	NOESY ^[g]	POSITION ^[a]	N° ^[b] ¹Η δ (J in Hz) ^[c]	¹³ C δ ^[d;e]	COSY ^[f]	NOESY ^[g]
C1	-	158.9 C	-	-	C10	-	181.6 C	-	-
C2	H-26 δ = 5.96 (1H, s)	107.7 СН	-	H-39	C11	H-28 δ = 6.81 (1H, d, J = 8.0)	115.9 СН	H-29	-
С3	-	155.0 C	-	-	C12	H-29 δ = 7.00 (1H, d, J = 7.6)	130.5 CH	H-28	
C4	-	143.3 C		-	C13	H-31,32 δ = 2.79 (J = 12.8, 6.4)	49.8 CH2	H-33,34; H- 30	H-21; H-23; H-30; H-35
C5	H-23 δ =6.44 (1H, s)	131.2 CH	H-35	H-32; H-35	C14	H-33,34 δ = 3.49 (J = 13.6, 6.8)	34.13 CH ₂	H-31,32; H- 21	H-21; H-30; H-35
C6	-	186.9 C	-	-	C16	H-35,36 δ = 4.34	40.7 CH ₂	H-23; H21	H-23; H-32; H-34
C7	-	128.8 C	-	-	C19	H-21 δ = 7.90	163.3 СН	H-35,36; H-33,34	H-34; H-35
C8	H-30 δ = 7.00 (1H, d, <i>J</i> = 7.6)	130.5 СН	H-27	H-32; H-34	C25	H-37,38,39 δ = 3.85	56.5 CH₃	H-26	H-26
С9	H-27 δ = 6.81 (1H, d, <i>J</i> = 8 0)	115.8 CH	H-30	-					

^[a] The Numbering of carbon atoms is reported in Figure 2. ^[b] Numbering for the hydrogen atoms bonded to relative carbon position. ^[c] δ and J constant values are reported in ppm and Hz, respectively. ^[d] Carbon atoms assignment based on 2D-NMR and ¹H-DEPT-135/HSQC analysis. ^[e] Multiplicity of carbon atoms as determined by using DEPT-135 data. ^[f] Numbering of hydrogen atoms that are correlated by ¹H-¹H COSY. ^[g] Numbering of hydrogen atoms that are correlated by ¹H-¹H NOESY.

¹H-NMR of 9-bromo-7-methoxy-1,2,3,4-tetrahydro-4'H-spiro[2-benzazepine-5,1'-cyclohexa[2,5]diene]-4',6(5aH)-dione (5a)

DEPT-135 of 9-bromo-7-methoxy-1,2,3,4-tetrahydro-4'H-spiro[2-benzazepine-5,1'-cyclohexa[2,5]diene]-4',6(5aH)-dione (5a)

¹H-NMR of 1-bromo-N-formyl-narwedine (6)

¹³C-NMR of 1-bromo-N-methyl-narwedine (6)

¹H-NMR of galantamine (3)

¹³C-NMR of galantamine (3)

S21

¹H-NMR of 4-bromo-5-{[[2-(4-hydroxyphenyl)ethyl](methyl)amino]methyl}-2-methoxyphenol (7)

¹³C-NMR of 4-bromo-5-{[[2-(4-hydroxyphenyl)ethyl](methyl)amino]methyl}-2-methoxyphenol (7)

¹³C-NMR of 7-bromo-2-[2-(4-hydroxyphenyl)ethyl]-5-methoxyisoindolin-4-ol (10)

EPR spectra

EPR spectrum recorded in the presence of laccase (0.14 mM), TEMPO (6 μM) and compound 5

EPR spectrum recorded in the presence of laccase (0.14 mM) and TEMPO (0.6 mM)

EPR spectrum recorded in the presence of laccase (0.14 mM), TEMPO (0.6 mM) and compound 5

